
A Difference World: High-performance, NVM-invariant, Software-
only Intermittent Computation

1

Matthew Hicks

mdhicks2@vt.edu

Harrison Williams

hrwill@vt.edu

Saim Ahmad

saim19@vt.edu



2

Billions of IoT devices
- Market estimate: over 25 

billion devices by 2030
- Dominated by tiny, resource-

limited sensor nodes

Mobile and IoT deployments are reaching massive scales

Battery power is a 
non-starter at this 

scale

Massive-scale applications
- Industrial IoT
- Wearables
- Smart cities



Batteryless systems enable new deployments

3

Power 
interruptions

Energy 
constraints 

Small Cheap

Long-lived

System-level Benefits

Device-level Challenges

Software bugs



Intermittent software execution

4

Checkpoints sustain 
computation across 

power cycles



SRAM-based checkpoints

5

Typical checkpointing depends on 
performant NVM
- Flash: high-power, endurance limited
- FRAM/MRAM/ReRAM: limited 

adoption/availability

TotalRecall (ASPLOS `20): store 
checkpoints in SRAM
- Data retention well below MCU minimum
- Full retention for hours to days
- Verify integrity with checksum

100% 

retention

“Checkpoint” is a 
checksum over all SRAM



Many operations require rollback

6

Can be split across 
power cycles

Must occur in one
power cycle

Execution must roll back to 
beginning of atomic operation

Correctness, performance, 
programmability challenges



Task-based models make rollback tractable

7

task_sense() task_compress() task_transmit()

Programmer 
decomposes code 

into tasks

Compiler inserts code 
for checkpointing and 

rollback

Foundation: “known-good” 
state stored in NVM

Problem: incompatible with 
SRAM-based checkpointing

Automatic rollback: 
no need for hardware 

energy monitor



Task-based models make rollback tractable

8

task_sense() task_compress() task_transmit()

Checksum calculated 
over SRAM

Continued execution 
immediately

invalidates checksum

Question: how can we apply in-place SRAM checkpoints to task-
based intermittent systems?



VolatileVolatile

Camel: mixed-volatility SRAM worlds

9

SRAM

“Non-Volatile” (checksum-backed)

Store working data in 
volatile SRAM

Store known-good state in 
checksum-backed region of SRAM

Main design considerations:
SRAM is scarce →minimize memory overhead

Checksum is expensive →minimize writes to NV world



Alternating world volatility

10

NVM-Based Task Model task_sense()

task_compress()

task_transmit()

Working 
buffer

Data 
buffer 1

Data 
buffer 2

Code, constants, etc.

Privatization

NVM
(task entry)

(task exit)

Task works on 
private data Private data 

committed

Three copies of working 
data at any time

High data movement 
overhead

Updated 
buffer



Alternating world volatility

11

Initial (volatile)

Camel Approach

Known-good (“non-volatile”)

task_sense()

task_compress()

task_transmit()

(swap and update)

Updated (volatile)Known-good (“non-volatile”)

Camel eliminates data privatization

In-place work

(checksum)Updated (“non-volatile”)Known-good (“non-volatile”)

Checksum over new state

Known-good (“non-volatile”)Initial (volatile)

Swap and update

A B



Alternating world volatility

12

Initial (volatile)

Camel Approach

Known-good (“non-volatile”)

task_sense()

task_compress()

task_transmit()

(swap and update)

Updated (volatile)Known-good (“non-volatile”)

Only 2 copies of 
working data

In-place work

(checksum)Updated (“non-volatile”)Known-good (“non-volatile”)

Checksum over new state

Known-good (“non-volatile”)Initial (volatile)

Swap and update

Minimal data 
movement

A B



Efficient state rollback after power failures

Write-first Read-onlyVariable temp x y result

Initial 0 1 2 4

Execution 1 3 1 2 7

Variable temp x y result

Initial 0 1 2 4

Variable temp x y result

Initial 0 1 2 4

Execution 1 3 1 2 7

Execution 2 3 1 2 10
Write-After-Read 

(WAR)



Efficient state rollback after power failures

Write-first Read-only

Write-After-Read 
(WAR)

Camel compiler identifies the minimum set of variables to roll back for correctness

Variable temp x y result

Initial 0 1 2 4

Execution 1 3 1 2 7

Rollback 3 1 2 4

Execution 2 3 1 2 7

Rolled back to 
enforce idempotency

Variable temp x y result

Initial 0 1 2 4

Execution 1 3 1 2 7

Rollback 3 1 2 4

Initial state 
does not 

affect output



Evaluation scenarios and benchmarks

Two target platforms
- MSP430G2955 (Flash)
- MSP430FR6989 (FRAM)

Hardware and simulation
- Hardware: RF energy harvester
- Simulation: measure CPU cycles, deep 

program instrumentation

Baselines + benchmarks
- TotalRecall and prior task-based systems
- 8 benchmarks for correctness and 

performance



Efficient, correct SRAM-based intermittent execution

Benchmark TotalRecall Camel

Transmit Fails

Actuate Fails

Sense Hangs

3-5x performance improvement 
over TotalRecall

Camel eliminates the need for on-
chip voltage monitoring Camel correctly executes 

peripheral-centric software



Differential buffer design cuts software overhead

Differential buffer approach improves all
intermittent systems

Camel’s buffer design outperforms next-
best task-based system by 2x

Commit count



High-performance, NVM-invariant intermittent 
computation

See the paper for more: memory 
consumption, checkpoint cycle 

overhead, integrity check methods, etc.

Camel brings efficient, correct intermittent computation 
to the largest class of devices today

Camel’s differential buffer design substantially improves 
task-based systems on any intermittent platform

Group: forte-research.com
Me: harriswms.github.io


	Slide 1: A Difference World: High-performance, NVM-invariant, Software-only Intermittent Computation
	Slide 2: Mobile and IoT deployments are reaching massive scales
	Slide 3: Batteryless systems enable new deployments
	Slide 4: Intermittent software execution
	Slide 5: SRAM-based checkpoints
	Slide 6: Many operations require rollback
	Slide 7: Task-based models make rollback tractable
	Slide 8: Task-based models make rollback tractable
	Slide 9: Camel: mixed-volatility SRAM worlds
	Slide 10: Alternating world volatility
	Slide 11: Alternating world volatility
	Slide 12: Alternating world volatility
	Slide 13: Efficient state rollback after power failures
	Slide 14: Efficient state rollback after power failures
	Slide 15: Evaluation scenarios and benchmarks
	Slide 16: Efficient, correct SRAM-based intermittent execution
	Slide 17: Differential buffer design cuts software overhead
	Slide 18: High-performance, NVM-invariant intermittent computation

