CyberStar: Simple, Elastic and Cost-Effective Network Functions Management in Cloud Network at Scale

Tingting Xu, Bengbeng Xue, Yang Song, Xiaomin Wu, Xiaoxin Peng, Yilong Lyu, Xiaoliang Wang, Chen Tian, Baoliu Ye, Camtu Nguyen, Biao Lyu, Rong Wen, Zhigang Zong and Shunmin Zhu

Network Functions in Clouds

Network functions

- NAT (SNAT & DNAT)
- Private Link
- Virtual Private Network
- Load Balance
- Network functions in clouds
 - Tenant VPCs
- Customer VPCs and on-premise datacenters
- Internet users and Cloud Service

Hardware middleboxes

- Long development cycles
- Lack of programmability
- Bare-metal network functions
 - Monthly online cycle involves purchasing, constructing, configuring and verifying

- Reserve numerous devices for emergency events.
- Cost of maintaining such a large amount of infrastructure.

Network Functions Deployment

Cloud service providers are seeking <u>elastic</u> solutions that can <u>dynamically</u> <u>respond to changing business demands</u>.

Elastic compute/container services (ECS)

- *Potentially "infinite" computation resource*
- "Pay-as-you-go" price model
- High availability

CyberStar: elastic cloud-native NF management platform over ECSs.

Objects of CyberStar

Challenge: scale out & scale up

NFs	Capability
NAT	2 million connections; 100 thousand CPS;
LB	100 million connections; 1 million CPS; 100 thousand QPS
IPSec VPN	$5\sim 200$ Mbps bandwidth

InsightsResource availabilityInfinite" resourcesComplex internal executionDecoupling NFsState consistency requirementDecoupling NFs

Objects of CyberStar

High Resource Utilization

Challenge

The average CPU utilization of Alibaba cluster is between 20% to 50%.

- Tenant distribution difference
 - Tenant A : traffic of 30 Mbps, 300K routes
 - Tenant B : traffic of 200 Gbps, just 7 routes
- Large fluctuations over time
 - Peak-to-average: 100:1

Insights

Objects of CyberStar

Low Management Complexity

Challenge

- Diverse resource configurations
 - Performance, cost, and availability.
 - Inherent delays and constraints.

Insights A few types of <u>prevalent</u> and <u>low-configured</u> ECS instances

Entry Computing	General Computing	Enhanced Computing		Elastic Bare Metal	Accelerated Computing		Local Storage Enhanced
Instance Type	vCPI Ratio	J/Memory D	Maximum Disk IOPS	Maximum PPS	Capability	Pricing	
Universal Type(u1) 🛈	1:1/1	1:2/1:4/1:8	60,000	2,000,000 pps		From \$ 43 .34/month	Buy Now
General Purpose(g7,g	36,g5) ① 1:4	Ļ	600,000	g7: 24000000 g6: 6000000 g5: 4000000	pps pps	From \$ 73 .69/month	Buy Now

Design Rationale

Elastic Scalability

Typical NF Architecture

Design Rationale

Elastic Scalability

Typical NF Architecture

Design Rationale: Elastic Scalability

Elastic Scalability using Disaggregated Architecture

- Partition NFs state and operations into lightweight components.
- Distribute them across massive ECS instances.

- NF-independent packet processing
- NF-specific computation
- NF-specific state management

Design Rationale: Elastic Scalability

Elastic Scalability using Disaggregated Architecture

- Partition NFs state and operations into lightweight components.
- Distribute them across massive ECS instances.

- NF-specific computation
- NF-specific state management

• Connections between SC and PP plane limits scalability.

• Connections between SC and PP plane limits scalability.

• Connections between SC and PP plane limits scalability.

• Fabric Master (FM) decouples SC and PP plane.

Overview

NF Orchestration

• Auto-Scaling mechanism

□ Three-plane of NFs

- Service Computing
- Packet Processing
- Fabric Master

PP: a series of <u>match-action</u> units.

- Service chain, e.g., FW-NAT
- Complex NFs, e.g., IPSec VPN
- Extend pipeline depth by adding new PPs along traffic path.

□ Scale each stage of the pipeline separately.

Packet Processing

PP: a series of <u>match-action</u> units.

- Service chain, e.g., FW-NAT
- Complex NFs, e.g., IPSec VPN

Utilization

• NF-independent units, can be shared by multiple NFs and tenants.

Performance

• Similar semantics with general-proposed hardware flow tables.

Packet Processing

Performance improved by vDPU acceleration

- Average delay as low as 20.587µs.
- Throughput is 6.6× and 7.8× compared to ECS.
- The side effect on software flow table is optimized by vDPU. It always maintains stable performance.

Reliability

- Node crashing leads to state loss.
- State replica to prevent state loss.

Scalability

- State synchronization overhead increases with the SC plane scaling.
- Minimize the impact of state synchronization on service computation.

Reliability

- Reliability Group, aka, SCG.
- Packet-pass-through within reliability group.

Service Computing

Scalability

• State partition for shared states.

Service Computing

Scalability

- State partition intra-SCGs
- State synchronization during scaling out

Service Computing

Scalability

- State partition intra-SCGs
- State synchronization during scaling in

Fabric Master

Decouple the SC and PP plane.

- 1. It delivers requests to SC plane, so the scaling of SC is transparent to PP plane.
- 2. It caches flows for repeat requests, so the scaling of PP is transparent to SC plane.

Elastic Network Interface (ENI)

Fabric Master

□ Improve the tenant accessing cloud services through NFs.

Fabric Master

□ Fabric improves the tenant accessing

ECS instances belonging to the same VPC can connect without the requirement of extra ENI.

Scalability

□ 35 K connections per seconds, 100 million active connections

- 35 ECSs
- Each ECS is equipped with 32 vCPUs, 128GB memory, 15Gbps bandwidth

NF Orchestration

Monitor long-term resource utilizations

NF Orchestration

Monitor long-term resource utilizations Determine how tenants' traffic is dispatched into ECSs

NF Orchestration

- Monitor long-term resource utilizations
- Determine how tenants' traffic is dispatched into ECSs
- Decide when scaling events are triggered

Algorithm

Alternatives

- First-Fit algorithm (FF), an online algorithm for the multi-dimensional vector bin packing.
- Weighted Best-Fit (BF) algorithm initially used in the production network.

The DRL-Base algorithm can achieve $\sim\!15\%\text{-}25\%$ lower cost compared to FF and BF.

CyberStar has been deployed for over four years and is publicly available in our cloud.

- a. We introduce a new three-plane architecture to address scalability issues.
- b. CyberStar facilitates the management of heterogeneous hardware resources in the cloud. We decompose the packet processing pipeline into NF-independent units, allowing the assembly of various NF types.
- c. To improve utilization, CyberStar introduces an auto-scaling approach to minimize the cost of cloud providers.

Thanks for your attention!