
USENIX ATC 2024

ScalaAFA: Constructing
User-Space All-Flash Array Engine

with Holistic Designs

Shushu Yi, Xiurui Pan, Qiao Li, Qiang Li
Chenxi Wang, Bo Mao, Myoungsoo Jung, Jie Zhang

Why We Need All-Flash Array (AFA)?

All-flash array are widely adopted in diverse domains.

SupercomputersDatacenters

PureStorage FlashArray

DELL EMC VMAX
FUJITSU ETERNUS

NetAppAFF

AFA → Superb performance & reliability!

Background: Evolvement of SSD and AFA

Continual advancement in SSD performance.

SATA SSD: 500 MB/s PCIe5 SSD: 13 GB/s

How can AFA fully leverage high-performance SSDs？

Background: Evolvement of SSD and AFA

D0 D1 P0D2
Stripe

SSD 0 SSD 1 SSD 2 SSD 2 SSD 0 SSD 1 SSD 2 SSD 2

User Addr.

AFA Addr.
Stripe

Partial

writes!

⚫ Stripe write AFA: mdraid [Linux], ScalaRAID [HotStorage’22], stRAID [ATC’22]
- Partial writes issue: read-construct-write → significantly delay the I/O completion time

Stripe Write AFA Two-phase Write AFA

⚫ Two-phase write AFA: LDM [TOS’16], FusionRAID [FAST’21]

- Replication as the prelude of striping, out-of-place update

Challenge in Replication Phase

Only 36.9% of ideal

Software overhead is the bottleneck for achieving high performance.

⚫ Only 36.9% of ideal with 1 thread
- I/O only accounts for 20.8%

- block layer: 18.8%, context switch: 35.6%

⚫ Not scalable with more threads
- Lock issue: 72.2%

- Real AFA: CPU:SSD ≈ 1:3

Context
Switch…

35.6%

Block
Layer…

18.8%

Lock-based
Sync.Challenge 1

72.2%

Challenge in Conversion Phase

0 5 10 15 20 25
0

2

4

6

B
a

n
d

w
id

th
 (

G
B

/s
)

Time (s)

0

4

8

L
a

te
n

c
y
 (

m
s
)

Challenge in Conversion Phase

0 5 10 15 20 25
0

2

4

6

B
a

n
d

w
id

th
 (

G
B

/s
)

Time (s)

0

4

8

L
a

te
n

c
y
 (

m
s
)

88.5% throughput ↓ & 13.7x latency ↑ in conversion phase.

88.5% degrad.

6
5
.7

%

Challenge in Conversion Phase

0 5 10 15 20 25
0

2

4

6

B
a

n
d

w
id

th
 (

G
B

/s
)

Time (s)

0

4

8

L
a

te
n

c
y
 (

m
s
)

88.5% throughput ↓ & 13.7x latency ↑ in conversion phase.

Background parity generation, especially host-SSD I/O.

Challenge 2

88.5% degrad.

6
5
.7

%

B
a

c
k

g
ro

u
n

d

H
o

s
t-

S
S

D
I/
O

91.7%

Challenge in Conversion Phase

0 5 10 15 20 25
0

2

4

6

B
a

n
d

w
id

th
 (

G
B

/s
)

Time (s)

0

4

8

L
a

te
n

c
y
 (

m
s
)

88.5% throughput ↓ & 13.7x latency ↑ in conversion phase.

Background parity generation, especially host-SSD I/O.

Challenge 2

Challenge 4

Other intrinsic issues of two-phase write

Replicating + Striping → Write Amp. → Lifetime↓

Challenge 3 Out of Place → Mapping → Crash Consist. Cost

Our Solution: ScalaAFA

✓ Embracing user-space storage stack to lighten software overhead
• Adopt SPDK to take advantage of its high-performance storage stack

• Enable lock-free multi-thread access with message-passing mechanism

✓ Enjoying SSD architectural innovations to tackle the intrinsic issues
• Store sliced mapping tables in SSD OOB for low-cost crash consistency

• Avoid flushing transient replicas from SLC to the vulnerable MLC blocks*

✓ Harnessing SSD-internal hardware resources for parity generation
• Employ a novel data placement policy to curtails background I/O

• Leverage the SSD built-in XOR engine to calculate the parity codes in situ

Challenge 1

Challenge 2

Challenge 3&4

*Please refer to our paper for more details.

Storage Space Abstraction of ScalaAFA

HH #1 HH #1 HH #1 HH #1

VH #1-0
VH #1-0
VH #1-0

VH #2-0
VH #2-0
VH #2-0

VH #3-0
VH #3-0
VH #3-0

User Address

AFA Address

SSD Logical

Address

SSD 0

0x0
0x1
0x2

…

SSD 1

…

SSD 2

…

SSD 3

…

HH #0 HH #0 HH #0 HH #0
Horizontal Hero (HH)

Vertical Hero (VH)

…

…
Stripe

1 HH+ m VH = 1 Hero Group (HG)

T
ra

n
s
ie

n
t

A
re

a

N
o

rm
a
l

A
re

a

Hero Group #1:

HH #1 + VH #3-0

Enable Lock-free Multi-Thread Access

Prohibit threads from placing data on the same SSD address.

Idea: Manage the write permission of SSD storage space.

GrantA
Granted Heroes

Hero
Assembling

B

Write DataC
Thread

Destruction

D

Filled UpD

C
o

n
v
e

rs
io

n
F

Evolve the Write Path: Data Placement Policy

User Address

0x0 0x1…

AFA Address

Data to be written1. Replication phase: transparently gather

chunks of the same stripe in VHs

SSD Logical

Address

VH #3-0

VH #3-0

VH #3-0

HH #1 HH #1 HH #1 HH #1

SSD 0 SSD 1 SSD 2 SSD 3

Evolve the Write Path: Conversion Offloading

User Address

0x0 0x1…

AFA Address

Data to be written1. Replication phase: transparently gather

chunks of the same stripe in VHs

2. Conversion phase: generate parity in SSDs

SSD Logical

Address

VH #3-0

VH #3-0

VH #3-0

HH #1 HH #1 HH #1 HH #1

SSD 0 SSD 1 SSD 2 SSD 3

Dr. SSD 3:

 Src: @VH #3-0,

 Dst: @HH #1,

 ChunkSize, Num

Yours,
Host

Evolve the Write Path: Conversion Offloading

User Address

0x0 0x1…

AFA Address

Data to be written1. Replication phase: transparently gather

chunks of the same stripe in VHs

2. Conversion phase: generate parity in SSDs

SSD Logical

Address

VH #3-0

VH #3-0

VH #3-0

HH #1 HH #1 HH #1 HH #1

SSD 0 SSD 1 SSD 2 SSD 3

Dr. SSD 3:

 Src: @VH #3-0,

 Dst: @HH #1,

 ChunkSize, Num

Yours,
Host

Compute ParityXOR Engine

Persist the Mapping Table

User Address

0x0

AFA Address

SSD Logical

Address

HH #1 HH #1 HH #1

How to persist mapping tables with low cost？

HH #1

VH #3-0

VH #3-0

VH #3-0

AFA Mapping Table

Hero Group Mapping Table

SSD 0 SSD 1 SSD 2 SSD 3

Persist the Mapping Table: SSD OOB

⚫ Key insight: flash page and its OOB can be written with one program operation
1. Convert mapping tables to a segmentable data structure

2. Slice persistent mapping table based on SSD LPN

AFA Mapping Table

Hero Group Mapping Table

Persistent Mapping Table

Persist the Mapping Table: SSD OOB

⚫ Key insight: flash page and its OOB can be written with one program operation
1. Convert mapping tables to a segmentable data structure

2. Slice persistent mapping table based on SSD LPN

3. Piggyback the sliced metadata in write requests

4. Persists the metadata to OOB via the same program operation

AFA Mapping Table

Hero Group Mapping Table

Sliced Metadata

User chunk No. Slot SSD LPN

0x0 0 0x20

User chunk No. Slot SSD LPN

0x0 1 0x20

User chunk No. Slot SSD LPN

0x3 0 0x40

Data Metadata

User chunk No. Slot SSD LPN

0x0 0 0x20

Write Request of Chunk 0

SSD Physical Page

MetadataData

Normal OOB

One Program Operation

Prototype and Testbed Setup

Component Configuration

CPU
Intel Xeon Gold 5320, 26 cores

2.2 GHz with hyper-threading

Memory DDR4 3200 MT/s, 8 × 64GB

Real

SSD

Up to 8 × Samsung 980 Pro

Read/Write : 7000/5200 MB/s

VM 32 CPU cores & 32 GB DRAM

FEMU

SSD

8 Channel / 12 Die / 1 Plane

352 Block / 512 Page / 4 KB

Read / Write : 7500 / 4890 MB/s

XOR Cost 20 us / 64 KB, 16 mW DP

OS Ubuntu 20.04 LTS, Linux v5.11.0

Software fio v3.30, perf v5.11, mdadm v4.1

Testbed Configuration

Name Description

mdraid Default stripe write AFA of Linux kernel.

ScalaRAID Mitigates lock overheads of mdraid.

stRAID Alleviates sync. overheads in mdraid.

RAID5F Ideal, only serve RAID5 full-stripe I/O.

FusionRAID SOTA two-phase write AFA engine.

Counterparts

Component LOC

SPDK v22.05 6K

FEMU Emulator 1K

Implementation Complexity

Microbenchmark

Bandwidth Latency

ScalaAFA improves bandwidth by 2.5x while

decreasing average latency by 52.7%!

2.5x

CPU Overhead

ScalaAFA achieves almost the ideal performance with

1/2 threads for 4+1/6+1 AFA (Thread:SSD=1:3)!

Macrobenchmark

ScalaAFA shortens the runtime by 2.8x!

Application & Incremental Tests

Throughput on RocksDB Incremental Tests

58.4%

37.9%

41.4%

User-space & Lock-free

Conversion Offloading

Conclusion

⚫ Existing AFA engines fail to adopt high-performance SSDs
- Software overhead and AFA internal tasks

⚫ ScalaAFA: deliver high performance at low CPU costs
- Key insight: embracing user space & harnessing SSD built-in resources

- Lock-free permission management for concurrent access (Design 1)

- Offloading conversion tasks to SSDs with novel placement policy (Design 2)

- Store sliced metadata in SSD OOB for low-cost crash consistency (Design 3)

- Avoid flushing transient replicas to the vulnerable MLC blocks (Design 4)*

⚫ Significantly improves write throughput and reduces latency

*Please refer to our paper for more details.

USENIX ATC 2024

Thanks & QA
ScalaAFA: Constructing User-Space All-Flash Array Engine with Holistic Designs

Shushu Yi, Xiurui Pan, Qiao Li, Qiang Li
Chenxi Wang, Bo Mao, Myoungsoo Jung, Jie Zhang

https://github.com/ChaseLab-PKU/ScalaAFA

	Slide 1: ScalaAFA: Constructing User-Space All-Flash Array Engine with Holistic Designs
	Slide 2: Why We Need All-Flash Array (AFA)?
	Slide 3: Background: Evolvement of SSD and AFA
	Slide 4: Background: Evolvement of SSD and AFA
	Slide 5: Challenge in Replication Phase
	Slide 6: Challenge in Conversion Phase
	Slide 7: Challenge in Conversion Phase
	Slide 8: Challenge in Conversion Phase
	Slide 9: Challenge in Conversion Phase
	Slide 10
	Slide 11: Storage Space Abstraction of ScalaAFA
	Slide 12: Enable Lock-free Multi-Thread Access
	Slide 13: Evolve the Write Path: Data Placement Policy
	Slide 14: Evolve the Write Path: Conversion Offloading
	Slide 15: Evolve the Write Path: Conversion Offloading
	Slide 16: Persist the Mapping Table
	Slide 17: Persist the Mapping Table: SSD OOB
	Slide 18: Persist the Mapping Table: SSD OOB
	Slide 19: Prototype and Testbed Setup
	Slide 20: Microbenchmark
	Slide 21: CPU Overhead
	Slide 22: Macrobenchmark
	Slide 23: Application & Incremental Tests
	Slide 24: Conclusion
	Slide 25: Thanks & QA

