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1. Background

• Memory size serves as one of the most significant challenges in LLMs’ training
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• Distribute data and model to multiple GPUs using hybrid parallelism



1. Background

• Challenge: The activation size 
grows along with sequence length, 
and may exceed GPU memory 
capacity

• Traditional solutions

• A. Full checkpointing

• Leads to 1/3 additional computation 
cost

• B. Increasing TP size and/or CP size

• Incurs substantial communication 
overhead and a reduction in 
computational intensity
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2.1 Compute-Memory Balanced Checkpointing
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2.1 Compute-Memory Balanced Checkpointing

• Background
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2.1 Compute-Memory Balanced Checkpointing

• Activation Size

• Traditional checkpointing methods: focus on total activation size of the entire model

• Pipeline parallelism scenario: should focus on stored activation of sub-models
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2.1 Compute-Memory Balanced Checkpointing

• Reconstruction Cost

• Determine the computation cost for each activation tensor

• Temporary memory can be ignored

• Reconstruct activations layer by layer

• All activations of previous layers can be used, no matter whether the previous activation is stored or 
reconstructed

• Examples:
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2.1 Compute-Memory Balanced Checkpointing

• Pareto Frontier

• By enumerating the set of stored activations

• Determine the minimum computational expenditure for 
each enumerated memory budget

• Compute-Memory Balanced Solution

• Recompute RMSNorm and GLU (SiLU and Mul)

• Saves 39% memory using only 1.5% recomputing cost
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2.2 Pipeline-Parallelism-Aware Offloading
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2.2 Pipeline-Parallelism-Aware Offloading

• “Activation blocks” are offloaded to the host memory

• Activation block: generated by one pipeline stage (typically 1 ~ 2 transformer layers)
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2.2 Pipeline-Parallelism-Aware Offloading

• Schedule of Offloading and Reloading

• Offloading starts as soon as possible after the end of each pipeline stage forward

• Reloading starts at the beginning of the previous pipeline stage backward
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2.2 Pipeline-Parallelism-Aware Offloading

• Reduced number of “Activation Blocks” on GPU
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2.2 Pipeline-Parallelism-Aware Offloading

• Bandwidth Utilization Enhancing

• Bidirectional memory copy

• Bind to Non-Uniform Memory Access (NUMA) node

• Use page-locked memory

• Offload Ratio

• Activation is partially offloaded to host memory

• Offload ratio α (0 ≤ α ≤ 1) is used to control how much 
activation is offloaded to host memory

• Select offload ratio as low as possible for two reasons

1. Memory copy between host and device may slightly slow 
down computation due to resource competition;

2. Offloading may not always be completely overlapped with 
computation.
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2.1 & 2.2: Memory View
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2.3 Hybrid Parallel Parameters Tuning
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Model
• #layers

• hidden size

• sequence length

• global batch size

Cluster
• GPU type

• #GPUs

• Network

Configuration

• TP size = ?

• CP size = ?

• PP size = ?

• virtual PP size = ?

• ckpt = no/full?

• ckpt = balanced?

• offload α = ?

further amplifies the complexity 

of parameter tuning



2.3 Hybrid Parallel Parameters Tuning

• Challenge

• Given a model and a cluster, the number of combinations of (t, c, p, l, ckpt) is vast,

• even if we have some prior knowledge

• Avoid inter-node TP communication for all models: t ≤ 8

• Avoid inter-node CP communication for multi-head attention (MHA) models: tc ≤ 8

• Hand-crafted parameters often result in suboptimal combinations of parallel options
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2.3 Hybrid Parallel Parameters Tuning

• Cost Model

• Primitive information: Reduce measurement while pursuing accuracy of the cost model

• Equations: Take forward/backward time, pipeline bubble, optimizer update time, impact of 
overlap, and memory size into account
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2.3 Hybrid Parallel Parameters Tuning

• Solver

• Minimize the modeled time under memory constraints
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3.1 Evaluation: Experimental Settings

• Cluster

• The cluster consists of 32 nodes

• Each node is equipped with eight NVIDIA H800 80GB GPUs

• Each node has 1TB of host memory

• Training Info

• Precision is BF16 with FP32 gradients accumulation

• Optimizer is Adam with FP32 optimizer states

• Software

• Megatron-LM + industry level improvement
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3.2 Evaluation: Cost Model

• Verify the cost model using various combinations of

model, sequence length,

(t, c, p, l, ckpt), global batch size
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3.3 Evaluation: End-to-End Performance Tuning

• Enhance the throughput by up to 32%

• Both “baseline” and “ours” use the optimal hybrid parallel parameters solved by the cost 
model

(256 H800 GPUs, global batch size is 256)
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3.4 Evaluation: Optimal Scaling

• Vary the number of GPUs

• DP scaling (baseline): only scale DP size when node number changes

• Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

• Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256±16)
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4. Contribution

1. Pipeline-Parallel-Aware Offloading

• Schedule offloading and reloading of activations, following the pipeline parallel schema, fully 
utilizing host memory to store activations with negligible overhead.

2. Compute-Memory Balanced Checkpointing

• Balance memory cost and computation cost to achieve the Pareto optimality.

3. Efficient Searching Method

• find the optimal hybrid parallelism parameters using the performance model measured from 
cluster-related primitive information and model-related primitive information.

4. Extensive Experiments

• Example: Increase Model FLOPs Utilization (MFU) from 32.3% to 42.7% for a 175B Llama-
like model with a context window size of 32,768 on 256 NVIDIA H800 GPUs.

• Artifact Evaluated: https://github.com/kwai/Megatron-Kwai | branch: atc24ae
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https://github.com/kwai/Megatron-Kwai/tree/atc24ae/examples/atc24


Thank you!
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