USENIX B KUAISHOU
ATC 24

Accelerating the Training of Large Language Models
using Efficient Activation Rematerialization
and Optimal Hybrid Parallelism

Tailing Yuan, Yuliang Liu*, Xucheng Ye, Shenglong Zhang, Jianchao Tan,
Bin Chen, Chengru Song, and D1 Zhang

Kuaishou Technology, Beijing, China

Presenter: yuantailing@kuaishou.com
*Corresponding author: liuyuliang@kuaishou.com

B KUAISHOU
Outline

1. Background

2. Methods

* Compute-Memory Balanced Checkpointing
* Pipeline-Parallel-Aware Offloading
* Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

B KUAISHOU
1. Background

* Memory size serves as one of the most significant challenges in LLMs’ training

4500
4000
3500
o 3000
g 2500
3
2000
5
£ 1500
1000 /
0 = :

4096 8192 16384 32768 65536 131072
sequence length

—e—] J]ama-7B —e—[lama-13B =—e=]lama-33B —e=[l]ama-65B

B KUAISHOU
1. Background

* Distribute data and model to multiple GPUs using hybrid parallelism

GPU 0 GPU 1 GPU 0 GPU 1 GPU 0 GPU 1 GPU 0 GPU 1
data 0

data data

!
o

v ¥ 3 3 33

AL £
-H £

.

data parallelism tensor parallelism context parallelism pipeline parallelism
(DP) (TP) (CP) (PP)

h
'

1. Background

* Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

out-of-memory

Activation

Model

Optimizer

(¢, c,p,d)

B KUAISHOU

GPU memory capacity

1. Background

* Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

* Traditional solutions
* A. Full checkpointing

* Leads to 1/3 additional computation
cost

out-of-memory

Activation

Activation

Model Model

Optimizer Optimizer

(t, ¢, p,d) (t, ¢, p,d)

B KUAISHOU

GPU memory capacity

1. Background

* Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

* Traditional solutions
* A. Full checkpointing

* Leads to 1/3 additional computation
cost

* B. Increasing TP size and/or CP size

* Incurs substantial communication
overhead and a reduction in
computational intensity

B KUAISHOU

out-of-memory

(B)

Increase t, ¢

Activation

GPU memory capacity

Activation
Activation

Model Model
Model

Optimizer Optimizer Optimizer

(¢, c, p, d) (t,c,p, d) (2t, 2¢c, p, d/4)
7

B KUAISHOU
Outline

1. Background

2. Methods

* Compute-Memory Balanced Checkpointing
* Pipeline-Parallel-Aware Offloading
* Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

3 KUAISHOU
2.1 Compute-Memory Balanced Checkpointing

3 KUAISHOU
2.1 Compute-Memory Balanced Checkpointing

* Background

store activations recompute forward backward
- 000 a a a a
pt
OO0O00@
time
o000
full ckpt ‘ O O O

OO0O000e O000O

@ activation © gradient
10

B KUAISHOU

2.1 Compute-Memory Balanced Checkpointing

 Activation Size
* Traditional checkpointing methods: focus on total activation size of the entire model

* Pipeline parallelism scenario: should focus on stored activation of sub-models

temp
activation

stored
activation

forward backward

» Time

Traditional model training: Focus on

total activation

temp

stored
stored
stored

stored

warm-up phase: fwd

» Time

steady phase: fwd+bwd

cooldown phase: bwd

Pipeline Parallelism: Stored activation

dominates

11

3 KUAISHOU
2.1 Compute-Memory Balanced Checkpointing

* Reconstruction Cost
* Determine the computation cost for each activation tensor

12

2.1 Compute-Memory Balanced Checkpointing

 Reconstruction Cost

* Determine the computation cost for each activation tensor

* Temporary memory can be ignored

* Reconstruct activations layer by layer

B KUAISHOU

 All activations of previous layers can be used, no matter whether the previous activation is stored or

reconstructed

* Examples:

)
Linear

|

A 2

RoPE

|

02
Attention

v

(a) Reconstruct the input of
Attention. Two layers are
required to recompute.

J
Linear

I

) 2

SiLU

I

2
Mul

¥

(b) Reconstruct the input of
SiLU. The second operand of
Mul is also reconstructed.

13

3 KUAISHOU
2.1 Compute-Memory Balanced Checkpointing

e Pareto Frontier

Computation time (ms)

Memory cost (bsh/(tc))

14

B KUAISHOU

2.1 Compute-Memory Balanced Checkpointing

e Pareto Frontier

& Feasible choices

30 |-

* By enumerating the set of stored activations

8
26
24 -

(swr) owry uoneINdwo))

22 |-

20 30 40

Memory cost (bsh/(tc))

10

15

3 KUAISHOU
2.1 Compute-Memory Balanced Checkpointing

* Pareto Frontier
* By enumerating the set of stored activations

30 - :
& Feasible choices

Pareto frontier

* Determine the minimum computational expenditure for 28|

cach enumerated memory budget

AAAAAAA
AAAAAAAA

Computation time (ms)

26 |- A AN A A .
A A
AiA iAA AiA a0 LA
NN AAAAAAAA A
AA A AN A A
24 |- LAA AMA A A n
A AA A AA A A
22 |- n
| | |
0 10 20 30 40

Memory cost (bsh/(tc))

16

3 KUAISHOU
2.1 Compute-Memory Balanced Checkpointing

* Pareto Frontier
* By enumerating the set of stored activations

30 [‘ ‘ .
@ full checkpointing 2 Feasible choices

Pareto frontier

* Determine the minimum computational expenditure for
cach enumerated memory budget

28 -

AAAAAAA
AAAAAAAA

26 - N

A A AN A

AAA AA AAAA 2AA AA A
AAAA A A

AATA NN

e Compute-Memory Balanced Solution
* Recompute RMSNorm and GLU (SiLU and Mul)
* Saves 39% memory using only 1.5% recomputing cost

24 -

Computation time (ms)

22 -

compute-memory balanced checkpointing |
\ \ \

0 10 20 30 40
Memory cost (bsh/(tc))

17

3 KUAISHOU
2.2 Pipeline-Parallelism-Aware Offloading

18

3 KUAISHOU
2.2 Pipeline-Parallelism-Aware Offloading

* “Activation blocks™ are offloaded to the host memory
» Activation block: generated by one pipeline stage (typically 1 ~ 2 transformer layers)

Device 1 4 5167 8

Device 2

Device 3

Device 4

.] Forward

.] Backward

.] Offload .] Reload

19

3 KUAISHOU
2.2 Pipeline-Parallelism-Aware Offloading

* Schedule of Offloading and Reloading

* Offloading starts as soon as possible after the end of each pipeline stage forward
* Reloading starts at the beginning of the previous pipeline stage backward

Device 1 %

Device 2

I,
Deviee 3 Hﬂ
I,

Device 4

.] Forward .] Backward .] Offload .] Reload

20

3 KUAISHOU
2.2 Pipeline-Parallelism-Aware Offloading

* Schedule of Offloading and Reloading

» Offloading starts as soon as possible after the end of each pipeline stage forward
» Reloading starts at the beginning of the previous pipeline stage backward

Device 1

Device 2

Device 4

.] Forward .] Backward .] Offload .] Reload

21

3 KUAISHOU
2.2 Pipeline-Parallelism-Aware Offloading

e Reduced number of “Activation Blocks” on GPU

without offloading

Device 1 1234 15253647 H2 5678
11| 10 9

Act. blocks

1
11 11 19 11 11 11 |11 11 {11 11 {1y

H
)
w
~
W
(o))
]
%)
O
=
o

with offloading

5678
EANAEN 5 6 7 3|

2 (212122 (2]2]2]1

Act. blocks

—_
[\
[\
[\
[\
[\
)
[\
\S)
[\
(O8]
(O8]
(O8]
(O8]
(O8]
(O8]
(O8]
W
(O8]
(O8]
(O8]
(O8]
[\

.] Forward .] Backward .] Offload .] Reload

22

B KUAISHOU

2.2 Pipeline-Parallelism-Aware Offloading

* Bandwidth Utilization Enhancing
 Bidirectional memory copy
* Bind to Non-Uniform Memory Access (NUMA) node
» Use page-locked memory

e Offload Ratio Activation

* Activation is partially offloaded to host memory

* Offload ratio o (0 < a < 1) 1s used to control how much
activation 1s offloaded to host memory

 Select offload ratio as low as possible for two reasons
1.

2.

- o: on host memory

Seasssessssnessnanas GPU memory threshold

- 1 — a: on GPU memory

Memory copy between host and device may slightly slow
down computation due to resource competition; Model

Offloading may not always be completely overlapped with o
computation. Optimizer

23

B KUAISHOU
2.1 & 2.2: Memory View

Checkpointing Offloading

Activation

1

1

1

! a: on host memory
Activation !
1

e EsEsEEsEEEEEEsEEEEsEEsEEEEsEEEEEEEEEsEEEEsEEEEEEEEEEEEE GPU memory threShOld

- 1 —a: on GPU memory

Model Model Model

Optimizer Optimizer Optimizer

24

3 KUAISHOU
2.3 Hybrid Parallel Parameters Tuning

Model
#layers :
nfiguration
hidden size Configuratio
sequence length Y TP size =?
global batch size j@: CP size =?

PP size = ?
virtual PP size = ?
ckpt = no/full?

v

Cluster

GPU type
#GPUs further amplifies the complexity

of parameter tuning
Network

ckpt = balanced?

offload .= ?

25

2.3 Hybrid Parallel Parameters Tuning

* Challenge

B KUAISHOU

* Given a model and a cluster, the number of combinations of (¢, ¢, p, [, ckpt) is vast,
« even if we have some prior knowledge

e Avoid inter-node TP communication for all models: 1 < 8
* Avoid inter-node CP communication for multi-head attention (MHA) models: fc < 8

#GPUs Llama-175B
#(t,c) #(t,c,p,l) #(t,c) #(t,c,p,1) #(t,c) #(,c,p,1)

Llama-65B

Llama2-70B

64 10
192 10
240 10
256 10
1024 10
7680 10

141
287
175
160
160
310

10
10
10
10
10
10

86
86
125
90
90
190

14
14
14
22
30
34

106
106
141
178
250
514

* Hand-crafted parameters often result in suboptimal combinations of parallel options

26

3 KUAISHOU
2.3 Hybrid Parallel Parameters Tuning

* Cost Model

* Primitive information: Reduce measurement while pursuing accuracy of the cost model

27

3 KUAISHOU
2.3 Hybrid Parallel Parameters Tuning

* Cost Model

* Primitive information: Reduce measurement while pursuing accuracy of the cost model

/ \ Symbol Measured times Time to measure
&} Few-Shot Measurement Tomor Tomhn ,
2 ~ 15 min for each
- N Te, T each model, each (b,s,1,c¢) model each (b, 5)
Model-Related Primitive Information TheadF TheadB ,
- T Ty - Ty Texpt each (b,s/(tc),h,s/c,H/t) total <15 min for
- Tovrs Tombi - Oy Toop each (2bsh/(tc)) all models (shared
- Theadr> Theadn BWpt each (t,cd) among models)
> < BWpion
Cluster-Related Primitive Information %\vY/HtOD total <10 min for
amm - BWy © bidir once all models (shared
amm - BWpy, BWypp adam among models)
== 5, Bo2p
& / Bofﬂoad

28

3 KUAISHOU
2.3 Hybrid Parallel Parameters Tuning

* Cost Model

* Primitive information: Reduce measurement while pursuing accuracy of the cost model

* Equations: Take forward/backward time, pipeline bubble, optimizer update time, impact of
overlap, and memory size into account

/ \ Symbol Measured times Time to measure
&} Few-Shot Measurement Tomor Tomhn ,
’ 2 ~ 15 min for each
- N Te, T each model, each (b,s,1,c¢) model each (b, 5)
Model-Related Primitive Information TheadF TheadB ,
- T Ty - Ty Texpt each (b,s/(tc),h,s/c,H/t) total <15 min for
% - Tovrs Tombi - Oy Toop each (2bsh/(tc)) all models (shared
- Theadr> Theadn) BWpt each (t,cd) among models)
> < BWpion
Cluster-Related Primitive Information BWhiop total <10 min for
amm - BWy BWoigir once all models (shared
s Wadam
] - BWpou BWisp among models)
== . Bo2p
& / Bofﬂoad

29

3 KUAISHOU
2.3 Hybrid Parallel Parameters Tuning

* Solver
* Minimize the modeled time under memory constraints

@ Search Space \‘\ /f Few-Shot Measuremenm

i é Pipeli Compute- | 4 Model-Related Primitive Information >
i tpe ine- «. Memory i - T Ty - T
i | ™ Parallel-Aware | | > ! P
| . Balanced ! = Tomvr Tembn = Ougam
i Offloading Checkpointin : % = Theadr> Theadn
N poining)| {_ o T J
E 4 Hybrid Parallel: 7, ¢, p, d) i é Cluster-Related Primitive Information h
1 [] - BWopt
i - — — E E - BWpsy BWiap
\\\\ /',: & - ﬁpZP /
] I min = Tiodel
. \ t,c,p,l,ckpt
lsil Solver —
< Jthresh < thresh

‘@' Optimal Training Configuration
" t, ¢, p, d, checkpoint, offload ratio

(. l J
e N
) . . .
1,’0 Large Scale Distributed Runtime
. J

30

B KUAISHOU
Outline

1. Background

2. Methods

* Compute-Memory Balanced Checkpointing
* Pipeline-Parallel-Aware Offloading
* Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

31

B KUAISHOU

3.1 Evaluation: Experimental Settings

* Cluster
* The cluster consists of 32 nodes
* Each node 1s equipped with eight NVIDIA H800 80GB GPUs
* Each node has 1'TB of host memory
* Training Info
* Precision is BF16 with FP32 gradients accumulation
* Optimizer is Adam with FP32 optimizer states

* Software
* Megatron-LM + industry level improvement

32

3.2 Evaluation: Cost Model

* Verify the cost model using various combinations of

Time per iteration (s)

Time per iteration (s)

(t, c, p, [, ckpt), global batch size

model, sequence length,

+Llama-175B T —a— Llama-175B T};p4el x Llama-65B T' —=— Llama-65B T,ogel * Llama2-70B T —o— Llama2-70B Tjoqel

T T T T T T T T 30 F | | | |
100 = 100 N
20 |- 4
50 . 50 1 ol |
0 0 0 \ | |
(a) (8,1,8,2,0urs) (b) (4,1,8,2,0urs) (©) (2,2,8,2,0urs) (d) (8,1,8,2,0urs),B = 64
T T T T T T T T 150 -
100 -1 100 -1 100 .
100 N
50 -1 50 -1 50 1 50 X |
0 : ! 0 | | 0 B | | 0 e | |
4k 8k 16k 32k 4k 8k 16k 32k 4k 8k 16k 32k 4k 8k 16k 32k

Sequence length
(e) (8,1,4,4,0urs)

Sequence length
() (8,1,16,1,0urs)

Sequence length
(2) (8,1,8,2,n0)

Sequence length
(h) (8,1,8,2,full)

S KUAISHOU

33

B KUAISHOU

3.3 Evaluation: End-to-End Performance Tuning

* Enhance the throughput by up to 32%

* Both “baseline” and “ours” use the optimal hybrid parallel parameters solved by the cost

model
Llama-175B Llama-65B Llama2-70B (GQA)
50 50 50
< 40 40 40
=)
.8
g
= 30 30 30
)
S 20 20 20
_1
S5
o)
2 10 10 10
p=
0 0 0
4096 8192 16384 32768 4096 8192 16384 32768 65536 4096 8192 16384 32768 65536 1310752
B Baseline ® Qurs B Baseline ® QOurs B Baseline ® QOurs

(256 H800 GPUs, global batch size is 256)
34

3 KUAISHOU
3.4 Evaluation: Optimal Scaling

* Vary the number of GPUs

e DP scaling (baseline): only scale DP size when node number changes
* Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

o ‘ ‘ 250 - 1250 - =
S 100 || - - -- DP scaling 1

X —— Optimal scaling 200 - "' —1200 - N
2 5[] + Achieved]

S | T = ____ 150 - -1 150 |- .
Q

7] 50 |

B 100 - -1 100 - n
o

5 1 50f {50 |
<

=

0 L ‘ 0 0
0 8 16 24 32 0 0
nodes # nodes # nodes
(a) Llama-175B, s = 4096 (b) Llama-65B, s = 4096 (c) Llama2-70B, s = 8192

* Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256+16)

35

3 KUAISHOU
3.4 Evaluation: Optimal Scaling

* Vary the number of GPUs

e DP scaling (baseline): only scale DP size when node number changes
* Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

1. Utilize more nodes

A

2. Better configuration (]Z:

* Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256+16)

36

B KUAISHOU
Outline

1. Background

2. Methods

* Compute-Memory Balanced Checkpointing
* Pipeline-Parallel-Aware Offloading
* Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

37

B KUAISHOU

4. Contribution

1. Pipeline-Parallel-Aware Offloading

* Schedule offloading and reloading of activations, following the pipeline parallel schema, fully
utilizing host memory to store activations with negligible overhead.

2. Compute-Memory Balanced Checkpointing

* Balance memory cost and computation cost to achieve the Pareto optimality.

3. Efficient Searching Method

* find the optimal hybrid parallelism parameters using the performance model measured from
cluster-related primitive information and model-related primitive information.

4. Extensive Experiments

« Example: Increase Model FLOPs Utilization (MFU) from 32.3% to 42.7% for a 175B Llama-
like model with a context window size of 32,768 on 256 NVIDIA H800 GPUs.

 Artifact Evaluated: https://github.com/kwai/Megatron-Kwai | branch: atc24ae

38

https://github.com/kwai/Megatron-Kwai/tree/atc24ae/examples/atc24

B KUAISHOU

Thank you!

Contact: {yuantailing,liuyuliang}@kuaishou.com

39

	幻灯片 1: Accelerating the Training of Large Language Models using Efficient Activation Rematerialization and Optimal Hybrid Parallelism
	幻灯片 2: Outline
	幻灯片 3: 1. Background
	幻灯片 4: 1. Background
	幻灯片 5: 1. Background
	幻灯片 6: 1. Background
	幻灯片 7: 1. Background
	幻灯片 8: Outline
	幻灯片 9: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 10: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 11: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 12: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 13: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 14: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 15: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 16: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 17: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 18: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 19: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 20: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 21: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 22: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 23: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 24: 2.1 & 2.2: Memory View
	幻灯片 25: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 26: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 27: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 28: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 29: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 30: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 31: Outline
	幻灯片 32: 3.1 Evaluation: Experimental Settings
	幻灯片 33: 3.2 Evaluation: Cost Model
	幻灯片 34: 3.3 Evaluation: End-to-End Performance Tuning
	幻灯片 35: 3.4 Evaluation: Optimal Scaling
	幻灯片 36: 3.4 Evaluation: Optimal Scaling
	幻灯片 37: Outline
	幻灯片 38: 4. Contribution
	幻灯片 39

