
Accelerating the Training of Large Language Models
using Efficient Activation Rematerialization

and Optimal Hybrid Parallelism

Tailing Yuan, Yuliang Liu*, Xucheng Ye, Shenglong Zhang, Jianchao Tan,

Bin Chen, Chengru Song, and Di Zhang

Kuaishou Technology, Beijing, China

Presenter: yuantailing@kuaishou.com

*Corresponding author: liuyuliang@kuaishou.com

Outline

1. Background

2. Methods

• Compute-Memory Balanced Checkpointing

• Pipeline-Parallel-Aware Offloading

• Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

2

1. Background

• Memory size serves as one of the most significant challenges in LLMs’ training

3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4096 8192 16384 32768 65536 131072

m
em

o
ry

 (
G

B
)

sequence length

Llama-7B Llama-13B Llama-33B Llama-65B

1. Background

data 0 data 1

GPU 0 GPU 1

data

GPU 0 GPU 1 GPU 0 GPU 1

data data data

GPU 0 GPU 1

data parallelism

(DP)

tensor parallelism

(TP)

context parallelism

(CP)

pipeline parallelism

(PP)
4

• Distribute data and model to multiple GPUs using hybrid parallelism

1. Background

• Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

• Traditional solutions

• A. Full checkpointing

• Leads to 1/3 additional computation
cost

• B. Increasing TP size and/or CP size

• Incurs substantial communication
overhead and a reduction in
computational intensity

5

(t, c, p, d)

Optimizer

Model

Activation

GPU memory capacity

out-of-memory

1. Background

• Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

• Traditional solutions

• A. Full checkpointing

• Leads to 1/3 additional computation
cost

• B. Increasing TP size and/or CP size

• Incurs substantial communication
overhead and a reduction in
computational intensity

6

(t, c, p, d)

Optimizer

Model

Activation

GPU memory capacity

(A)

full ckpt

Optimizer

Model

Activation

(t, c, p, d)

out-of-memory

1. Background

• Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

• Traditional solutions

• A. Full checkpointing

• Leads to 1/3 additional computation
cost

• B. Increasing TP size and/or CP size

• Incurs substantial communication
overhead and a reduction in
computational intensity

(t, c, p, d)

Optimizer

Model

Activation

Optimizer

Model

Activation

GPU memory capacity

7

(A)

full ckpt

Optimizer

Model

Activation

(B)

increase t, c

(t, c, p, d) (2t, 2c, p, d/4)

out-of-memory

Outline

1. Background

2. Methods

• Compute-Memory Balanced Checkpointing

• Pipeline-Parallel-Aware Offloading

• Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

8

2.1 Compute-Memory Balanced Checkpointing

9

2.1 Compute-Memory Balanced Checkpointing

• Background

10

no ckpt

full ckpt

store activations recompute forward backward

time

activation gradient

2.1 Compute-Memory Balanced Checkpointing

• Activation Size

• Traditional checkpointing methods: focus on total activation size of the entire model

• Pipeline parallelism scenario: should focus on stored activation of sub-models

11

forward backward

stored

activation

temp

activation

Traditional model training: Focus on

total activation

Pipeline Parallelism: Stored activation

dominates

warm-up phase: fwd steady phase: fwd+bwd cooldown phase: bwd
Time

stored

temp

stored

stored

stored

Time

2.1 Compute-Memory Balanced Checkpointing

• Reconstruction Cost

• Determine the computation cost for each activation tensor

• Temporary memory can be ignored

• Reconstruct activations layer by layer

• All activations of previous layers can be used, no matter whether the previous activation is stored or
reconstructed

• Examples:

12

2.1 Compute-Memory Balanced Checkpointing

• Reconstruction Cost

• Determine the computation cost for each activation tensor

• Temporary memory can be ignored

• Reconstruct activations layer by layer

• All activations of previous layers can be used, no matter whether the previous activation is stored or
reconstructed

• Examples:

13

2.1 Compute-Memory Balanced Checkpointing

• Pareto Frontier

• By enumerating the set of stored activations

• Determine the minimum computational expenditure for
each enumerated memory budget

• Compute-Memory Balanced Solution

• Recompute RMSNorm and GLU (SiLU and Mul)

• Saves 39% memory using only 1.5% recomputing cost

14

2.1 Compute-Memory Balanced Checkpointing

• Pareto Frontier

• By enumerating the set of stored activations

• Determine the minimum computational expenditure for
each enumerated memory budget

• Compute-Memory Balanced Solution

• Recompute RMSNorm and GLU (SiLU and Mul)

• Saves 39% memory using only 1.5% recomputing cost

15

2.1 Compute-Memory Balanced Checkpointing

• Pareto Frontier

• By enumerating the set of stored activations

• Determine the minimum computational expenditure for
each enumerated memory budget

• Compute-Memory Balanced Solution

• Recompute RMSNorm and GLU (SiLU and Mul)

• Saves 39% memory using only 1.5% recomputing cost

16

2.1 Compute-Memory Balanced Checkpointing

• Pareto Frontier

• By enumerating the set of stored activations

• Determine the minimum computational expenditure for
each enumerated memory budget

• Compute-Memory Balanced Solution

• Recompute RMSNorm and GLU (SiLU and Mul)

• Saves 39% memory using only 1.5% recomputing cost

17

2.2 Pipeline-Parallelism-Aware Offloading

18

2.2 Pipeline-Parallelism-Aware Offloading

• “Activation blocks” are offloaded to the host memory

• Activation block: generated by one pipeline stage (typically 1 ~ 2 transformer layers)

19

2.2 Pipeline-Parallelism-Aware Offloading

• Schedule of Offloading and Reloading

• Offloading starts as soon as possible after the end of each pipeline stage forward

• Reloading starts at the beginning of the previous pipeline stage backward

20

2.2 Pipeline-Parallelism-Aware Offloading

• Schedule of Offloading and Reloading

• Offloading starts as soon as possible after the end of each pipeline stage forward

• Reloading starts at the beginning of the previous pipeline stage backward

21

2.2 Pipeline-Parallelism-Aware Offloading

• Reduced number of “Activation Blocks” on GPU

22

without offloading

with offloading

2.2 Pipeline-Parallelism-Aware Offloading

• Bandwidth Utilization Enhancing

• Bidirectional memory copy

• Bind to Non-Uniform Memory Access (NUMA) node

• Use page-locked memory

• Offload Ratio

• Activation is partially offloaded to host memory

• Offload ratio α (0 ≤ α ≤ 1) is used to control how much
activation is offloaded to host memory

• Select offload ratio as low as possible for two reasons

1. Memory copy between host and device may slightly slow
down computation due to resource competition;

2. Offloading may not always be completely overlapped with
computation.

23

Optimizer

Model

GPU memory threshold

α: on host memory

1 – α: on GPU memory

Activation

2.1 & 2.2: Memory View

24

Optimizer

Model

Optimizer

Model

Optimizer

Model

α: on host memory

1 – α: on GPU memory

GPU memory threshold

Checkpointing Offloading

Activation

Activation Activation

2.3 Hybrid Parallel Parameters Tuning

25

Model
• #layers

• hidden size

• sequence length

• global batch size

Cluster
• GPU type

• #GPUs

• Network

Configuration

• TP size = ?

• CP size = ?

• PP size = ?

• virtual PP size = ?

• ckpt = no/full?

• ckpt = balanced?

• offload α = ?

further amplifies the complexity

of parameter tuning

2.3 Hybrid Parallel Parameters Tuning

• Challenge

• Given a model and a cluster, the number of combinations of (t, c, p, l, ckpt) is vast,

• even if we have some prior knowledge

• Avoid inter-node TP communication for all models: t ≤ 8

• Avoid inter-node CP communication for multi-head attention (MHA) models: tc ≤ 8

• Hand-crafted parameters often result in suboptimal combinations of parallel options

26

2.3 Hybrid Parallel Parameters Tuning

• Cost Model

• Primitive information: Reduce measurement while pursuing accuracy of the cost model

• Equations: Take forward/backward time, pipeline bubble, optimizer update time, impact of
overlap, and memory size into account

27

2.3 Hybrid Parallel Parameters Tuning

• Cost Model

• Primitive information: Reduce measurement while pursuing accuracy of the cost model

• Equations: Take forward/backward time, pipeline bubble, optimizer update time, impact of
overlap, and memory size into account

28

Few-Shot Measurement

Model-Related Primitive Information

- TF, TB

- TembF, TembB

- TheadF, TheadB

- Tckpt

- ωadam

Cluster-Related Primitive Information

- BWopt

- BWD2H, BWH2D

- βp2p

2.3 Hybrid Parallel Parameters Tuning

• Cost Model

• Primitive information: Reduce measurement while pursuing accuracy of the cost model

• Equations: Take forward/backward time, pipeline bubble, optimizer update time, impact of
overlap, and memory size into account

29

Few-Shot Measurement

Model-Related Primitive Information

- TF, TB

- TembF, TembB

- TheadF, TheadB

- Tckpt

- ωadam

Cluster-Related Primitive Information

- BWopt

- BWD2H, BWH2D

- βp2p

2.3 Hybrid Parallel Parameters Tuning

• Solver

• Minimize the modeled time under memory constraints

30

min
𝑡,𝑐,𝑝,𝑙,ckpt

𝑇model

s.t. 𝑀gpu ≤ 𝑀gpu
thresh ∧𝑀host ≤ 𝑀host

thresh

𝑇model

Outline

1. Background

2. Methods

• Compute-Memory Balanced Checkpointing

• Pipeline-Parallel-Aware Offloading

• Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

31

3.1 Evaluation: Experimental Settings

• Cluster

• The cluster consists of 32 nodes

• Each node is equipped with eight NVIDIA H800 80GB GPUs

• Each node has 1TB of host memory

• Training Info

• Precision is BF16 with FP32 gradients accumulation

• Optimizer is Adam with FP32 optimizer states

• Software

• Megatron-LM + industry level improvement

32

3.2 Evaluation: Cost Model

• Verify the cost model using various combinations of

model, sequence length,

(t, c, p, l, ckpt), global batch size

33

3.3 Evaluation: End-to-End Performance Tuning

• Enhance the throughput by up to 32%

• Both “baseline” and “ours” use the optimal hybrid parallel parameters solved by the cost
model

(256 H800 GPUs, global batch size is 256)

34

0

10

20

30

40

50

4096 8192 16384 32768

M
o

d
el

 F
L

O
P

s
U

ti
li

za
ti

o
n

 (
%

)

Llama-175B

Baseline Ours

0

10

20

30

40

50

4096 8192 16384 32768 65536

Llama-65B

Baseline Ours

0

10

20

30

40

50

4096 8192 16384 32768 65536 1310752

Llama2-70B (GQA)

Baseline Ours

3.4 Evaluation: Optimal Scaling

• Vary the number of GPUs

• DP scaling (baseline): only scale DP size when node number changes

• Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

• Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256±16)

35

3.4 Evaluation: Optimal Scaling

• Vary the number of GPUs

• DP scaling (baseline): only scale DP size when node number changes

• Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

• Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256±16)

36

C

B
A

2. Better configuration

1. Utilize more nodes

Outline

1. Background

2. Methods

• Compute-Memory Balanced Checkpointing

• Pipeline-Parallel-Aware Offloading

• Hybrid Parallel Parameters Tuning

3. Evaluation

4. Contribution

37

4. Contribution

1. Pipeline-Parallel-Aware Offloading

• Schedule offloading and reloading of activations, following the pipeline parallel schema, fully
utilizing host memory to store activations with negligible overhead.

2. Compute-Memory Balanced Checkpointing

• Balance memory cost and computation cost to achieve the Pareto optimality.

3. Efficient Searching Method

• find the optimal hybrid parallelism parameters using the performance model measured from
cluster-related primitive information and model-related primitive information.

4. Extensive Experiments

• Example: Increase Model FLOPs Utilization (MFU) from 32.3% to 42.7% for a 175B Llama-
like model with a context window size of 32,768 on 256 NVIDIA H800 GPUs.

• Artifact Evaluated: https://github.com/kwai/Megatron-Kwai | branch: atc24ae

38

https://github.com/kwai/Megatron-Kwai/tree/atc24ae/examples/atc24

Thank you!

39

Contact: {yuantailing,liuyuliang}@kuaishou.com

	幻灯片 1: Accelerating the Training of Large Language Models using Efficient Activation Rematerialization and Optimal Hybrid Parallelism
	幻灯片 2: Outline
	幻灯片 3: 1. Background
	幻灯片 4: 1. Background
	幻灯片 5: 1. Background
	幻灯片 6: 1. Background
	幻灯片 7: 1. Background
	幻灯片 8: Outline
	幻灯片 9: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 10: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 11: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 12: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 13: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 14: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 15: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 16: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 17: 2.1 Compute-Memory Balanced Checkpointing
	幻灯片 18: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 19: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 20: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 21: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 22: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 23: 2.2 Pipeline-Parallelism-Aware Offloading
	幻灯片 24: 2.1 & 2.2: Memory View
	幻灯片 25: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 26: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 27: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 28: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 29: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 30: 2.3 Hybrid Parallel Parameters Tuning
	幻灯片 31: Outline
	幻灯片 32: 3.1 Evaluation: Experimental Settings
	幻灯片 33: 3.2 Evaluation: Cost Model
	幻灯片 34: 3.3 Evaluation: End-to-End Performance Tuning
	幻灯片 35: 3.4 Evaluation: Optimal Scaling
	幻灯片 36: 3.4 Evaluation: Optimal Scaling
	幻灯片 37: Outline
	幻灯片 38: 4. Contribution
	幻灯片 39

