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1. Background

* Memory size serves as one of the most significant challenges in LLMs’ training
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1. Background

* Distribute data and model to multiple GPUs using hybrid parallelism
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1. Background

* Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity
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1. Background

* Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

* Traditional solutions
* A. Full checkpointing

* Leads to 1/3 additional computation
cost
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1. Background

* Challenge: The activation size
grows along with sequence length,
and may exceed GPU memory
capacity

* Traditional solutions
* A. Full checkpointing

* Leads to 1/3 additional computation
cost

* B. Increasing TP size and/or CP size

* Incurs substantial communication
overhead and a reduction in
computational intensity
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2.1 Compute-Memory Balanced Checkpointing
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2.1 Compute-Memory Balanced Checkpointing

* Background
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2.1 Compute-Memory Balanced Checkpointing

 Activation Size
* Traditional checkpointing methods: focus on total activation size of the entire model

* Pipeline parallelism scenario: should focus on stored activation of sub-models
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Traditional model training: Focus on

total activation
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» Time
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Pipeline Parallelism: Stored activation
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2.1 Compute-Memory Balanced Checkpointing

* Reconstruction Cost
* Determine the computation cost for each activation tensor
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2.1 Compute-Memory Balanced Checkpointing

 Reconstruction Cost

* Determine the computation cost for each activation tensor

* Temporary memory can be ignored

* Reconstruct activations layer by layer

B KUAISHOU

 All activations of previous layers can be used, no matter whether the previous activation is stored or

reconstructed

* Examples:
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Attention. Two layers are
required to recompute.

J
Linear

I

) 2

SiLU

I

2
Mul

¥

(b) Reconstruct the input of
SiLU. The second operand of
Mul is also reconstructed.
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2.1 Compute-Memory Balanced Checkpointing

e Pareto Frontier

Computation time (ms)

Memory cost (bsh/(tc))
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2.1 Compute-Memory Balanced Checkpointing

e Pareto Frontier
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2.1 Compute-Memory Balanced Checkpointing

* Pareto Frontier
* By enumerating the set of stored activations
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2.1 Compute-Memory Balanced Checkpointing

* Pareto Frontier
* By enumerating the set of stored activations

30 [ ‘ ‘ .
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* Determine the minimum computational expenditure for
cach enumerated memory budget

28 -

AAAAAAA
AAAAAAAA

26 - N

A A AN A

AAA AA AAAA 2AA AA A
AAAA A A

AATA NN

e Compute-Memory Balanced Solution
* Recompute RMSNorm and GLU (SiLU and Mul)
* Saves 39% memory using only 1.5% recomputing cost
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2.2 Pipeline-Parallelism-Aware Offloading
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2.2 Pipeline-Parallelism-Aware Offloading

* “Activation blocks™ are offloaded to the host memory
» Activation block: generated by one pipeline stage (typically 1 ~ 2 transformer layers)
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2.2 Pipeline-Parallelism-Aware Offloading

* Schedule of Offloading and Reloading

* Offloading starts as soon as possible after the end of each pipeline stage forward
* Reloading starts at the beginning of the previous pipeline stage backward
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2.2 Pipeline-Parallelism-Aware Offloading

* Schedule of Offloading and Reloading

» Offloading starts as soon as possible after the end of each pipeline stage forward
» Reloading starts at the beginning of the previous pipeline stage backward
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2.2 Pipeline-Parallelism-Aware Offloading

e Reduced number of “Activation Blocks” on GPU

without offloading
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2.2 Pipeline-Parallelism-Aware Offloading

* Bandwidth Utilization Enhancing
 Bidirectional memory copy
* Bind to Non-Uniform Memory Access (NUMA) node
» Use page-locked memory

e Offload Ratio Activation

* Activation is partially offloaded to host memory

* Offload ratio o (0 < a < 1) 1s used to control how much
activation 1s offloaded to host memory

 Select offload ratio as low as possible for two reasons
1.

2.

- o: on host memory

Seasssessssnessnanas GPU memory threshold

- 1 — a: on GPU memory

Memory copy between host and device may slightly slow
down computation due to resource competition; Model

Offloading may not always be completely overlapped with o
computation. Optimizer
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2.1 & 2.2: Memory View

Checkpointing Offloading
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2.3 Hybrid Parallel Parameters Tuning

Model
#layers :
nfiguration
hidden size Configuratio
sequence length Y TP size =?
global batch size j@: CP size =?

PP size = ?
virtual PP size = ?
ckpt = no/full?

v

Cluster

GPU type
#GPUs further amplifies the complexity

of parameter tuning
Network

ckpt = balanced?

offload .= ?
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2.3 Hybrid Parallel Parameters Tuning

* Challenge
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* Given a model and a cluster, the number of combinations of (¢, ¢, p, [, ckpt) is vast,
« even if we have some prior knowledge

e Avoid inter-node TP communication for all models: 1 < 8
* Avoid inter-node CP communication for multi-head attention (MHA) models: fc < 8

#GPUs Llama-175B
#(t,c) #(t,c,p,l) #(t,c) #(t,c,p,1) #(t,c) #(,c,p,1)

Llama-65B

Llama2-70B

64 10
192 10
240 10
256 10
1024 10
7680 10

141
287
175
160
160
310

10
10
10
10
10
10

86
86
125
90
90
190

14
14
14
22
30
34

106
106
141
178
250
514

* Hand-crafted parameters often result in suboptimal combinations of parallel options
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2.3 Hybrid Parallel Parameters Tuning

* Cost Model

* Primitive information: Reduce measurement while pursuing accuracy of the cost model
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2.3 Hybrid Parallel Parameters Tuning

* Cost Model

* Primitive information: Reduce measurement while pursuing accuracy of the cost model

/ \ Symbol Measured times Time to measure
&} Few-Shot Measurement Tomor Tomhn ,
2 ~ 15 min for each
- N Te, T each model, each (b,s,1,c¢) model each (b, 5)
Model-Related Primitive Information TheadF TheadB ,
- T Ty - Ty Texpt each (b,s/(tc),h,s/c,H/t) total <15 min for
- Tovrs Tombi - Oy Toop each (2bsh/(tc)) all models (shared
- Theadr> Theadn BWpt each (t,cd) among models)
> < BWpion
Cluster-Related Primitive Information %\vY/HtOD total <10 min for
amm - BWy © bidir once all models (shared
amm - BWpy, BWypp adam among models)
== 5, Bo2p
& / Bofﬂoad
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2.3 Hybrid Parallel Parameters Tuning

* Cost Model

* Primitive information: Reduce measurement while pursuing accuracy of the cost model

* Equations: Take forward/backward time, pipeline bubble, optimizer update time, impact of
overlap, and memory size into account

/ \ Symbol Measured times Time to measure
&} Few-Shot Measurement Tomor Tomhn ,
’ 2 ~ 15 min for each
- N Te, T each model, each (b,s,1,c¢) model each (b, 5)
Model-Related Primitive Information TheadF TheadB ,
- T Ty - Ty Texpt each (b,s/(tc),h,s/c,H/t) total <15 min for
% - Tovrs Tombi - Oy Toop each (2bsh/(tc)) all models (shared
- Theadr> Theadn ) BWpt each (t,cd) among models)
> < BWpion
Cluster-Related Primitive Information BWhiop total <10 min for
amm - BWy BWoigir once all models (shared
s Wadam
] - BWpou BWisp among models)
== . Bo2p
& / Bofﬂoad
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2.3 Hybrid Parallel Parameters Tuning

* Solver
* Minimize the modeled time under memory constraints

___________________________
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3.1 Evaluation: Experimental Settings

* Cluster
* The cluster consists of 32 nodes
* Each node 1s equipped with eight NVIDIA H800 80GB GPUs
* Each node has 1'TB of host memory
* Training Info
* Precision is BF16 with FP32 gradients accumulation
* Optimizer is Adam with FP32 optimizer states

* Software
* Megatron-LM + industry level improvement
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3.2 Evaluation: Cost Model

* Verify the cost model using various combinations of

Time per iteration (s)

Time per iteration (s)

(t, c, p, [, ckpt), global batch size

model, sequence length,

+Llama-175B T —a— Llama-175B T};p4el x Llama-65B T' —=— Llama-65B T,ogel * Llama2-70B T —o— Llama2-70B Tjoqel

T T T T T T T T 30 F | | | |
100 = 100 N
20 |- 4
50 . 50 1 ol |
0 0 0 \ | |
(a) (8,1,8,2,0urs) (b) (4,1,8,2,0urs) (©) (2,2,8,2,0urs) (d) (8,1,8,2,0urs),B = 64
T T T T T T T T 150 -
100 -1 100 -1 100 .
100 N
50 -1 50 -1 50 1 50 X |
0 : ! 0 | | 0 B | | 0 e | |
4k 8k 16k 32k 4k 8k 16k 32k 4k 8k 16k 32k 4k 8k 16k 32k

Sequence length
(e) (8,1,4,4,0urs)

Sequence length
() (8,1,16,1,0urs)

Sequence length
(2) (8,1,8,2,n0)

Sequence length
(h) (8,1,8,2,full)
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3.3 Evaluation: End-to-End Performance Tuning

* Enhance the throughput by up to 32%

* Both “baseline” and “ours” use the optimal hybrid parallel parameters solved by the cost

model
Llama-175B Llama-65B Llama2-70B (GQA)
50 50 50
< 40 40 40
=)
.8
g
= 30 30 30
)
S 20 20 20
_1
S5
o)
2 10 10 10
p=
0 0 0
4096 8192 16384 32768 4096 8192 16384 32768 65536 4096 8192 16384 32768 65536 1310752
B Baseline ® Qurs B Baseline ® QOurs B Baseline ® QOurs

(256 H800 GPUs, global batch size is 256)
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3.4 Evaluation: Optimal Scaling

* Vary the number of GPUs

e DP scaling (baseline): only scale DP size when node number changes
* Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

o ‘ ‘ 250 - 1250 - =
S 100 || - - -- DP scaling 1

X —— Optimal scaling 200 - "' —1200 - N
2 5[] + Achieved ]

S | T = ____ 150 - -1 150 |- .
Q

7] 50 |

B 100 - -1 100 - n
o

5 1 50f {50 |
<

=

0 L ‘ 0 0
0 8 16 24 32 0 0
# nodes # nodes # nodes
(a) Llama-175B, s = 4096 (b) Llama-65B, s = 4096 (c) Llama2-70B, s = 8192

* Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256+16)
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3.4 Evaluation: Optimal Scaling

* Vary the number of GPUs

e DP scaling (baseline): only scale DP size when node number changes
* Optimal scaling: solve global batch size, TP size, CP size, etc. using the cost model

1. Utilize more nodes

A

2. Better configuration ( ]Z:

* Lines are modeled throughput, marks are achieved throughput.

(Satisfying global batch size: 256+16)
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4. Contribution

1. Pipeline-Parallel-Aware Offloading

* Schedule offloading and reloading of activations, following the pipeline parallel schema, fully
utilizing host memory to store activations with negligible overhead.

2. Compute-Memory Balanced Checkpointing

* Balance memory cost and computation cost to achieve the Pareto optimality.

3. Efficient Searching Method

* find the optimal hybrid parallelism parameters using the performance model measured from
cluster-related primitive information and model-related primitive information.

4. Extensive Experiments

« Example: Increase Model FLOPs Utilization (MFU) from 32.3% to 42.7% for a 175B Llama-
like model with a context window size of 32,768 on 256 NVIDIA H800 GPUs.

 Artifact Evaluated: https://github.com/kwai/Megatron-Kwai | branch: atc24ae
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https://github.com/kwai/Megatron-Kwai/tree/atc24ae/examples/atc24
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Thank you!

Contact: {yuantailing,liuyuliang}@kuaishou.com
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