
USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  181

1 
 

Estimating Duplication by Content-based Sampling 

 

Fei Xie      Michael Condict      Sandip Shete 

{fei.xie, michael.condict, sandip.shete}@netapp.com 

Advanced Technology Group, NetApp Inc. 

Abstract 
We define a new technique for accurately estimating the amount of duplication in a storage volume from a small 
sample and we analyze its performance and accuracy.  The estimate is useful for determining whether it is worth-
while to incur the overhead of deduplication.  The technique works by scanning the fingerprints of every block in 
the volume, but only including in the sample a single copy of each fingerprint that passes a filter.  The selectivity of 
the filter is repeatedly increased while reading the fingerprints, to produce the target sample size.  We show that the 
required sample size for a reasonable accuracy is small and independent of the size of the volume.  In addition, we 
define and analyze an on-line technique that, once an initial scan of all fingerprints has been performed, efficiently 
maintains an up-to-date estimate of the duplication as the file system is modified.  Experiments with various real 
data sets show that the accuracy is as predicted by theory.  We also prototyped the proposed technique in an enter-
prise storage system and measured the performance overhead using the IOzone micro-benchmark. 

  

1 Introduction 
Deduplication detects and removes duplicate data 
blocks (blocks at different locations that have the same 
contents) from a storage system. In a system imple-
menting perfect deduplication, only one copy of dupli-
cate data blocks is stored, but in such a way that the 
user’s view of the system remains unchanged. A. El-
Shimi et al. [21] provide a nice overview of the recent 
research work in the area of data deduplication. 

The benefit of deduplication in a primary storage sys-
tem varies for different workloads. For certain work-
loads that have a low level of duplication, one would 
turn off the deduplication feature to avoid its effect on 
I/O performance and to avoid the metadata overhead of 
deduplication.  It is desirable to have an efficient and 
effective deduplication estimator to allow customers to 
quickly estimate the deduplication benefit on their pri-
mary data sets before they turn on deduplication, and to 
allow the storage system to prioritize the scheduling of 
deduplication tasks for different data sets.  

Existing deduplication estimators are either not fast 
enough or not accurate enough. A simple but intrusive 
and time-consuming way to discover the benefit of 
deduplication is to actually turn on deduplication. If the 
benefit is not satisfactory, deduplication can be reverted. 
Alternatively, one could roughly estimate the potential 
benefit of deduplication based on the type of workload. 
This approach often does not produce accurate esti-
mates, since it does not look at the content of data. 

Taking the content into account, one could attempt to 
estimate the level of duplication by reading a small ran-
dom sample of the data set, and calculating the amount 
of duplication in it.  This is much harder than it sounds, 
because of the large error in estimating the true number 
of occurrences of an item that only occurs once or twice 
in the sample.  Furthermore, it has been proven that for 
any random-sampling-based estimation function, there 
are block-frequency distributions that cause it to be 
very inaccurate, unless the sample percentage is very 
large fraction of the data [1]. 

We defined and implemented an accurate and light-
weight deduplication-estimation technique for a prima-
ry storage system. At a very high level, the technique 
samples the blocks based on the block fingerprint value, 
and only selects the fingerprints that satisfy some predi-
cate on their value (i.e., a filter).  That is, any two 
blocks with the same fingerprint are either both includ-
ed in the sample or both excluded from the sample. 
This is why the sample is said to be content-based.  

The remainder of this paper consists of a comparison to 
previous work (Section 2), an analysis of the algorithm 
(Section 3), a discussion of the design and implementa-
tion of the system (Section 4), a performance study 
(Section 5), and our conclusions (Section 6).  

2 Related Work 
Many commercial storage vendors provide deduplica-
tion estimators to allow customers to estimate potential 
space savings. A popular approach is to use rule-of-
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thumb estimation methods which involve looking at 
metadata information like the type of data set, the fre-
quency that data is changed, annual data growth rate, 
data retention, etc., which tend to influence deduplica-
tion ratios [11]. Many commercial estimators [9], [10] 
have adopted this method. Note that these estimators do 
not access the actual data in order to calculate the esti-
mates, and so, can sometimes be extremely inaccurate.  

The problem of estimating the duplication in a data set 
can be thought of as estimating the number of distinct 
block values in the set, given that the total number of 
blocks in use is known. This means that solutions to the 
latter problem can be applied to the former. 

Distinct elements estimation is a well-studied problem, 
and frequently appears in literature concerning data-
streaming algorithms, statistics, and databases. P.B. 
Gibbons [8] looks at many previous approaches to dis-
tinct value estimation and the difficulties with them. In 
the database world, the early literature has extensively 
studied sampling techniques, which involve gathering a 
uniform random sample of the data, and using it to ap-
proximately answer distinct-value queries on relational 
databases [5, 6, 7]. Although these estimators use so-
phisticated techniques to handle various input distribu-
tions, they are all unable to guarantee good accuracy for 
their estimates [1, 4].  Charikar et al. [1] proved this 
formally, establishing a strong negative result, namely 
that no estimator can guarantee a small error for all 
possible input distributions unless it examines a large 
fraction of the input data. Raskhodnikova et al. [2] and 
Valiant et al. [3] further provided near-linear and sub-
linear lower bounds, respectively, on the sample size 
required for the estimate. The conclusion is that, in or-
der to ensure high-accuracy, distribution-independent 
estimates, it is necessary to examine almost the entire 
data set. 

Estimation algorithms that require scanning all the data 
once are referred to as single-pass algorithms. Flajolet 
and Martin, in their seminal work [12], presented the 
first single-pass algorithm for distinct values estimation 
in a large collection of data using small limited storage. 
Their probabilistic counting algorithm uses hash func-
tions to map set of values to bitmap vectors, such that 
each distinct value maps to the ith bit in the vector with 
2–(i+1) probability. Alon et al. [13] further build upon 
this work and proposed more practical hash functions, 
space bounds and provable error guarantees on their 
estimates. This line of research continues with more 
space/time efficient algorithms and better estimates of 
distinct values [14, 15]. Some similar approaches use 
adaptive sampling, which continuously maintain a 
bounded-size up-to-date sample of distinct values for 

the purpose of providing a very quick estimate of the 
cardinality of the data set [17, 18, 26]. Our sampling 
technique is in many respects similar to these. 

D. Harnik et al. [19] are the first in the area of storage 
deduplication to provide a provably accurate two-phase 
algorithm for a one-time estimate of deduplication rati-
os, using very low storage space. Our technique differs 
from theirs in that, after a single pass over existing data 
for the initial estimate, it uses an adaptive technique to 
incrementally maintain an up-to-date estimate that takes 
into account any changes to the data. 

3 Theory 
Consider a data set consisting of a group of data blocks 
(of fixed size or variable size) with possible duplicates. 
We are interested in estimating the percentage of space 
that can be saved by deduplication. Thus, we define the 
deduplication ratio R as follows. 

                                                                           

We assume a hash function that generates a fingerprint 
for each data block. The proposed content-based sam-
pling applies a modulo-based filter to all the block fin-
gerprints of a data set. A block fingerprint passes the 
filter and is added to the sample iff: 

                   

Where the divisor M is an integer greater than 1, and 
the remainder X is an integer between 0 and M - 1. 
Throughout this paper, we refer to M as the filter divi-
sor. The idea is to split the fingerprint space into M 
partitions, and to use one of the partitions in the esti-
mate.  More specifically, the total size of the distinct 
(deduplicated) blocks in the sample is used to estimate 
the total size of the distinct blocks in the entire data set. 

Assume there are K different block sizes in the data set. 
The sample can be partitioned into K groups of identi-
cal-sized blocks. Assume the ith (i = 1…K) block group 
in the sample has ni distinct blocks of size si. Let Ni 
denote the total number of distinct blocks of size si in 
the data set. Let   be the size in byte of the distinct 
blocks in the data set. The estimate of S, denoted by S*, 
is defined as: 

     ∑       
   

The deduplication ratio can be estimated as S*/Sdata_set, 
where Sdata_set is the size of the data set before dedupli-
cation, which is known before the. In the case of fixed-
size blocks, we can ignore the block size and count only 
the number of distinct blocks in the sample. Figure 1 
illustrates the idea of content-based sampling.  
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The main theoretical result of this work is the relation-
ship between the filter divisor and the accuracy of the 
estimate. Define the relative error of the estimate as 

            

We show that if the fingerprinting algorithm has good 
uniformity and negligible collision probability, the rela-
tive error follows a normal distribution with zero mean 
(i.e., the estimate is unbiased) and known variance. 

 
Figure 1. Illustration of the Content-based sampling 

We assume a storage system that maintains a relatively 
strong fingerprint for data blocks, so that we can ignore 
the impact of collisions. A previous work in the net-
working domain [16] takes collisions into account in 
the estimate. As shown in that work, the expected error 
introduced by collisions (which always causes an un-
derestimate) is computable from the size of the uncor-
rected estimate S*.  Thus, we could apply these results 
to correct for collisions, if necessary. 

Theorem 1. Assume the fingerprinting has the uni-
formity property and negligible collision probability. 
For large Ni (i = 1,.., K), err has a normal distribution 
with zero as the mean and        ̅   as the variance, 
where  ̅ is defined as  ̅   ∑              

   .  

The proof of Theorem 1 is in Appendix A. The α-β ac-
curacy of the estimate is defined as:  

Definition of α-β accuracy.  Given α and β (α, β   [0, 
1]), the relative error err satisfies the following condi-
tion.  

     |   |        
The relationship between M and the α-β accuracy is 
described in the following theorem.  

Theorem 2. M satisfies the α-β accuracy if: 

      
               ̅           (1) 

where erf-1() is the inverse of the Gauss error function 
and  ̅ is defined in Theorem 1 (proof in Appendix B). 

To have the smallest possible sample size, one would 
choose the largest M that satisfies a given accuracy re-

quirement. However, S and  ̅ are not known before the 
estimation. In practice, we could address this problem 
as follows. Variable-size chunking algorithms (e.g., 
[24]) typically have a known average block size, which 
can be used to approximate  ̅. Also,  ̅ is known for the 
fixed-size blocks case. Rewrite inequality (1) as:  

 
    

               ̅
          (2) 

The left side of (2) could be approximated by the total 
size of distinct blocks in sample (distinct block count in 
the fixed-size blocks case), which is countable during 
the sampling. The minimum “distinct sample size” that 
satisfies (2) is called the target sample size. Table 1 
gives some α, β values and the corresponding target 
sample size in number of blocks. As long as there are 
enough distinct blocks in the sample, we can increase 
the selectiveness of the filter to reduce sample size in 
the following Adaptive Sampling Approach. 

During the sampling process, the ratio of the distinct 
block count in sample to the target sample size is peri-
odically monitored. If the ratio is greater than 2, we find 
the largest power of two that is less than or equal to the 
ratio (denoted as f).  M and X are updated as follows:  

Step 1:                  
Step 2       

The function rand(f) generates a random integer be-
tween 0 and    . This allows us to randomly choose 
a fingerprint partition while we aggressively divide the 
fingerprint space. Finally, we remove the unqualified 
blocks from the existing sample, and continue the sam-
pling with the new, more restrictive filter. 

TABLE 1.  Target sample size vs α-β accuracy 

Target sample size α β 

270 0.1 0.9 

1843 0.06 0.99 

12030 0.03 0.999 

1513670 0.01 0.9999 

4 Design and Implementation 
We chose an enterprise-class network-attached storage 
system as the reference system in which to implement 
the estimation technique. The system uses a log-
structured file system [22] with 4KB blocks. Individual 
data blocks of a file can be identified by a file handle 
together with an offset within the file (called a file 
block number). Our implementation estimates the num-
ber of unique data blocks in a volume. Ignoring the 
initialization delay due to the one-time full-volume scan, 
an up-to-date estimate can be returned on-demand with-
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in a couple of minutes, no matter how large the volume 
is. A large part of the recurring maintenance runs in the 
background, in a non-intrusive fashion. 

 
Figure 2. System Components 

The major modules built into the reference storage sys-
tem are depicted in Figure 2. The change logging is a 
software module that samples data blocks during the 
consistency point. Metadata blocks are not sampled. 
The storage system computes a 64-bit variant of the 
Adler checksum [23] for each block as the RAID 
checksum. This checksum, available at the time of a 
consistency point, is used as the fingerprint. Existing 
blocks in the volume are sampled by a scanner module.  
The sample is stored in a fingerprint sample file (FPS).  
The FPS contains a header and a sequence of entries 
(20 bytes per entry) in the format of {file handle, file 
block number, fingerprint}. 

The estimation operation merges the sample from 
change logging to the FPS, and updates the estimate 
accordingly.  File swapping is used in the merging, so 
that the ongoing change logging process is not affected.  
After merging, we count the distinct blocks by sorting 
the FPS.  We remove stale entries (i.e., blocks removed 
or over-written) before counting. This is done by com-
paring the fingerprint in the entry with the fingerprint of 
the real block. We maintain a stale inode cache during 
the validation, to reduce the number of unnecessary 
block-read attempts.  

Adaptive sampling is triggered at the end of the estima-
tion operation. Once the filter divisor increases, the 
change logging produces a smaller sample. The FPS is 
shrunk as well. The initial value of M can be set by the 
user. The initial value of X is chosen randomly. 

The estimation operation is triggered if we have enough 
data in the change logs or there is file deletion in the 
volume (i.e., volume size decrease). These conditions 
are checked periodically. This ensures minimum impact 
to read-intensive workloads.  

5 Performance Study 
We studied the accuracy of our estimate using real-
world data sets (see TABLE 2). Given a data set, we 
compared the empirical error’s standard deviation and 
the theoretical ones, for various values of M. There 
were 1000 data points for each empirical statistics, gen-
erated by varying the remainder X from 0 to 999. We 
tested estimations over both 4KB fixed-size blocks, and 
variable-size blocks [24]. The variable block size is 
between 2KB and 8KB. The true deduplication ratio 
was obtained as follows.  In the case of variable-size 
blocks, we trust the results of deduplicating over the 
MD5 hash values of the blocks. For fixed-size blocks, 
we deduplicated the data set in a NetApp® system. 

TABLE 2.  Information of the data sets 

Names Size Dedupe 
Ratio Description 

Corp. Web 1.5TB ~50% Corporate web directory 

Debian 260GB ~60%      2-month Debian build 

Sharepoint 29GB ~18% Corporate Sharepoint  

We consistently saw good matches between the empiri-
cal results and the theoretical results, for both the varia-
bles-size and fixed-size cases (see Figure 3 for details). 
For the sake of space, we only report selected results in 
this paper.  

 
Figure 3. Accuracy test result  

The evaluations of the prototype were done using a 
NetApp FAS 3070 storage system running Data ON-
TAP® 8.1 [25]. IOzone [20] was chosen as the synthet-
ic I/O trace generator, since it can generate traces with 
duplicated content. The storage system exported a NFS 
v3 volume to the trace-generating client.  

There are two major types of test, namely 64KB se-
quential write and 64KB sequential read. All the tests 
were set to 50% inter-file duplication and 0% intra-file 
duplication. Five files are accessed in parallel in the 
tests, which saturated a 1GB network link. The dedupli-
cation ratio of the synthetic data set is 0.6. Every 4 
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minutes, the system checked whether the estimation 
operation should be triggered. Every 5 seconds, the 
storage system sampled the CPU usage, number of 
64KB I/O per second (IPOS), disk read rate, and disk 
write rate. A single test run lasted for about 80 minutes. 
There were 15 test runs for a single setting. 

 
Figure 4. CDF for normalized CPU usage and IOPS 

We first look at the results for 64KB sequential writes. 
We only report the cumulative distribution function 
(CDF) curves of CPU usage and IPOS in Figure 4. As 
expected, the estimation test consumes more CPU and 
has less IOPS, compared to the base case. Besides these 
results, our data shows that the average changes in CPU 
usage, IOPS, and disk reads are less than 0.5% for all 
the tested target sample sizes. The average disk read 
rate increases from 1% to 4% as the target sample size 
increases from 1000 to 15000.  The additional disk 
reads are mainly contributed by the random disk access 
from the counting module.  

 
Figure 5. Latency histogram for both read and write tests 

There is no significant impact to the system in the se-
quential read test. This is because the estimation code 
has negligible overhead for a read-only workload. The 
CDF results are not reported due to space limitations. 
Figure 5 plots the client-side latency histogram reported 
by IOzone. This plot shows that estimation’s impact to 
the I/O latency is also negligible. 

We also studied the estimation accuracy of our adaptive 
sampling in the 64KB sequential write case. Figure 6 
plots the results in one test run. As the volume size 

grows, the filter divisor is doubled while the corre-
sponding distinct block count in the sample floats be-
tween 2500 and 1000. M was initially set to 4096. The 
error is high at the beginning due to the small sample 
size, and remains below 5% later.  

 
Figure 6. Adaptive sampling in one experiment run. 

6 Concluding Remarks 
The main contribution of this work is a method that 
estimates duplication in a storage system with statisti-
cally guaranteed accuracy using a single scan of the 
data set. It is also notable for requiring only a small, 
fixed amount of memory resources for a given level of 
accuracy, independent of the size of the volume.  This 
makes it amenable to efficient in-line use and to main-
tain an accurate estimate in the face of a rapidly chang-
ing data set, which allows storage users to better assess 
the utility of data deduplication. We implemented the 
technique as a practical enhancement to a commercial 
storage system, and confirmed that the accuracy was 
within the statistically expected range for a variety of 
real-world data sets. The performance impact of our 
technique was found to be less than a few percent. 
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Appendix A 
Denote the total number of distinct fixed-size blocks in 
the sample and data set as nd and Nd , respectively.  

Lemma 1. Assume the fingerprint has uniformity prop-
erty and negligible collision probability. For large Nd , 
err has a normal distribution with zero as the mean and 
         as the variance. 
Proof: Because of good uniformity, any fingerprint in 
the data sets has 1/M probability to be sampled. Since 
the collision is negligible, the number of distinct fin-
gerprints is approximately equal to the number of dis-
tinct blocks in the sample. The sampling can be treated 
as a Bernoulli trail of length Nd and successful rate 1/M. 

The number of successes in the trail is equal to nd. 
Therefore nd follows a binomial distribution. Based on 
the definition of err, it can be represented as:  

                      

When Nd is large, the distribution of nd can be approxi-
mated as a normal distribution with E[nd] = Nd / M and 
Var[nd] =            . Therefore err follows a 
normal distribution of zero mean and          as 
the variance.   

Proof of Theorem 1: The sample in the variable-size 
blocks case can be seen as a group of K fixed-size block 
samples. According to Lemma 1, when Ni is large, ni 
has a normal distribution: E[ni] = Ni / M and Var[ni] = 
           . Since S* is a linear combination of ni 
(i = 1,…,K), S*

 also follows a normal distribution with 

 [  ]   ∑       
      and     [  ]        

∑        
   .  

Since             , it also has a normal distribu-
tion. E[err] is simply zero. The variance is calculated as:  

   [   ]     
[  ]
         ∑   

   
  

 

   
 

 
     
  ∑   

     
 

 

   
 
       ̅

  

This proves the theorem.   

Appendix B 
Proof: The proof of this theorem is simply based on the 
Empirical Rule of the normal distribution. Since the 
error has a normal distribution, the accuracy of the es-
timation has the following property. 

    (|   |    √   [   ])       (  √ ) 

, where erf() is the error function and   is a constant.  
Substitute the variance of err from Theorem 1, we have: 

    (|   |    √       ̅  )       (  √ )  

We substitute   with           √  in the above ine-
quality, which yields: 

    (|   |           √  √       ̅  )
     

This means that as long as: 

      
               ̅    

the estimation satisfies α-β accuracy.   
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