
USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  181

1

Estimating Duplication by Content-based Sampling

Fei Xie Michael Condict Sandip Shete

{fei.xie, michael.condict, sandip.shete}@netapp.com

Advanced Technology Group, NetApp Inc.

Abstract
We define a new technique for accurately estimating the amount of duplication in a storage volume from a small
sample and we analyze its performance and accuracy. The estimate is useful for determining whether it is worth-
while to incur the overhead of deduplication. The technique works by scanning the fingerprints of every block in
the volume, but only including in the sample a single copy of each fingerprint that passes a filter. The selectivity of
the filter is repeatedly increased while reading the fingerprints, to produce the target sample size. We show that the
required sample size for a reasonable accuracy is small and independent of the size of the volume. In addition, we
define and analyze an on-line technique that, once an initial scan of all fingerprints has been performed, efficiently
maintains an up-to-date estimate of the duplication as the file system is modified. Experiments with various real
data sets show that the accuracy is as predicted by theory. We also prototyped the proposed technique in an enter-
prise storage system and measured the performance overhead using the IOzone micro-benchmark.

1 Introduction
Deduplication detects and removes duplicate data
blocks (blocks at different locations that have the same
contents) from a storage system. In a system imple-
menting perfect deduplication, only one copy of dupli-
cate data blocks is stored, but in such a way that the
user’s view of the system remains unchanged. A. El-
Shimi et al. [21] provide a nice overview of the recent
research work in the area of data deduplication.

The benefit of deduplication in a primary storage sys-
tem varies for different workloads. For certain work-
loads that have a low level of duplication, one would
turn off the deduplication feature to avoid its effect on
I/O performance and to avoid the metadata overhead of
deduplication. It is desirable to have an efficient and
effective deduplication estimator to allow customers to
quickly estimate the deduplication benefit on their pri-
mary data sets before they turn on deduplication, and to
allow the storage system to prioritize the scheduling of
deduplication tasks for different data sets.

Existing deduplication estimators are either not fast
enough or not accurate enough. A simple but intrusive
and time-consuming way to discover the benefit of
deduplication is to actually turn on deduplication. If the
benefit is not satisfactory, deduplication can be reverted.
Alternatively, one could roughly estimate the potential
benefit of deduplication based on the type of workload.
This approach often does not produce accurate esti-
mates, since it does not look at the content of data.

Taking the content into account, one could attempt to
estimate the level of duplication by reading a small ran-
dom sample of the data set, and calculating the amount
of duplication in it. This is much harder than it sounds,
because of the large error in estimating the true number
of occurrences of an item that only occurs once or twice
in the sample. Furthermore, it has been proven that for
any random-sampling-based estimation function, there
are block-frequency distributions that cause it to be
very inaccurate, unless the sample percentage is very
large fraction of the data [1].

We defined and implemented an accurate and light-
weight deduplication-estimation technique for a prima-
ry storage system. At a very high level, the technique
samples the blocks based on the block fingerprint value,
and only selects the fingerprints that satisfy some predi-
cate on their value (i.e., a filter). That is, any two
blocks with the same fingerprint are either both includ-
ed in the sample or both excluded from the sample.
This is why the sample is said to be content-based.

The remainder of this paper consists of a comparison to
previous work (Section 2), an analysis of the algorithm
(Section 3), a discussion of the design and implementa-
tion of the system (Section 4), a performance study
(Section 5), and our conclusions (Section 6).

2 Related Work
Many commercial storage vendors provide deduplica-
tion estimators to allow customers to estimate potential
space savings. A popular approach is to use rule-of-

182  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

2

thumb estimation methods which involve looking at
metadata information like the type of data set, the fre-
quency that data is changed, annual data growth rate,
data retention, etc., which tend to influence deduplica-
tion ratios [11]. Many commercial estimators [9], [10]
have adopted this method. Note that these estimators do
not access the actual data in order to calculate the esti-
mates, and so, can sometimes be extremely inaccurate.

The problem of estimating the duplication in a data set
can be thought of as estimating the number of distinct
block values in the set, given that the total number of
blocks in use is known. This means that solutions to the
latter problem can be applied to the former.

Distinct elements estimation is a well-studied problem,
and frequently appears in literature concerning data-
streaming algorithms, statistics, and databases. P.B.
Gibbons [8] looks at many previous approaches to dis-
tinct value estimation and the difficulties with them. In
the database world, the early literature has extensively
studied sampling techniques, which involve gathering a
uniform random sample of the data, and using it to ap-
proximately answer distinct-value queries on relational
databases [5, 6, 7]. Although these estimators use so-
phisticated techniques to handle various input distribu-
tions, they are all unable to guarantee good accuracy for
their estimates [1, 4]. Charikar et al. [1] proved this
formally, establishing a strong negative result, namely
that no estimator can guarantee a small error for all
possible input distributions unless it examines a large
fraction of the input data. Raskhodnikova et al. [2] and
Valiant et al. [3] further provided near-linear and sub-
linear lower bounds, respectively, on the sample size
required for the estimate. The conclusion is that, in or-
der to ensure high-accuracy, distribution-independent
estimates, it is necessary to examine almost the entire
data set.

Estimation algorithms that require scanning all the data
once are referred to as single-pass algorithms. Flajolet
and Martin, in their seminal work [12], presented the
first single-pass algorithm for distinct values estimation
in a large collection of data using small limited storage.
Their probabilistic counting algorithm uses hash func-
tions to map set of values to bitmap vectors, such that
each distinct value maps to the ith bit in the vector with
2–(i+1) probability. Alon et al. [13] further build upon
this work and proposed more practical hash functions,
space bounds and provable error guarantees on their
estimates. This line of research continues with more
space/time efficient algorithms and better estimates of
distinct values [14, 15]. Some similar approaches use
adaptive sampling, which continuously maintain a
bounded-size up-to-date sample of distinct values for

the purpose of providing a very quick estimate of the
cardinality of the data set [17, 18, 26]. Our sampling
technique is in many respects similar to these.

D. Harnik et al. [19] are the first in the area of storage
deduplication to provide a provably accurate two-phase
algorithm for a one-time estimate of deduplication rati-
os, using very low storage space. Our technique differs
from theirs in that, after a single pass over existing data
for the initial estimate, it uses an adaptive technique to
incrementally maintain an up-to-date estimate that takes
into account any changes to the data.

3 Theory
Consider a data set consisting of a group of data blocks
(of fixed size or variable size) with possible duplicates.
We are interested in estimating the percentage of space
that can be saved by deduplication. Thus, we define the
deduplication ratio R as follows.

We assume a hash function that generates a fingerprint
for each data block. The proposed content-based sam-
pling applies a modulo-based filter to all the block fin-
gerprints of a data set. A block fingerprint passes the
filter and is added to the sample iff:

Where the divisor M is an integer greater than 1, and
the remainder X is an integer between 0 and M - 1.
Throughout this paper, we refer to M as the filter divi-
sor. The idea is to split the fingerprint space into M
partitions, and to use one of the partitions in the esti-
mate. More specifically, the total size of the distinct
(deduplicated) blocks in the sample is used to estimate
the total size of the distinct blocks in the entire data set.

Assume there are K different block sizes in the data set.
The sample can be partitioned into K groups of identi-
cal-sized blocks. Assume the ith (i = 1…K) block group
in the sample has ni distinct blocks of size si. Let Ni
denote the total number of distinct blocks of size si in
the data set. Let be the size in byte of the distinct
blocks in the data set. The estimate of S, denoted by S*,
is defined as:

 ∑

The deduplication ratio can be estimated as S*/Sdata_set,
where Sdata_set is the size of the data set before dedupli-
cation, which is known before the. In the case of fixed-
size blocks, we can ignore the block size and count only
the number of distinct blocks in the sample. Figure 1
illustrates the idea of content-based sampling.

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  183

3

The main theoretical result of this work is the relation-
ship between the filter divisor and the accuracy of the
estimate. Define the relative error of the estimate as

We show that if the fingerprinting algorithm has good
uniformity and negligible collision probability, the rela-
tive error follows a normal distribution with zero mean
(i.e., the estimate is unbiased) and known variance.

Figure 1. Illustration of the Content-based sampling

We assume a storage system that maintains a relatively
strong fingerprint for data blocks, so that we can ignore
the impact of collisions. A previous work in the net-
working domain [16] takes collisions into account in
the estimate. As shown in that work, the expected error
introduced by collisions (which always causes an un-
derestimate) is computable from the size of the uncor-
rected estimate S*. Thus, we could apply these results
to correct for collisions, if necessary.

Theorem 1. Assume the fingerprinting has the uni-
formity property and negligible collision probability.
For large Ni (i = 1,.., K), err has a normal distribution
with zero as the mean and ̅ as the variance,
where ̅ is defined as ̅ ∑

 .

The proof of Theorem 1 is in Appendix A. The α-β ac-
curacy of the estimate is defined as:

Definition of α-β accuracy. Given α and β (α, β [0,
1]), the relative error err satisfies the following condi-
tion.

 | |
The relationship between M and the α-β accuracy is
described in the following theorem.

Theorem 2. M satisfies the α-β accuracy if:

 ̅ (1)

where erf-1() is the inverse of the Gauss error function
and ̅ is defined in Theorem 1 (proof in Appendix B).

To have the smallest possible sample size, one would
choose the largest M that satisfies a given accuracy re-

quirement. However, S and ̅ are not known before the
estimation. In practice, we could address this problem
as follows. Variable-size chunking algorithms (e.g.,
[24]) typically have a known average block size, which
can be used to approximate ̅. Also, ̅ is known for the
fixed-size blocks case. Rewrite inequality (1) as:

 ̅
 (2)

The left side of (2) could be approximated by the total
size of distinct blocks in sample (distinct block count in
the fixed-size blocks case), which is countable during
the sampling. The minimum “distinct sample size” that
satisfies (2) is called the target sample size. Table 1
gives some α, β values and the corresponding target
sample size in number of blocks. As long as there are
enough distinct blocks in the sample, we can increase
the selectiveness of the filter to reduce sample size in
the following Adaptive Sampling Approach.

During the sampling process, the ratio of the distinct
block count in sample to the target sample size is peri-
odically monitored. If the ratio is greater than 2, we find
the largest power of two that is less than or equal to the
ratio (denoted as f). M and X are updated as follows:

Step 1:
Step 2

The function rand(f) generates a random integer be-
tween 0 and . This allows us to randomly choose
a fingerprint partition while we aggressively divide the
fingerprint space. Finally, we remove the unqualified
blocks from the existing sample, and continue the sam-
pling with the new, more restrictive filter.

TABLE 1. Target sample size vs α-β accuracy

Target sample size α β

270 0.1 0.9

1843 0.06 0.99

12030 0.03 0.999

1513670 0.01 0.9999

4 Design and Implementation
We chose an enterprise-class network-attached storage
system as the reference system in which to implement
the estimation technique. The system uses a log-
structured file system [22] with 4KB blocks. Individual
data blocks of a file can be identified by a file handle
together with an offset within the file (called a file
block number). Our implementation estimates the num-
ber of unique data blocks in a volume. Ignoring the
initialization delay due to the one-time full-volume scan,
an up-to-date estimate can be returned on-demand with-

184  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

4

in a couple of minutes, no matter how large the volume
is. A large part of the recurring maintenance runs in the
background, in a non-intrusive fashion.

Figure 2. System Components

The major modules built into the reference storage sys-
tem are depicted in Figure 2. The change logging is a
software module that samples data blocks during the
consistency point. Metadata blocks are not sampled.
The storage system computes a 64-bit variant of the
Adler checksum [23] for each block as the RAID
checksum. This checksum, available at the time of a
consistency point, is used as the fingerprint. Existing
blocks in the volume are sampled by a scanner module.
The sample is stored in a fingerprint sample file (FPS).
The FPS contains a header and a sequence of entries
(20 bytes per entry) in the format of {file handle, file
block number, fingerprint}.

The estimation operation merges the sample from
change logging to the FPS, and updates the estimate
accordingly. File swapping is used in the merging, so
that the ongoing change logging process is not affected.
After merging, we count the distinct blocks by sorting
the FPS. We remove stale entries (i.e., blocks removed
or over-written) before counting. This is done by com-
paring the fingerprint in the entry with the fingerprint of
the real block. We maintain a stale inode cache during
the validation, to reduce the number of unnecessary
block-read attempts.

Adaptive sampling is triggered at the end of the estima-
tion operation. Once the filter divisor increases, the
change logging produces a smaller sample. The FPS is
shrunk as well. The initial value of M can be set by the
user. The initial value of X is chosen randomly.

The estimation operation is triggered if we have enough
data in the change logs or there is file deletion in the
volume (i.e., volume size decrease). These conditions
are checked periodically. This ensures minimum impact
to read-intensive workloads.

5 Performance Study
We studied the accuracy of our estimate using real-
world data sets (see TABLE 2). Given a data set, we
compared the empirical error’s standard deviation and
the theoretical ones, for various values of M. There
were 1000 data points for each empirical statistics, gen-
erated by varying the remainder X from 0 to 999. We
tested estimations over both 4KB fixed-size blocks, and
variable-size blocks [24]. The variable block size is
between 2KB and 8KB. The true deduplication ratio
was obtained as follows. In the case of variable-size
blocks, we trust the results of deduplicating over the
MD5 hash values of the blocks. For fixed-size blocks,
we deduplicated the data set in a NetApp® system.

TABLE 2. Information of the data sets

Names Size Dedupe
Ratio Description

Corp. Web 1.5TB ~50% Corporate web directory

Debian 260GB ~60% 2-month Debian build

Sharepoint 29GB ~18% Corporate Sharepoint

We consistently saw good matches between the empiri-
cal results and the theoretical results, for both the varia-
bles-size and fixed-size cases (see Figure 3 for details).
For the sake of space, we only report selected results in
this paper.

Figure 3. Accuracy test result

The evaluations of the prototype were done using a
NetApp FAS 3070 storage system running Data ON-
TAP® 8.1 [25]. IOzone [20] was chosen as the synthet-
ic I/O trace generator, since it can generate traces with
duplicated content. The storage system exported a NFS
v3 volume to the trace-generating client.

There are two major types of test, namely 64KB se-
quential write and 64KB sequential read. All the tests
were set to 50% inter-file duplication and 0% intra-file
duplication. Five files are accessed in parallel in the
tests, which saturated a 1GB network link. The dedupli-
cation ratio of the synthetic data set is 0.6. Every 4

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  185

5

minutes, the system checked whether the estimation
operation should be triggered. Every 5 seconds, the
storage system sampled the CPU usage, number of
64KB I/O per second (IPOS), disk read rate, and disk
write rate. A single test run lasted for about 80 minutes.
There were 15 test runs for a single setting.

Figure 4. CDF for normalized CPU usage and IOPS

We first look at the results for 64KB sequential writes.
We only report the cumulative distribution function
(CDF) curves of CPU usage and IPOS in Figure 4. As
expected, the estimation test consumes more CPU and
has less IOPS, compared to the base case. Besides these
results, our data shows that the average changes in CPU
usage, IOPS, and disk reads are less than 0.5% for all
the tested target sample sizes. The average disk read
rate increases from 1% to 4% as the target sample size
increases from 1000 to 15000. The additional disk
reads are mainly contributed by the random disk access
from the counting module.

Figure 5. Latency histogram for both read and write tests

There is no significant impact to the system in the se-
quential read test. This is because the estimation code
has negligible overhead for a read-only workload. The
CDF results are not reported due to space limitations.
Figure 5 plots the client-side latency histogram reported
by IOzone. This plot shows that estimation’s impact to
the I/O latency is also negligible.

We also studied the estimation accuracy of our adaptive
sampling in the 64KB sequential write case. Figure 6
plots the results in one test run. As the volume size

grows, the filter divisor is doubled while the corre-
sponding distinct block count in the sample floats be-
tween 2500 and 1000. M was initially set to 4096. The
error is high at the beginning due to the small sample
size, and remains below 5% later.

Figure 6. Adaptive sampling in one experiment run.

6 Concluding Remarks
The main contribution of this work is a method that
estimates duplication in a storage system with statisti-
cally guaranteed accuracy using a single scan of the
data set. It is also notable for requiring only a small,
fixed amount of memory resources for a given level of
accuracy, independent of the size of the volume. This
makes it amenable to efficient in-line use and to main-
tain an accurate estimate in the face of a rapidly chang-
ing data set, which allows storage users to better assess
the utility of data deduplication. We implemented the
technique as a practical enhancement to a commercial
storage system, and confirmed that the accuracy was
within the statistically expected range for a variety of
real-world data sets. The performance impact of our
technique was found to be less than a few percent.

7 References
[1] M. Charikar, et al. Towards Estimation Error Guarantees for

Distinct Values. Proceedings of the 19th ACM Symposium on
Principles of Database Systems. ACM, New York, 2000.

[2] S. Raskhodnikova, et al. Strong Lower Bounds for Approximat-
ing Distribution Support Size and the Distinct Elements Prob-
lem. SIAM Journal on Computing, pages 813-842, 2009.

[3] G. Valiant, and P. Valiant. Estimating the Unseen: An n/log(n)-
sample Estimator for Entropy and Support Size, Shown Optimal
via New CLTs. In the 43rd ACM Symposium on Theory of
Computing, STOC, pages 685-694, 2011.

[4] S. Chaudhuri et al. Random sampling for histogram construc-
tion: How much is enough? In Proc. ACM SIGMOD Interna-
tional Conf. on Management of Data, pages 436–447, June 1998.

[5] P. J. Haas, et al. Sampling-based estimation of the number of
distinct values of an attribute. In Proc. 21st International Conf.
on Very Large Data Bases, pages 311–322, September 1995.

[6] G. Ozsoyoglu, et al. On estimating COUNT, SUM, and AV-
ERAGE relational algebra queries. In Proc. Conf. on Database
and Expert Systems Applications , pages 406–412, 1991.

186  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

6

[7] F. Olken. Random Sampling from Databases. PhD thesis, Com-
puter Science, U.C. Berkeley, April 1993.

[8] P. B. Gibbons. Distinct-values estimation over data streams. In
Manuscript, 2009.

[9] http://www.emcemearegistration.com/tapereplace/esquare/calcu
lator.php - EMC Data Domain

[10] http://www.itcalc.com/ - NetApp Inc.

[11] https://www.snia.org/sites/default/files/Understanding_Data_De
duplication_Ratios-20080718.pdf

[12] P. Flajolet et al. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci. 31(2): 182-209 (1985).

[13] N. Alon et al. The space complexity of approximating the fre-
quency moments. ACM STOC, 1996, pp. 20–29.

[14] P. Flajolet, et al. Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In AOFA 2007.

[15] D. M. Kane et al. An optimal algorithm for the distinct elements
problem. In PODS, pp. 41–52, 2010.

[16] C. Estan, G. Varghese, and M. E. Fisk. Bitmap algorithms for
counting active flows on high-speed links. IEEE/ACM Transac-
tions on Networking, 14(5):925-937, 2006.

[17] P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. VLDB‘01, pp 541–550

[18] Counting distinct items over update streams. ACM Journal
Theoretical Computer Science 378(3):211-222, 2007

[19] D. Harnik et al. Estimation of deduplication ratios in large data
sets. In Mass Storage Systems and Technologies (MSST), 2012

[20] IOzone Filesystem Benchmark http://www.IOzone.org/

[21] A. El-Shimi et al. Primary Data Deduplication -- Large Scale
Study and System Design. USENIX ATC ’12.

[22] D. Hitz et al. File system design for a file server appliance. In
USENIX Technical Conference, 1994, pages 235–245

[23] P. Corbett el al. Row-Diagonal Parity for Double Disk Failure
Correction. In Proceedings of the 2004 Usenix FAST, pp: 1- 14.

[24] E. Kave et al. A Framework for Analyzing and Improving Con-
tent-Based Chunking Algorithms No. HPL-2005-30R1.

[25] www.netapp.com/us/library/technical-reports/tr-3982.html

[26] A. Chen & A. Cao. Distinct counting with a self-learning bit-
map. IEEE ICDE ‘09. Pages 1171–1174.

Appendix A
Denote the total number of distinct fixed-size blocks in
the sample and data set as nd and Nd , respectively.

Lemma 1. Assume the fingerprint has uniformity prop-
erty and negligible collision probability. For large Nd ,
err has a normal distribution with zero as the mean and
 as the variance.
Proof: Because of good uniformity, any fingerprint in
the data sets has 1/M probability to be sampled. Since
the collision is negligible, the number of distinct fin-
gerprints is approximately equal to the number of dis-
tinct blocks in the sample. The sampling can be treated
as a Bernoulli trail of length Nd and successful rate 1/M.

The number of successes in the trail is equal to nd.
Therefore nd follows a binomial distribution. Based on
the definition of err, it can be represented as:

When Nd is large, the distribution of nd can be approxi-
mated as a normal distribution with E[nd] = Nd / M and
Var[nd] = . Therefore err follows a
normal distribution of zero mean and as
the variance.

Proof of Theorem 1: The sample in the variable-size
blocks case can be seen as a group of K fixed-size block
samples. According to Lemma 1, when Ni is large, ni
has a normal distribution: E[ni] = Ni / M and Var[ni] =
 . Since S* is a linear combination of ni
(i = 1,…,K), S*

 also follows a normal distribution with

 [] ∑
 and []

∑
 .

Since , it also has a normal distribu-
tion. E[err] is simply zero. The variance is calculated as:

 []
[]
 ∑

 ∑

 ̅

This proves the theorem.

Appendix B
Proof: The proof of this theorem is simply based on the
Empirical Rule of the normal distribution. Since the
error has a normal distribution, the accuracy of the es-
timation has the following property.

 (| | √ []) (√)

, where erf() is the error function and is a constant.
Substitute the variance of err from Theorem 1, we have:

 (| | √ ̅) (√)

We substitute with √ in the above ine-
quality, which yields:

 (| | √ √ ̅)

This means that as long as:

 ̅

the estimation satisfies α-β accuracy.

NetApp, the NetApp logo, Go further, faster, and Data
ONTAP are trademarks or registered trademarks of
NetApp, Inc. in the United States and/or other countries.

