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Abstract
MapReduce clusters are usually multi-tenant (i.e., 

shared among multiple users and jobs) for improving 
cost and utilization. The performance of jobs in a multi-
tenant MapReduce cluster is greatly impacted by the all-
Map-to-all-Reduce communication, or Shuffle, which 
saturates the cluster’s hard-to-scale network bisection 
bandwidth. Previous schedulers optimize Map input 
locality but do not consider the Shuffle, which is often 
the dominant source of traffic in MapReduce clusters.

We propose ShuffleWatcher, a new multi-tenant 
MapReduce scheduler that shapes and reduces Shuffle 
traffic to improve cluster performance (throughput and 
job turn-around times), while operating within specified 
fairness constraints. ShuffleWatcher employs three key 
techniques. First, it curbs intra-job Map-Shuffle concur-
rency to shape Shuffle traffic by delaying or elongating 
a job’s Shuffle based on the network load. Second, it 
exploits the reduced intra-job concurrency and the flexi-
bility engendered by the replication of Map input data 
for fault tolerance to preferentially assign a job’s Map 
tasks to localize the Map output to as few nodes as pos-
sible. Third, it exploits localized Map output and 
delayed Shuffle to reduce the Shuffle traffic by prefer-
entially assigning a job’s Reduce tasks to the nodes con-
taining its Map output. ShuffleWatcher leverages 
opportunities that are unique to multi-tenancy, such 
overlapping Map with Shuffle across jobs rather than 
within a job, and trading-off intra-job concurrency for 
reduced Shuffle traffic. On a 100-node Amazon EC2 
cluster running Hadoop, ShuffleWatcher improves clus-
ter throughput by 39-46% and job turn-around times by 
27-32% over three state-of-the-art schedulers.

1  Introduction
MapReduce frameworks are commonly used to pro-

cess large volumes of data on clusters of commodity 
computers. MapReduce provides easy programmability, 
automatic data parallelization and transparent fault tol-
erance [13]. For cost-effectiveness and better utilization, 
MapReduce clusters are frequently multi-tenant (i.e., 
shared among multiple users and jobs). 

The performance of MapReduce clusters is greatly 
affected by the Shuffle, an all-Map-to-all-Reduce com-
munication, which stresses the network bisection band-

width. Typical MapReduce workloads contain a 
significant fraction of Shuffle-heavy jobs (e.g., 60% and 
20% of the jobs on the Yahoo and Facebook clusters, 
respectively, are reported to be Shuffle-heavy [9,39]). 
Shuffle-heavy MapReduce jobs typically process more 
data in the Shuffle and Reduce phases and hence run 
much longer than Shuffle-light jobs [2,3]. As such, 
Shuffle-heavy jobs significantly impact the cluster 
throughput. The execution of multiple, concurrent Shuf-
fles due to multi-tenancy worsens the pressure on the 
network bisection bandwidth. While network switch 
and link bandwidth scale with hardware technology, 
bisection bandwidth is a global resource that is hard to 
scale up with the cluster’s compute and storage 
resources (CPU, memory, disk). Even with recent 
advances in data center networks [4], large clusters are 
typically provisioned for per-node bisection bandwidth 
that is 5-20 times lower than the within-rack bandwidth 
[13,17,35,37,39]. 

Several previous multi-tenant schedulers address the 
problem of fairness among users or jobs (e.g., FIFO 
[21], Capacity [30], Fair [31] and Dominant Resource 
Fairness [16] schedulers). Other efforts improve cluster 
throughput by optimizing data locality in the Map phase 
[25,39] but do not address Shuffle, which is the domi-
nant source of network traffic in MapReduce. Our goal 
is to improve performance (cluster throughput and job 
turn-around time) within specified fairness constraints 
addressing the Shuffle bottleneck. Recent efforts 
[10,12,32] propose techniques to manage data center 
network traffic without changing network load. In con-
trast, we actively shape and reduce the network load.

We propose ShuffleWatcher, a new multi-tenant 
MapReduce scheduler that improves performance by 
exploiting a key trade-off between intra-job concur-
rency and Shuffle locality. Previous multi-tenant sched-
ulers adopt the approach of maximizing intra-job 
concurrency, while ensuring a fair division of resources 
among users. This approach is a carryover from single-
tenant scheduling; when there is a single job, utilizing 
the entire cluster (highest intra-job concurrency) typi-
cally ensures fastest turn-around times. Hence, concur-
rency is not traded for locality (although locality 
optimizations without sacrificing concurrency are wel-
come). However, adopting this concurrency-centric 
scheduling approach in multi-tenancy is neither neces-
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sary (because concurrency may be exploited either 
within or across jobs), nor beneficial (because it often 
results in multiple concurrent, contending Shuffles, 
which saturate the network and degrade throughput). 

ShuffleWatcher employs three key mechanisms that 
leverage the aforementioned trade-off. The first mecha-
nism, called Network-Aware Shuffle Scheduling (NASS), 
curbs intra-job concurrency at high network loads to 
shape the Shuffle traffic. Previous schedulers typically 
overlap a job’s Shuffle with its own Map phase by creat-
ing and scheduling the Reduce tasks early in the Map 
phase. This rigidity in Reduce scheduling often results in 
multiple Shuffle-heavy jobs being concurrently sched-
uled, thereby saturating the network bisection bandwidth 
and hurting performance. We make the key observation 
that multi-tenancy presents a new degree of freedom to 
overlap the Shuffle and Map across jobs, rather than 
within a job. Accordingly, NASS curbs the intra-job 
Map-Shuffle concurrency at high network loads by 
delaying or elongating a job’s Shuffle. This profitably 
shapes the network traffic to alleviate congestion, while 
still achieving Map-Shuffle overlap across jobs. To 
maintain fairness for the user whose Shuffle is delayed, 
ShuffleWatcher schedules tasks (from the same or 
another job) of the same user that do not stress the net-
work. ShuffleWatcher defaults to favoring intra-job con-
currency when the load is low. 

The other two mechanisms of ShuffleWatcher exploit 
the fact that in multi-tenancy, each job inevitably experi-
ences reduced concurrency due to resource sharing with 
other jobs. ShuffleWatcher employs Shuffle-aware Map 
Placement (SAMP) on the Map side to trade this reduced 
concurrency with higher Shuffle locality. SAMP is based 
on the following assertion. Given a favorable Shuffle 
and Reduce schedule, a job’s Map assignment (e.g., to as 
few sub-clusters as possible) that optimizes Map plus 
Shuffle locality results in higher network traffic reduc-
tions compared to one that optimizes Map locality alone 
as done by previous schedulers. SAMP leverages input 
data replication to optimize the sum of Map and Shuffle 
locality. In contrast to previous schedulers, SAMP may 
forgo some Map locality to achieve higher Shuffle local-
ity. The favorable Shuffle and Reduce schedule is 
ensured by the other two mechanisms of ShuffleWatcher.

ShuffleWatcher employs Shuffle-aware Reduce 
placement (SARP) on the Reduce side to achieve higher 
Shuffle locality. Previous schedulers assign Reduce tasks 
to whichever node becomes free, assuming a uniform 
Map placement, and consequently, Map output distribu-
tion throughout the cluster. Such an assumption that may 
generally hold true for single-tenancy is no longer valid 
for multi-tenancy due to reduced concurrency per job. 
As a result, previous multi-tenant schedulers unnecessar-
ily spread out a job’s Shuffle in the cluster. SARP is 
based on the following assertion. Given a favorable Map 

and Shuffle schedule, a job’s Reduce assignment that 
optimizes Shuffle locality results in higher network traf-
fic reductions compared to one that randomly distributes 
Reduce tasks. The favorable Map and Shuffle schedule 
is ensured by the other two mechanisms of Shuffle-
Watcher. In ShuffleWatcher, most of the Map tasks finish 
before the Reduce tasks are scheduled whenever NASS 
delays the Shuffle and, therefore, the distribution of the 
intermediate data is known. SARP preferentially assigns 
each job’s Reduce tasks to sub-clusters based on how 
much of the job’s intermediate data they contain. Thus, 
SARP localizes most of the Shuffle and reduces cross-
bisection Shuffle traffic.

We implement ShuffleWatcher in Hadoop [21] com-
bined with Fair Scheduler [31]. On a 100-node Amazon 
EC2 cluster, ShuffleWatcher achieves 46% higher 
throughput and 48% reduced network traffic compared 
to Delay Scheduling [39] while improving job turn-
around times by 32%. One may think that by trading-off 
intra-job concurrency for Shuffle locality, Shuffle-
Watcher may sacrifice turn-around times to gain 
throughput; on the contrary, by improving Shuffle local-
ity and temporally balancing Shuffle traffic, Shuffle-
Watcher improves turn-around times, not only on 
average but of all 300 jobs in our experiments. 

The rest of the paper is organized as follows. We pro-
vide a brief overview of multi-tenant scheduling in 
Section 2, and describe ShuffleWatcher in Section 3. We 
present our experimental methodology in Section 4, and 
results in Section 5. We discuss related work in Section 6 
and conclude in Section 7.

2  Background, Challenges and 
Opportunities

We provide a brief background on scheduling in 
MapReduce clusters and discuss challenges and opportu-
nities offered by multi-tenant clusters.

2.1 MapReduce Job Execution
We begin with the aspects of a MapReduce job’s exe-

cution that are relevant to multi-tenant scheduling.
When executing a MapReduce job, Map and Reduce 

tasks are scheduled to maximize concurrency (i.e., 
occupy the entire cluster or as much as possible). Conse-
quently, the all-Map-to-all-Reduce Shuffle results in an 
all-nodes-to-all-nodes communication, which stresses 
the network bisection bandwidth [13,17,35,37,39]. 

To improve performance, a job’s Shuffle is over-
lapped with its own Map phase (i.e., the Shuffle of data 
produced by earlier Map tasks occurs while later Map 
tasks execute). To achieve this overlap, the scheduler 
must assign Reduce tasks (which perform the Shuffle) to 
nodes very early in the Map phase, before most of the 
Map tasks have even begun execution. Two key implica-
tions of this approach are: (1) The Shuffle’s schedule is 
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fixed rigidly relative to the Map phase and cannot 
change dynamically in response to network load, and (2) 
the distribution of intermediate data is not known when 
the Reduce tasks are assigned. In single-tenancy, 
because the Map tasks are spread out across the entire 
cluster, a random assignment of Reduce tasks to nodes is 
close to optimal because it not only exploits full concur-
rency. but also achieves the overlap with the Map phase.

To reduce network traffic by exploiting locality, the 
scheduler attempts to assign a Map task to either the 
node or the rack that holds the task’s input data. How-
ever, Shuffle locality is not considered because Reduce 
tasks are scheduled well before the distribution of Map 
output is known to gain the above-mentioned benefits.

2.2 Multi-tenant Scheduling
In a multi-tenant environment, users submit jobs to 

the scheduler, which enqueues and assigns the jobs’ Map 
and Reduce tasks to nodes based on a specified fairness 
policy. Many fairness policies have been proposed. For 
example, Fair Scheduler [31] uses a share-based order 
among users, while Dynamic Resource Fairness (DRF) 
[16] ensures that the critical resource shares are equal-
ized across users. From a scheduling perspective, the 
fairness policy effectively determines to which user’s 
jobs should an available node be allocated. Among the 
chosen user’s tasks, the earliest enqueued task that fits 
resources of the available node is scheduled. Under 
multi-tenancy, a single job does not have access to the 
full resources of the cluster, and therefore sees an inevi-
table reduction in concurrency. 

Previous multi-tenant schedulers preserve Map-input 
locality by scheduling Map tasks on nodes or racks that 
have the corresponding input data. They also retain the 
approach of overlapping Map and Shuffle phases within 
each job, spread out the Map and Reduce tasks of a job 
for maximal concurrency, and assign the tasks to nodes 
irrespective of how much Shuffle data they consume.

In this context, we wish to improve throughput and 
job latency while obeying the specified fairness criteria.

2.3 Challenges and Opportunities in Multi-
tenant Scheduling

The key challenge in multi-tenancy is that the execu-
tion of multiple concurrent shuffle-heavy jobs severely 
stresses the network bisection bandwidth. Previous 
schedulers optimize for Map-input traffic but not for 
Shuffle traffic. Moreover, they do not differentiate 
between Shuffle-heavy and Shuffle-light jobs and may 
concurrently schedule multiple Shuffle-heavy jobs, 
worsening the impact of network saturation. Such satu-
ration affects all running jobs (not just the Shuffle-heavy 
jobs), and severely degrades cluster throughput as well 
as individual job turn-around times.

While network switch and link bandwidth scale with 

hardware technology, bisection bandwidth is a global 
resource that is expensive to scale up with the cluster’s 
computational resources. Previous work [4] has pro-
posed new topologies that achieve high bisection band-
width without requiring custom, high-end switches. 
Nevertheless, provisioning for peak network bisection 
bandwidth requirements is still quite expensive, and 
wasteful because the full bandwidth is not utilized at all 
times [42]. Hence, clusters typically provide lower band-
widths at the aggregation and core layers of the network 
topology than at the cluster edges (i.e., the links to 
nodes). This bandwidth over-subscription results in sig-
nificant cost savings. Large clusters usually have band-
width over-subscription ratios ranging from 5:1 to 20:1 
or even higher. Therefore, when all nodes are concur-
rently communicating (as in Shuffle), the bisection band-
width available per node is still much less than 
bandwidth available within a rack (e.g., 50-200 Mbps 
compared to 1 Gbps within rack [13,17,35,37,39]). 

While multi-tenancy poses the above challenge, it 
also offers new opportunities. 
• Multi-tenant workloads often include a significant 
fraction of shuffle-light jobs [9,39], which may be over-
lapped with shuffle-heavy jobs without exacerbating the 
load on the cluster network. Current schedulers are Shuf-
fle-unaware, resulting in periods of relatively high and 
low Shuffle activity in the cluster. Figure 1 shows the 
measured Shuffle traffic vs. time in a 100-node Amazon 
EC2 cluster running a workload mix representative of 
Yahoo and Facebook clusters [9,39]. From the figure, we 
see that network load is quite bursty and saturates the 
network during some periods, while leaving it under-uti-
lized during other periods. This creates an opportunity to 
create a more temporally balanced network load.
• Unlike single-tenancy, where intra-job Map-Shuffle 
overlap is critical and delaying the Shuffle invariably 
hurts performance, multi-tenancy affords the possibility 
of achieving such overlap across jobs, creating an oppor-
tunity to flexibly schedule a job’s Shuffle.
• In multi-tenancy, each job gets only a fraction of the 
cluster resources for its execution. Such reduced concur-
rency results into a skewed intermediate data distribu-

FIGURE 1: Shuffle profile in 100-node EC2 multi-
tenant cluster
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tion, creating an opportunity to exploit Shuffle locality.
ShuffleWatcher exploits these opportunities to shape 

and to reduce the Shuffle traffic as described in the next 
section. Note that delaying Shuffle, or localizing Map 
and Reduce tasks of a job can be achieved without losing 
fairness by exploiting the choice among a user’s many 
jobs and tasks. For example, a user whose Reduce task is 
delayed to alleviate network load need not lose her turn. 
Instead, ShuffleWatcher schedules a Map or Reduce task 
of the same user whose input or intermediate data is 
present on the node. In effect, ShuffleWatcher operates 
within the confines of a specified fairness policy.

Many of the opportunities described above require 
curbing a single job’s concurrency. We show that such 
curbing can be done without hurting (and on the con-
trary, often improving) both cluster throughput and job 
turn-around times. Multi-tenancy implies that the cluster 
is shared among multiple jobs, so the concurrency avail-
able to each job is anyhow restricted. The aforemen-
tioned choice among a user’s jobs and tasks is typically 
sufficient to fully utilize cluster’s resources, and any loss 
in concurrency for a job is more than offset by the signif-
icant performance improvement due to Shuffle locality. 

3  ShuffleWatcher
Figure 2 shows a high-level overview of Shuffle-

Watcher. Like other multi-tenant schedulers, Shuffle-
Watcher receives job submissions from one or more 
users. The scheduler monitors the status of nodes in the 
cluster, and schedules Map and Reduce tasks to them as 
they become available. ShuffleWatcher consists of three 
components: Network-Aware Shuffle Scheduling (NASS)
(Section 3.1), Shuffle-Aware Map Placement (SAMP 
(Section 3.2), and Shuffle-Aware Reduce Placement 
(SARP) (Section 3.3). 

3.1 Network-aware Shuffle Scheduling (NASS)
Figure 3 shows a high-level overview of steps per-

formed by NASS, which is invoked whenever a worker 
node in the cluster requests a new task. First, NASS 
picks a user to whom the node should be allocated as per 

fairness criteria (line 1) which can be based on any of the 
policies proposed previously [16,21,30,31]. Tasks only 
from the selected user’s jobs are considered in the 
remaining steps (lines 2-19) of NASS to ensure the 
user’s fair share. 

The remaining steps in NASS, which differ signifi-
cantly from previous MapReduce schedulers, are 
responsible for shaping the Shuffle traffic by exploiting 
the concurrency-locality trade-off (Section 2). This 
trade-off is driven by the network load as monitored by a 
daemon, called NetSat, which periodically determines 
each node’s cross-rack traffic of all jobs due to the Shuf-
fle, remote Map input reads, and Reduce output writes. 
NetSat compares the ratio of the traffic and the cross-
rack bandwidth available to the node against a threshold, 
called NWSaturationThreshold, to set a flag, called Net-
workSaturated, when the ratio exceeds the threshold. We 
found that NWSaturationThreshold can be in the broad 
75-100% range and result in less than 1% difference in 
cluster throughput. While our current NetSat implemen-
tation uses only the limited notions of within-rack and 
cross-rack traffic, more precise information about the 
network topology or network congestion monitoring 
mechanisms, when available, can be used. Similarly, 
while NetSat currently monitors network traffic only due 
to MapReduce jobs in the cluster, the daemon can be 
modified to account for traffic from other applications 
running concurrently in the cluster (e.g., interactive 
workloads and MPI jobs). 

If NetworkSaturated is true, NASS orders the Map 
and Reduce tasks so as to reduce the load on the network 
(lines 3-9). In this ordering, NASS curbs intra-job Map-
Shuffle concurrency by preferring Map tasks and delay-

FIGURE 2: Overview of ShuffleWatcher
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FIGURE 3: NASS Algorithm

Invoked when a worker on rack r requests a task
1. Select user based on fairness policy.
2. if (NetworkSaturated) {
3. find a task of selected user in the following order:
4. Map task for which r is in PreferredMapRacks (from SAMP)
5. Local Map task of any job
6. Any available Map task
7. Reduce task of any Shuffle-light job
8. Reduce task of Shuffle-heavy job for which 

PreferredReducesPerRack[r] is not met (from SARP)
9. Any available Reduce task 
10. }
11. else {
12. find a task of selected user in the following order:
13. Reduce task of Shuffle-heavy job for which 

PreferredReducesPerRack[r] is not met (from SARP)
14. Reduce task of any Shuffle-heavy job
15. Any available Reduce task
16. Map task for which r is in PreferredMapRacks (from SAMP)
17. Local Map task of any job
18. Any available Map task
19. }
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ing Reduce tasks and the associated Shuffle. NASS 
looks for a Map task of the selected user in the following 
categories listed in the order of increasing network load 
(lines 4-6): Map tasks for which the rack of the node 
requesting work is in SAMP’s PreferredMapRacks (line 
4) as described in Section 3.2; remaining local Map tasks 
(line 5), and remaining Map tasks (line 6). For local Map 
tasks, NASS obeys the locality-driven Map scheduling 
typically used in previous schedulers where node-local 
and rack-local tasks are explored in that order. In some 
cases, SAMP may explicitly decide that incurring some 
remote Map tasks reduces the total (remote Map + Shuf-
fle) traffic. Such Map tasks are covered in SAMP’s Pre-
ferredMapRacks. Within each category, the tasks are 
ordered by job arrival times. 

If there is no available Map task, NASS looks for a 
Reduce task of the selected user in the order of increas-
ing Shuffle volume (lines 7-9). The jobs are categorized 
into Shuffle-heavy and Shuffle-light based on the Shuf-
fle-to-Map-input volume ratio, called ShuffleInputRatio 
(ratio > 1.0 indicates a Shuffle-heavy job). Our current 
implementation initializes this ratio to be 1.0 and 
dynamically updates the value as the Map phase of a job 
progresses. This ratio could also be provided by the user, 
if known in advance, or tracked from previous runs of 
the job. NASS’s preferred order for Reduce tasks is: 
Shuffle-light (line 7), Shuffle-heavy from a job for 
which fewer than the desired number of Reduces as 
identified by SARP’s PreferredReducesPerRack have been 
executed (line 8) as described in Section 3.3, followed 
by any Reduce task (line 9). 

If NetworkSaturated is false, NASS defaults to favor-
ing high intra-job concurrency by prioritizing Reduce 
tasks (and hence the Shuffle) over Map tasks (lines 12-
18). Accordingly, NASS prioritizes Shuffle-heavy 
Reduce tasks preferred by SARP, followed by Reduce 
tasks of any Shuffle-heavy job to fully utilize the avail-
able bandwidth followed by Reduce tasks of any Shuf-
fle-light job (lines 13-15). In the absence of a Reduce 
task, NASS schedules a Map task following the same 
preference order as in the saturated-network case to 

improve locality (lines 16-18). Because NASS is guaran-
teed to choose either a Map task (line 6 and line 18) or a 
Reduce task (line 9 and line 15) of the selected user irre-
spective of network saturation, NASS maintains fair-
ness. One may think that because NASS maintains per-
user fairness but not per-job fairness, NASS may either 
hurt the turn-around times of some jobs or not perform 
well under per-job fairness. We address both these con-
cerns in our results and show that neither of these con-
cerns is true (Section 5.2 and Section 5.4, respectively). 

3.2 Shuffle-aware Map Placement (SAMP)
Recall from Section 2.3 that in multi-tenancy, each 

job experiences reduced concurrency resulting into a 
skewed intermediate data distribution. The Map-input 
locality driven Map scheduling employed in previous 
MapReduce schedulers [21, 39] does not consider Shuf-
fle locality. SAMP goes beyond previous schedulers in 
two ways: (i) it leverages input data replication to local-
ize intermediate data for a job, by prioritizing the execu-
tion of some replicas over others, and (ii) it allows 
remote execution of Map tasks when the resulting 
remote Map input traffic is outweighed by the Shuffle 
traffic reduction due to localized intermediate data. Such 
restriction of a job’s Map tasks to a subset of nodes or 
racks achieves high Shuffle locality at the expense of full 
intra-job concurrency, which is anyway not available in 
multi-tenancy. SAMP relies on NASS and SARP to 
exploit Shuffle locality in later phases of a job execution. 

The procedure used by SAMP is shown in Figure 4. 
SAMP is triggered once per job, at the time of job sub-
mission. Based on the locations of a job’s input data, 
SAMP prepares a sorted list of racks in decreasing order 
of the amount of the job’s input data that they contain 
(line 1). SAMP initializes a list of racks, TmpMapRacks, 
(line 2) and a variable CrossRackTraffic to measure 
cross-rack traffic (line 3). Next, SAMP keeps adding 
racks to TmpMapRacks in the sorted order, and com-
putes the resulting CrossRackTraffic as the sum of 
remote Map traffic incurred and cross-rack Shuffle vol-

FIGURE 4: SAMP Algorithm

1. Sort racks in decreasing order of input data for j
2. TmpMapRacks = {}
3. CrossRackTraffic = infinity
4. do {
5. remove first rack r in sorted list and add to TmpMapRacks
6. estimate CrossRackTraffic = remote Map traffic + cross-rack 

Shuffle //assumes SARP is used.
7. } while (CrossRackTraffic decreases)
8. PreferredMapRacks = TmpMapRacks
9. compute TentativeReducesPerRack for SARP assuming Map 

tasks are scheduled on PreferredMapRacks

Invoked when a new job j is submitted

FIGURE 5: Cross-rack Shuffle Reduction with SAMP
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ume until this sum is minimized (lines 4-7). Remote 
Map traffic is estimated from the fraction of the job’s 
input data that does not reside on the racks in Tmp-
MapRacks, whereas cross-rack Shuffle volume is esti-
mated based on the job’s ShuffleInputRatio (Section 3.1) 
and assuming SARP’s Reduce placement. The final list 
of racks TmpMapRacks is assigned to Preferred-
MapRacks (line 8) which is then communicated to 
NASS for task scheduling (Section 3.1). SAMP also 
computes an estimated number of Reduce tasks for each 
rack (TentativeReducesPerRack) assuming that the Map 
tasks are scheduled on PreferredMapRacks. TentativeR-
educesPerRack is used by SARP when SARP is invoked 
after only a few Map tasks complete, (i.e., intermediate 
data locations are unavailable) (Figure 6, lines 4-6). 

To highlight the advantages of SAMP, Figure 5 shows 
a simple example with two jobs, job1 and job2, whose 
input data is replicated and available on two racks, rack1
and rack2. Because the nodes of each rack become avail-
able to execute tasks at roughly the same rate, previous 
schedulers would assign equal numbers of Map tasks for 
each job to the nodes within each rack, without incurring 
remote Map traffic. However, such scheduling results in 
uniform intermediate data distribution for both jobs, cre-
ating little opportunity for SARP to reduce cross-rack 
Shuffle traffic. In contrast, SAMP’s PreferredMapRacks
selection (rack1 for job1, rack2 for job2) results in a 
schedule that places all the intermediate data for job1 on 
rack1 and for job2 on rack2, which SARP can exploit to 
reduce cross-rack Shuffle traffic for both jobs. In this 
example, note that SAMP exploits input data replication 
to avoid remote Map traffic. 

3.3 Shuffle-aware Reduce Placement (SARP)
Recall from Section 2.3 that the intermediate data dis-

tribution is likely to be skewed in a multi-tenant cluster. 
The scheduling of Reduce tasks solely based on node 
availability increases the volume of cross-rack Shuffle 
traffic. Shuffle-aware Reduce placement (SARP) 
exploits SAMP’s Map assignment and NASS’s delayed 
Reduce scheduling to localize most of the Shuffle within 
racks. SARP achieves this localization by computing a 
preferred number of Reduce tasks on each rack based on 
the amount of intermediate data the rack holds. 

SARP’s algorithm is shown in Figure 6. SARP is 

invoked when the Reduce tasks of a job are first enabled 
for scheduling. This enabling is done when either the 
Map phase is complete or there are unoccupied slots for 
the user to schedule a task. SARP first checks whether 
sufficient number of Map tasks have been completed for 
the job and significant intermediate data has been accu-
mulated, in order to decrease the chances of poor rack 
preferences. This check is done by comparing the frac-
tion of completed Maps to a threshold, MapCompletion-
Threshold (line 1). Because NASS schedules Reduce 
tasks as late as possible, this criterion is satisfied in the 
common case. SARP then computes (lines 2-3) the pre-
ferred number of Reduce tasks for the job on a rack, Pre-
ferredReducesPerRack, by multiplying the job’s total 
number of Reduce tasks (typically specified by the user 
in current systems) with the fraction of intermediate data 
residing on the rack. We found that MapCompletion-
Threshold can be in the broad 5-25% range for less than 
1% difference in cluster throughput. 

In the (uncommon) case when SARP is invoked for a 
job before sufficient Maps have been executed, SARP 
relies on SAMP’s predictive analysis to decide how 
many Reduce tasks should be executed on each rack 
(TentativeReducePerRack (Section 3.2)) (lines 5-6). 

SARP computes the preferred number of Reduce 
tasks per rack but does not specify which Reduce task is 
scheduled on which rack. Because the intermediate data 
on each rack is likely to contain most or all of the keys 
(of MapReduce key-value pairs), any Reduce task can be 
scheduled on a given rack. Therefore, NASS chooses as 
many available Reduce tasks as specified by SARP. 

One may think that SARP’s localization may unbal-
ance load across nodes or racks. Because a free node is 
always assigned some work (preferred or otherwise -line 
9 or 18 in Figure 3), such imbalance does not occur. 

Figure 7 illustrates a simple example showing 
SARP’s Shuffle traffic reduction in a cluster for two jobs 
whose data resides only on two racks. When the Reduce 

FIGURE 6: SARP Algorithm

1.if (fraction of Maps completed > MapCompletionThreshold)
2. for each rack r
3. PreferredReducesPerRack[r] = NumReduces * Intermediate 

data size on rack r / Current Intermediate data size of j
4.} else
5. for each rack r
6. PreferredReducesPerRack[r] = TentativeReducesPerRack[r]

Invoked when job j schedules its Reduce tasks

FIGURE 7: Cross-rack Shuffle reduction with SARP
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tasks are evenly distributed among the racks, both jobs 
need to transfer half (50GB) of their intermediate data 
from one rack to the other. With SARP, each job needs to 
transfer only 18GB of intermediate data across the racks 
reducing the cross-rack Shuffle traffic by 64%. The 
reductions in Shuffle traffic is even greater for cases 
where previous schedulers’ random placement assigns 
all Reduce tasks of job1 to rack1 and of job2 to rack2.

3.4 Discussion
We end our description of ShuffleWatcher by provid-

ing a few additional insights and clarifications.
One possible alternative to ShuffleWatcher is simply 

to reduce the Shuffle traffic by assigning Reduce tasks to 
machines or racks in proportion to the distribution of the 
intermediate (Map output) data or the input data. While 
ShuffleWatcher achieves the same effect by preferen-
tially assigning Reduce tasks to the nodes containing the 
intermediate data, the alternative approach is simpler. 
However, such an approach does not consider other 
equally-important aspects of multi-tenancy, such as job 
latency, cluster utilization, and fairness. For example, to 
schedule Reduce tasks based solely on the intermediate 
data distribution, the scheduler must delay the Shuffle 
until the Map phase is complete, entirely losing the 
opportunity for intra-job Shuffle-Map concurrency and 
potentially increasing job latency. Alternately, schedul-
ing Reduce tasks based solely on the input data distribu-
tion eliminates exploiting any additional skew in the 
intermediate data. In both cases, fixing the assignment of 
Reduce tasks to machines leaves the scheduler with lim-
ited flexibility. If none of a job’s tasks can be executed 
on a free machine due to the assignment, then resources 
are under-utilized. As such, the scheduler must reduce 
Shuffle volume while considering these other important 
aspects, which preclude a simple or fixed assignment 
and necessitate the more complete approach of Shuffle-
Watcher. Finally, the alternative approach does not tem-
porally shape the Shuffle traffic and therefore does not 
capture a significant part of ShuffleWatcher’s improve-
ments (more than 40% in Figure 12).

The mechanisms for tracking job execution, fault tol-
erance, straggler identification and backup task execu-
tion, are not modified by ShuffleWatcher. 

In rare cases, Shuffle-aware scheduling employed by 
ShuffleWatcher may result in a particular job getting 
starved due to unavailability of preferred racks (caused 

by load or failure), while other jobs from the same user 
are executed to satisfy the fairness constraint. Shuffle-
Watcher addresses this problem by tracking job submis-
sion times at the granularity of a window such that a 
user’s jobs submitted in an earlier window are prioritized 
over those submitted in a later one, overriding the heu-
ristics in NASS, SAMP and SARP. The window width 
acts like a time-out interval and can be set as some multi-
ple of the average job completion time. A window of 10 
minutes was enough to prevent starvation of any jobs in 
our cluster.

By default, ShuffleWatcher improves performance 
while strictly obeying the constraints provided by any 
fairness policy (we evaluate ShuffleWatcher using two 
such policies in Section 5). However, ShuffleWatcher 
can be operated under relaxed fairness constraints (e.g., 
as employed in Delay Scheduling [39]). We evaluate the 
impact of relaxed fairness constraints in Section 5.

Finally, although ShuffleWatcher performs addi-
tional steps (Figure 2) compared to current schedulers, 
these steps do not impact scalability as they are executed 
either periodically at a low frequency (NetSat) or only 
once per job (SAMP and SARP). The computation in 
NASS is quite simple, and adds negligible overheads.

4  Experimental Methodology 
We implement ShuffleWatcher in Hadoop (version 

1.0.0) [21], and evaluate on a 100-node testbed in Ama-
zon’s Elastic Compute Cloud (EC2) [5]. 

4.1 Testbed
In the 100-node cluster, we use “extra-large” 

instances, each with 4 virtual cores and 15 GB of mem-
ory. EC2 does not provide any information about the 
underlying network topology or physical locations of the 
instances. In large clusters, the cross-rack bandwidth is 
usually much lower than the within-rack bandwidth [13, 
21, 25, 39]. To emulate a cluster with realistic band-
widths and to distinguish the nodes from each other 
based on their location (e.g., rack-local versus rack-
remote), we divide our cluster into 10 sub-clusters of 10 
nodes each. We identify the sub-clusters by their elastic 
IP addresses assigned based on their location in EC2. We 
use the network utility tools tc and iptables to limit the 
aggregate bandwidth from one sub-cluster to another to 
500 Mbps (50 Mbps is the typical per-node bisection 
bandwidth [13, 37, 35, 12]), without limiting the band-

Table 1: Benchmarks Characterization

Shuffle-heavy terasort(5%), ranked-inverted-index(10%), self-
join(10%), word-sequence-count(10%), adja-
cency-list(5%)

Shuffle-medium inverted-index(10%), term-vector(10%)

Shuffle-light grep(15%), wordcount(10%), classification(5%), 
histogram-movies(5%), histogram-ratings(5%)

Table 2: Distribution of job sizes

Input job sizes % jobs Input job sizes % jobs

< 100MB 20% 100GB - 200GB 10%

100MB- 1GB 19% 200GB - 500GB 7%

1GB - 20GB 21% 500GB - 1TB 8%

20GB - 100GB 10% > 1TB 5%
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widths within each sub-cluster. Because the aggregate 
bandwidth, and not individual link bandwidths, is lim-
ited, a subset of nodes can fully utilize the entire aggre-
gate bandwidth when the other nodes are not using their 
links. We measure the bandwidth within each sub-cluster 
to be around 250 Mbps, resulting in the ratio of cross-
rack and within-rack per-node bandwidths to be 5:1 at 
peak network utilization. This ratio being at the lower 
end of typical over-subscription ranging from 5:1 to 20:1 
or even higher makes our results conservative; a higher 
ratio would mean lower bisection bandwidth making 
ShuffleWatcher even more important. Similarly, using a 
shared cluster such as EC2 instead of a dedicated cluster 
makes our results conservative and realistic because the 
shared cluster comes with network traffic interference 
from jobs outside ShuffleWatcher’s control which would 
be the case in real deployments. This interference 
impacts the accuracy of NetSat’s estimate of network sat-
uration, despite which ShuffleWatcher achieves signifi-
cant improvements. 

4.2 Multi-tenant Scheduler Implementations
We implement ShuffleWatcher on top of two fairness 

schemes, Fair Scheduler [31] and Dominant Resource 
Fairness (DRF) [16]. We compare ShuffleWatcher to 
these baselines as well as Delay Scheduler [39]. Delay 
Scheduler implementation is open-source and is avail-
able with Hadoop release. Delay Scheduler is imple-
mented on top of Fair Scheduler and exploits relaxed 
fairness among users. For a fair comparison with Delay 
Scheduler, we configure ShuffleWatcher with Delay 
Scheduler’s relaxed fairness constraints. For the Fair 
Scheduler-based implementations, each node concur-
rently runs four Map tasks and two Reduce tasks. DRF is 
another scheduler based on generalized min-max fair-
ness algorithm [16]. Because DRF’s implementation is 
not publicly available, we develop one. To determine a 
job’s CPU and memory requirements for DRF, we run 
each of our benchmark jobs individually and monitor the 
maximum resources needed, as done in [16]. 

For ShuffleWatcher, we set NWSaturationThreshold, 
the per-rack link utilization threshold to measure net-
work saturation (Section 3.1), to 400 Mbps which is 
80% of the admissible bandwidth capacity. We set Map-
CompletionThreshold, the fraction of Map tasks to be 
completed after which SARP computes the preferred 
locations for Reduce tasks based on actual intermediate 
data rather than on SAMP’s prediction (Section 3.3), to 
be 15%. Because NASS considers SAMP’s preferences 
during scheduling, the actual intermediate data and 
SAMP’s predictions are so close that our performance 
improvements are not sensitive to variations in this 
parameter. We choose the default distributed file system 
(HDFS) block size of 64 MB and replication factor of 3.

4.3 Workloads
We use typical workloads consisting of benchmarks 

drawn from the Hadoop release and [2]. Based on Shuf-
fleInputRatio (Section 3.1), we characterize the bench-
marks as Shuffle-heavy, Shuffle-medium or Shuffle-light 
in Table 1. The table also shows the percentage of jobs 
of each type in the workload. The variation in job mixes 
and the variation in job input sizes (Table 2) are based on 
real workloads from Yahoo and Facebook [9]. 

We set the number of users to 30 for our 100-node 
cluster, consistent with the Facebook cluster usage 
reported in [39] (200 users for a 600-node cluster). Job 
submission follows an exponential distribution [39, 9, 
16]. Each user picks a job from our suite in Table 1, 
although with different input datasets. After testing with 
different mean job inter-arrival times, we set the mean to 
be 40 seconds to utilize the cluster maximally for the 
base case (Delay Scheduler). We use the same job arrival 
rates for all schedulers. 

Because we are interested only in the steady-state 
period of the cluster under full load, we ignore the load 
ramp-up and ramp-down periods. We run each experi-
ment for a steady-state duration of 4 hours.

5  Experimental Results
We first show Shuffle’s importance (Section 5.1) and 

then compare ShuffleWatcher against three baselines, 
namely Fair Scheduler, Delay Scheduler, and DRF 
Scheduler (Section 5.2). We then isolate the impact of 
NASS, SARP and SAMP (Section 5.3) Finally, we show 
the impact of varying the number of jobs per user 
(Section 5.4) and the job mix (Section 5.5) on Shuffle-
Watcher’s improvements. 

5.1 Importance of the Shuffle
Table 3 shows the actual volumes of the total Shuffle 

(within-rack and cross-rack), cross-rack Shuffle and 
remote Map traffic for Shuffle-heavy, Shuffle-medium 
and Shuffle-light jobs under Fair Scheduler. We show 
cross-rack traffic as a proxy for the bisection bandwidth 
demand. From the first two columns, we see that most of 
the Shuffle (~ 90%) is across racks. From the last three 
columns, we see that the cross-rack Shuffle volume of 
the Shuffle-heavy jobs has a significant contribution 
(>75%) of the total cross-rack traffic, and the contribu-

Table 3: Traffic Volume (GB) under Fair Scheduler

Job Type Total 
Shuffle

Cross-
Rack 

Shuffle

Remote 
Map 

Traffic

Total 
Cross-Rack 

Traffic

Shuffle-heavy 1261 1108 187 1295

Shuffle-medium 70 63 38 101

Shuffle-light 13 11 48 59
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tion of the remote Map traffic is less than 20% of the 
total cross-rack traffic. These numbers confirm the Shuf-
fle’s dominance and justify our focus on the Shuffle. 

5.2 Performance
Figure 8 shows ShuffleWatcher operating under two 

fairness policies — Fair Scheduler (SW-fair) and DRF 
Scheduler (SW-DRF). To ensure a fair comparison with 
Delay Scheduler (Delay) which relaxes fairness con-
straints, we also show ShuffleWatcher configured with 
similarly relaxed constraints (SW-relaxed). We use 
relaxed fairness interval of five seconds, consistent with 
[39]. In the three graphs in Figure 8(a-c) with two sub-
graphs per graph, the Y-axes represent throughput, turn-
around time and cross-rack traffic, respectively. The first 
sub-graph shows Fair, SW-fair, Delay, and SW-relaxed 
which use Fair Scheduler’s fairness policy and therefore 
are normalized to Fair. The second sub-graph shows 
DRF and SW-DRF which use the DRF policy and there-
fore are normalized to DRF. 

ShuffleWatcher (SW-fair) achieves significant 
improvements over Fair Scheduler, with 39% higher 
throughput (Figure 8(a)), 27% lower turn-around time 
(Figure 8(b)) and 36% lower cross-rack traffic 
(Figure 8(c)). Compared to Delay Scheduler (Delay), 
ShuffleWatcher (SW-relaxed) achieves more improve-
ments. Specifically, SW-relaxed is 46%, 32%, and 48% 
better than Delay in throughput, turn-around time, and 
cross-rack traffic, respectively (computed from the 

graphs). SW-DRF also achieves similar performance 
improvements as SW-fair, showing that our improve-
ments are largely independent of the underlying fairness 
policy. In the rest of the paper, we report results only for 
SW-fair, because results for SW-DRF are similar. 

Figure 9 shows the average intra-job concurrency in 
Fair Scheduler and ShuffleWatcher measured as the frac-
tion of the allocated per-user slots (resources) occupied 
by a job’s Map and Reduce tasks during first, middle and 
last thirds of the job’s work completion. Because typi-
cally Map tasks are numerous and Reduce tasks are 
fewer, Fair Scheduler’s concurrency fraction goes from 
nearly one for Map phase in the first two-thirds of a job’s 
execution (i.e., one job’s Map tasks occupy almost all of 
the user’s slots) to less than half for the Reduce phase in 
the last third of a job’s execution (i.e., one job’s Reduce 
tasks leave vacant slots which are occupied by the user’s 
other jobs). The graph shows that ShuffleWatcher trades 
off intra-job concurrency for Shuffle locality. While the 
lower Map and Reduce concurrencies due to SAMP and 
SARP are obvious, these lower concurrencies also mean 
lower Map-Shuffle concurrency due to NASS. 

Figure 10 shows the measured cross-rack Shuffle 
traffic over time in our testbed for one of our Shuffle-
Watcher runs. Comparing this profile with that for Fair 
Scheduler in Figure 1, we see that the network traffic 
with ShuffleWatcher is relatively balanced. 

To show that ShuffleWatcher does not hurt any job’s 
turn-around time by trading-off intra-job concurrency 

FIGURE 8: Performance comparison
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for throughput, Figure 11 plots the turn-around times of 
individual jobs in Fair Scheduler and ShuffleWatcher. 
The Y-axis shows the turn-around times and the X-axis 
shows the jobs ordered in increasing turn-around times 
under Fair Scheduler (for clarity, jobs 0-90 are shown 
separately in a blow-up). We see that ShuffleWatcher 
improves the turn-around time of every one of our 300 
jobs, irrespective of the job’s size or its Shuffle intensity.
This result confirms that by trading-off intra-job concur-
rency for Shuffle locality in the presence of high conten-
tion in multi-tenancy, ShuffleWatcher improves both 
throughput and turn-around times. 

5.3 Impact of NASS, SARP and SAMP
Figure 12 and Figure 13 isolate the impact of NASS, 

SARP and SAMP by showing a breakdown of Shuffle-
Watcher’s throughput improvements and traffic reduc-
tion. Because SARP cannot work without NASS and 
SAMP cannot work without NASS and SARP, our 
breakdown is additive in the order of NASS, SARP, and 
SAMP. We omit the turn-around times breakdown which 
is similar to the throughput breakdown. In Figure 12 and 
Figure 13, the Y-axes show throughput and cross-rack 
traffic, respectively, for ShuffleWatcher normalized to 
those for Fair Scheduler. We show the breakdown for 
Shuffle-heavy, Shuffle-medium and Shuffle-light jobs 
separately, and all the jobs together, to give better insight 
into ShuffleWatcher’s improvements. 

From Figure 12, we see that the contribution of each 
technique is significant across all the three types of jobs. 
Going from Shuffle-heavy to Shuffle-light, the overall 
improvement and NASS’s contribution increase. With-
out ShuffleWatcher, the Shuffle-light jobs’ short run 
times are greatly degraded by interference from Shuffle-
heavy jobs. ShuffleWatcher, and NASS in particular, 
reduce this interference, resulting in the observed trend. 

The cross-rack traffic breakdown graph in Figure 13 
splits the cross-rack traffic into Shuffle traffic and 
remote Map traffic. From the graph, we see that NASS 
does not reduce the cross-rack traffic (recall that NASS 
only shapes, but does not reduce, the traffic). However, 
SARP, which leverages NASS to improve Reduce-side 
locality, reduces the cross-rack traffic of Shuffle-heavy, 

Shuffle-medium and Shuffle-light jobs by 16%, 13% and 
4%, respectively, with total traffic reduction of 15%. The 
reduction due to SARP in Shuffle-light jobs’ cross-rack 
traffic is insignificant because most of the traffic of these 
jobs is due not to the Shuffle but to remote Map tasks 
(Table 3) which are not impacted by SARP. Similarly, 
SAMP, which leverages NASS and SARP to improve 
Map-side locality, reduces the cross-rack Shuffle traffic 
by 38%, 23% and 4% for the three job types, while 
reducing the total traffic by 36%. From the graph, we see 
that SAMP incurs a small increase in the remote Map 
traffic for Shuffle-heavy jobs (~3%) to localize the Shuf-
fle to fewer racks, but reduces the total cross-rack traffic 
volume. Such small increase shows that SAMP success-
fully exploits data replication to localize the Shuffle 
without incurring significant remote Map traffic over-
head. The graph also shows that the total cross-rack traf-
fic reduction for all the jobs together closely follows that 
for the Shuffle-heavy jobs which contribute a significant 
portion of the traffic (Table 3). 

5.4 Impact of varying jobs per user
Because ShuffleWatcher exploits the choice among a 

given user’s jobs (i.e., per-user fairness) to adapt to the 
network load, ShuffleWatcher may not perform well 
with only one job per user, which is equivalent to per-job 
fairness. To address this concern, Figure 14(a) shows 
ShuffleWatcher’s sensitivity to the number of jobs per 
user. We use the same mean job arrival rate as before, 
but vary the number of jobs per user as 1, 9, 12 (default), 
and 18. We evaluated the case of one job per user in a 
local 16-node cluster and the rest of the cases in EC2 as 
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before (we added the first case later, hence the different 
set up). Therefore, we isolate the one job per user in the 
left sub-graph while the rest are shown in the right. 

The figure shows that even with one job per user 
ShuffleWatcher achieves 16% higher throughput over 
Fair Scheduler by choosing between the job’s Map and 
Reduce tasks based on network loading. This result 
shows that ShuffleWatcher performs well even under 
per-job fairness. From the right sub-graph, we see that 
ShuffleWatcher achieves higher improvements with 
more jobs per user (i.e., under per-user fairness). With 
more jobs per user, ShuffleWatcher has more choices in 
its scheduling decisions and, therefore, achieves better 
network traffic shaping and reduction. 

5.5 Sensitivity to the variation in job mix
We show ShuffleWatcher’s sensitivity to the job mix 

in the workload. Figure 14(b) shows throughput 
improvements over Fair Scheduler for three different 
mixes of Shuffle-light, Shuffle-medium, and Shuffle-
heavy jobs: mix1 with 20%, 20% and 60%, respectively; 
mix2 with 40%, 20%, and 40%, respectively (default); 
and mix3 with 60%, 20% and 20%, respectively.

From the figure, we see that ShuffleWatcher 
improves throughput by 31% and 22% for mix1 and 
mix3, respectively, compared to 39% for mix2. The 
improvements for mix1 and mix3 are significant but 
lower than that for mix2 because of reduced opportunity. 
Compared to mix2, mix1’s larger fraction of Shuffle-
heavy jobs means higher network pressure with fewer 
low-utilization periods; and mix3’s larger fraction of 
Shuffle-light jobs means lower network saturation. Nev-
ertheless, significant improvements over a wide range of 
job mixes demonstrate ShuffleWatcher’s effectiveness. 

5.6 Execution on a dedicated cluster
In addition to 100-node EC2 runs, we also performed 

runs on a dedicated 16 Xeon-nodes cluster to isolate the 
interference from jobs outside ShuffleWatcher’s control. 
We scaled down job arrival rate, job sizes, and number 
of users to match the cluster configuration. We divided 
the cluster into 4 sub-clusters of 4 nodes each and lim-
ited the per-node bisection bandwidth to be the same as 
in the EC2 cluster (50Mbps). Our results exceeded the 

performance achieved in the EC2 cluster. Shuffle-
Watcher achieved 46% higher throughput, 32% lower 
turn-around time and 48% lower cross-rack traffic over 
Fair Scheduler. Compared to Delay Scheduler, Shuffle-
Watcher was 54%, 38%, and 56% better in throughput, 
turn-around time, and cross-rack traffic, respectively.

6  Related work
Several previous efforts have targeted improving 

MapReduce performance, including better straggler 
management [7], improved computation-communication 
overlap [3,11,36], improved aggregation of intermediate 
data [43], optimizations for heterogeneous clusters 
[2,41], and runtime optimizations for iterative MapRe-
ductions [8,14,40]. However, these proposals target sin-
gle-tenancy whereas ShuffleWatcher exploits 
opportunities that are specific to multi-tenancy. 

In the domain of multi-tenancy, Hadoop [21] offers a 
FIFO scheduler to run jobs in a sequential manner. 
Capacity Scheduler [30], Fair Scheduler [31] and Domi-
nant Resource Fairness [16] propose different fairness 
models and schedulers for resource allocation among 
users. In contrast to their target of achieving fairness, our 
goal is to improve performance within the given fairness 
constraints. Delay Scheduling [39] and Quincy [25] tar-
get reducing network traffic by optimizing Map-input 
locality, but not the Shuffle which is by far the most 
dominant source of traffic in MapReduce. Shuffle-
Watcher targets the Shuffle by trading-off intra-job con-
currency for Shuffle locality to perform better than these 
previous techniques. Mesos [23] and Yarn [38] facilitate 
resource provisioning among multiple frameworks that 
share a cluster (e.g., MPI and MapReduce). These sys-
tems decouple resource allocation from job scheduling 
and can benefit from ShuffleWatcher’s scheduling. Pur-
lieus [29] and CAM [26] achieve locality via synergistic 
placement of virtual machines and input data. However, 
such static techniques cannot address dynamic variations 
in the Shuffle traffic. 

In the domain of data center networks, researchers 
have proposed network architectures to improve cluster 
bisection bandwidth (e.g.,[1,4,15,17,18,19,20,28,33]). 
Many of these architectures require specialized hardware 
and/or communication protocols, and thereby incur addi-
tional cost especially because bisection bandwidth is 
inherently hard to scale up. Finally, a few recent papers 
propose better management of network traffic [10,12,32] 
without changing the network load, which is often high 
enough to limit their effectiveness, whereas Shuffle-
Watcher actively shapes and reduces the network load.

7  Conclusion
We proposed ShuffleWatcher, a Shuffle-aware, multi-

tenant scheduler, which counter-intuitively trades-off 
intra-job concurrency for Shuffle locality. Shuffle-

FIGURE 14: Sensitivity to (a) number of jobs per 
user and (b) job mix
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Watcher employs three mechanisms: Network-Aware 
Shuffle Scheduling (NASS), Shuffle-Aware Reduce 
Placement (SARP), and Shuffle-Aware Map Placement 
(SAMP) which exploit this trade-off and improve perfor-
mance by shaping and reducing the Shuffle traffic while 
working within the specified fairness constraints.

On a 100-node Amazon EC2 cluster running Hadoop, 
ShuffleWatcher improves cluster throughput by 39-46% 
and job turn-around time by 27-32% over three state-of-
the-art schedulers. Despite trading-off intra-job concur-
rency for Shuffle locality, ShuffleWatcher does not sacri-
fice turn-around times to gain throughput; on the 
contrary, by improving Shuffle locality in the presence 
of high contention in multi-tenancy, ShuffleWatcher 
improves turn-around times, not only on average but 
also of every one of 300 jobs in our experiments. Shuf-
fleWatcher improves both cluster throughput and job 
latency and, therefore, will be valuable in emerging 
multi-tenant environments.
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