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Abstract
Performance problem diagnosis is a critical part of net-

work operations in ISPs. Service providers typically

deploy monitoring nodes at several vantage points in

their network, to record end-to-end measurements of net-

work performance. Network operators use these mea-

surements offline; for example, to troubleshoot customer

complaints. In this work, we leverage such monitoring

infrastructure deployments in ISPs to build a system for

near real time performance problem detection and root

cause diagnosis. Our system works with wide area inter-

domain monitoring, unlike approaches that require data

sources from network devices (SNMP, Netflow, router

logs, table dumps, etc.). Operators can input operational

and domain knowledge of performance problems to the

system to add diagnosis functionality. We have deployed

the system on existing monitoring infrastructure in the

US, diagnosing over 300 inter-domain paths. We study

the extent and nature of performance problems that man-

ifest in edge and core networks on the Internet.

1 Introduction

End-to-end diagnosis of network performance is a sig-

nificant part of network operations of Internet service

providers. Timely diagnosis information is integral not

only in the troubleshooting of performance problems, but

also in maintaining SLAs (for example, SLAs of enter-

prise network and cloud provider customers). Knowl-

edge of the nature of performance pathologies can also

be used to provision network resources.

Performance diagnosis, however, is a challenging

problem in wide area ISPs, where end-to-end (e2e) net-

work paths traverse multiple autonomous systems with

diverse link and network technologies and configura-

tions. In such networks, operators may not have: (i) per-

formance metrics from all devices comprising e2e paths,

and (ii) labeled training data of performance problems.

In this work, we explore a new system for troubleshoot-

ing based on domain knowledge, relying on e2e mea-

surements and not requiring training data.

We leverage the monitoring infrastructure that ISPs

deploy to record network health – consisting of several

commodity hardware monitors. These monitors run low-

overhead network measurement tools similar to ping, to

record e2e delays, losses and reordering of monitored

paths. Operators place monitors at vantage points in the

network to maximize network coverage. An example of

such deployments common in wide area academic and

research networks is the perfSONAR software [6]; there
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Figure 1: A deployment of Pythia.

are currently over 1,000 perfSONAR monitors spread

across 25 countries [1]. Monitors running perfSONAR

usually run the One-Way Ping (OWAMP) measurement

tool, which probes over UDP every 100ms and records

send/receive timestamps and sequence numbers.

Pythia works with e2e measurement streams recorded

at monitors to do two tasks. First, it detects whether there

is a performance problem on a monitored path at a given

time. Second, it diagnoses the root cause(s) of detected

performance problems. Pythia also localizes problems to

network interfaces (using traceroutes recorded by moni-

tors) [25]. In this paper, we focus on near-real time de-

tection and diagnosis of short-lived and sporadic perfor-

mance problems. Sporadic problems may not always be

noticed by network operators, but can result in long-term

failures and network downtime (e.g., gradual failure of

an optical line card [1]).

A typical deployment of Pythia includes lightweight

agent processes that run on monitors, and centralized

database and web services (see Figure 1). Deployment

can be done incrementally in ISP networks since de-

ployment only involves adding the agent to new moni-

tors. Pythia allows the operator to input diagnosis defini-

tions using an expressive specification language as func-

tions of symptoms in the measurements. This is useful

since operators understand performance problems (and

new ones that arise after network upgrades). Symptoms

could include, for example, statistical changes in the de-

lay timeseries, packet losses and/or packet reordering.

Pythia generates a diagnosis forest from the pathology

specifications in order to reduce the number of symptoms

that are tested on a measurement timeseries. The diag-

nosis forest reduces the agent’s computation overhead at

the monitor; and becomes important as the number of

specifications grows with time or in large monitoring de-

ployments. In practice, at a perfSONAR monitor prob-

ing a nominal set of 10 paths, each at 10Hz (default for

1
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OWAMP), the Pythia agent receives a measurement ev-

ery 10ms; we design a per-measurement agent run time

of less than 100us. We describe common pathology spec-

ifications in Pythia that we wrote based on operator in-

put: broadly related to congestion and buffering, loss na-

ture, routing and reordering.

We make the following contributions in this paper. We

design an efficient and scalable system and algorithms

for real time detection and diagnosis (§2,4,5,6). We de-

ploy Pythia in production wide area backbone networks

to diagnose several pathologies. We use Pythia to do a

first large-scale study of performance problems in edge

and backbone networks (§9).

2 System and Monitoring Model

Pythia is a distributed system that works on top of exist-

ing monitoring infrastructure in ISPs. We design Pythia

to scale to large monitoring deployments (potentially

hundreds of monitors), without affecting the accuracy

and timing of measurements taken at the monitors; and

at the same time, with low network communication over-

head. Pythia consists of a agent processes that run on

monitors, a central database and a web server that ren-

ders real time diagnosis summaries (see Figure 1).

The agent is a lightweight process that performs two

tasks. First, when the agent bootstraps, it parses the

pathology specifications and generates efficient diagno-

sis code. Second, at runtime, agent reads measurements

recorded at a monitor to detect and diagnose performance

problems in near real time. It writes diagnosis output to

the database. In order to minimize diagnosis-related traf-

fic at agents, the agent runs diagnosis computation on the

node that records the measurements; the agent computes

diagnosis that requires information from other monitors

using the database1. We design detection and diagnosis

algorithms for the agent in Sections 4 and 5.

We consider a simple but general model of ISP moni-

toring. Suppose that N monitors are deployed by the ISP.

Measurement tools in these monitors send active probes

to other monitors, potentially over N × (N −1) end-to-

end paths. For each monitored path A → B, monitor A

sends probes at a reasonably high frequency2 to monitor

B, and B records measurements of the probes; we do not

require a specific probe sampling process. For each mea-

surement probe that monitor B receives, a measurement

tuple of sender and receiver timestamps, and a (sender)

sequence number is recorded by B. The sequence num-

ber is incremented by one at the sender for each probe in

the flow. We require loose clock synchronization (error

margin of seconds) between the sender and receiver to

1An alternative design is to ship measurements to a centralized com-

pute cluster; this may not be feasible in ISPs due to network policies.
2The probing frequency for a path is expected to be high enough

to observe short-lived performance problems, but at the same time, the

average probing traffic is expected to be low-overhead.

Listing 1 Pathology specification grammar.

1. ’SYMPTOM’ symptom

2. ’PATHOLOGY’ pathology ’DEF’ ( symptom |

’NOT’ symptom )

3. symptom → symptom 1 ’AND’ symptom 2

4. symptom → symptom 1 ’OR’ symptom 2

5. symptom → ( symptom )

6. ’PROCEDURE’ symptom func

correlate pathologies between monitors. Monitor Mi col-

lects information about all probes sent to it; a lost packet

is either “marked” by Mi as lost after a pre-defined time-

out interval, or implicitly marked by a missing sequence

number at Mi for that flow. We expect that a suitable in-

terface exists on each monitor so that Pythia’s agent can

read measurements; the interface could be an API, a local

cache, or simply files written to the disk.

As an example, the perfSONAR monitoring soft-

ware follows this model. It runs the OWAMP tool; an

OWAMP endpoint A sends 40B UDP packets at 10Hz

to endpoint B, and B records timestamps and sequence

numbers in a file. Reading these, the Pythia agent at B

computes one-way delay, loss and reordering for A → B.

3 Pathology Specification

One of the design goals of Pythia is to allow the operator

to add performance pathology definitions to the system

based on, for example, domain knowledge of the network

or the network performance. To do this, we would need

a simple model for a pathology; the model would enable

us to design a pathology specification language.

We model a performance pathology as a unique ob-

servation on a set of symptoms. Given a measurement

timeseries E , a symptom is a boolean-valued test T (E ) :

E →{0,1} such that T returns true if the symptom ex-

ists in the timeseries. A pathology is a logical expression

on one or more symptoms. Pathologies differ either in

the set of symptoms on which they are defined, or on the

logical expression. Examples of symptoms include “in-

terquartile of delays exceeds 100ms”, “loss probability

exceeds 0.5” and “non-zero reordering metric”.

The pathology specification language is based on the

pathology model. A pathology can be specified using

the language as conjunction or disjunction operations on

symptoms. The language also allows negations of symp-

toms. Listing 1 shows the pathology specification lan-

guage grammar. An example of a pathology specification

for a form of congestion is the following:

PATHOLOGY CongestionOverload DEF delay-exist

AND high-util AND NOT bursty-delays AND NOT

high-delayRange AND NOT large-triangle AND NOT

unipoint-peaks AND NOT delay-levelshift

The statement specifies a rule for the pathology

CongestionOverload using seven symptoms.

2
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The language keyword PROCEDURE specifies subrou-

tine names for symptom tests. We define 11 pathologies

in Pythia by default along with their symptom tests (§6).

In order to add a new pathology definition, the user adds

a pathology in the specification language and writes sub-

routines for boolean-valued tests that the pathology uses

(or the user could reuse existing symptom tests). The

parser replaces specifications of each pathology P con-

taining disjunctions with multiple specifications of P that

only contain conjunctions. Expressions of conjunctions

allow us to represent specifications as a decision tree.

The diagnosis module generates a diagnosis forest, a

compact intermediate representation of the specifications

(§5), and generates diagnosis code from it.

4 Detecting Performance Problems

The problem of detection is the first step towards perfor-

mance diagnosis. The agent process at a monitor reads

path measurements of packet delays, loss and reordering

to test if there is a performance problem at a given point

of time in a monitored path. A challenge in detection is

to define a generic notion of a performance problem –

which is not based on the symptoms or pathologies. We

define detection using a performance baseline.

We define detection as testing for significant devia-

tions from baseline end-to-end performance. Suppose

that we have a timeseries of measurements from a sender

S to a receiver R (our methods are robust to measure-

ment noise in timestamping). Under non-pathological

(normal) conditions, three invariants hold true for a time-

series of end-to-end measurements of a path:

1. The end-to-end delays are close to (with some noise

margin) the sum of propagation, transmission and

processing delays along the path,

2. No (or few) packets are lost, and

3. No packets are reordered (as received at R).

These invariants define baseline conditions, and a vio-

lation of one or more of these conditions is a deviation

from the baseline. We implement three types of problem

detection: delay, loss and reordering detection, depend-

ing on the baseline invariant that is violated.

The agent divides the measurement timeseries for a

given path into non-overlapping back-to-back windows

of 5s duration, and marks the windows as either “base-

line”, or as “problem” (i.e., violating one or more invari-

ants). The agent then merges problem windows close to

each other into a single problem window.

Delay detection: Delay detection looks for significant

deviations from baseline end-to-end delays. We use the

delay invariant condition (1) above, which can be viewed

as a condition on modality of the distribution of delay

measurements. Under normal conditions, the distribu-

tion of delay sample in the window will be unimodal with

most of the density concentrated around the delay base-

line dmin of the path (sum of propagation, transmission

and processing delays). If there is a deviation from the

delay baseline, the delay distribution will have additional

modes: a low density mode around dmin, and one or more

modes higher than dmin. The lowest mode in the delay

sample’s pdf is used as an estimate of the baseline delay

for the window.

We use a nonparametric kernel smoothing density es-

timate [21] to find modes; with a Gaussian kernel (a con-

tinuous function) and the Silverman’s rule of thumb for

bandwidth3 [21]. A continuous pdf enables us to locate

modes (local maxima), the start and end points of a mode

(local minima), and density inside a mode with a single

pass on the pdf. The module also keeps track of the pre-

vious window’s baseline for diagnosis of problems with

duration longer than a window. To discard self-queueing

effects in probing, the agent pre-processes the timeseries

to check for probes sent less than 100µs apart.

We note that the delay detection algorithm has limita-

tions; in particular, it may sometimes detect a long-term

problem (minutes or longer) as multiple short-term prob-

lems. For example, a pathology such as a queue backlog

(congestion) that persists for minutes may cause a level

shift in delays – which could “shift” the baseline. The

agent merges “problem” windows that are close to each

other, and the operator may tune the window size to over-

come this limitation. Our focus in this work, however, is

on short-term performance problems.

Loss detection: Loss detection looks for significant de-

viations from the baseline loss invariant condition (2).

Under normal conditions, the number of lost packets

measured by monitors depends on several factors, in-

cluding the cross traffic along the path, link capacities

and the probing process. Since ISPs deploy low probing

rates (e.g., 10Hz), Pythia looks at every lost probe. The

loss detection algorithm marks a window as “problem”

if the window contains at least one lost packet. Similar

to delay detection, the agent merges “problem” windows

close to each other into a single “problem” window.

Reordering detection: Reordering detection looks for

significant deviations from baseline reordering invariant

condition (3). The reordering module computes a re-

ordering metric R for each 5s window of sequence num-

bers in received order, {n1 . . .nk}, based on the RD met-

ric definition in RFC 5236 [9]. For each received packet

i, it computes an expected sequence number nexp,i; nexp

is initialized to the lowest recorded sequence number in

the timeseries, and is incremented with every received

packet. If a sequence number i is lost, nexp skips the

value i (assume that the window starts with i = 1). A re-

order sum is computed as: ηsum =∑
k
i=1 | ni−nexp,i |. The

reordering module estimates the number of reordered

3In case the bandwidth estimate is large, the delay distribution under

the case of baseline deviation may be unimodal, but with a large range

of delays under the mode.

3
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packets in the window based on mismatch in the two se-

quence numbers: η = ∑
k
i=1 I

[
ni �= nexp,i

]
. The reorder-

ing metric R for the window is defined as the ratio of the

above (RFC 5236 [9]): R = (ηsum/η) I [η �= 0].
Note that R is zero if there was no reordering, and

R increases with the amount of reordering on the path

(i.e., both number of packets and how “far” they are re-

ordered). Our goal is not to estimate the number of re-

ordered packets (which may not have a unique solution),

but to quantify the extent of reordering for a window of

packets (and use R in diagnosis). The detection algorithm

marks a window as “problem” if R �= 0 for that window.

The algorithm appends R to a reordering timeseries.

System sensitivity: Pythia provides a simple knob to the

user to configure sensitivity of detection towards perfor-

mance problems without asking the user for thresholds.

This functionality reduces the number of problems that

the system reports to the user, while ignoring relatively

insignificant problems. Sensitivity is defined on a scale

of one to 10, based on the fraction of delays higher than

the baseline or the loss rate in the problem time window.

5 Diagnosis of Detected Problems

Diagnosis refers to the problem of finding the root

cause(s) of a detected performance problem. The agent

triggers diagnosis whenever it detects a (delay, loss or

reordering) problem in the measurements of a path. The

agent performs diagnosis by matching a problem time-

series with the performance pathology specifications,

which network operators can extend using operational or

domain knowledge. When the agent bootstraps, it gen-

erates diagnosis code from the specifications by building

an efficient intermediate representation. We focus on the

intermediate representation and code in this section.

A key aspect of diagnosis is to design algorithms

that have low resource (CPU and memory) consumption,

since the agent should not affect the measurement accu-

racy or probe timing at the monitor on which it runs. This

becomes particularly important when tests for symptoms

are resource intensive, or as the list of pathologies to test

for gets large.

The diagnosis forest: A brute-force approach to diag-

nose a performance problem is to test the problem time-

series against all symptoms, and subsequently evaluate

each pathology specification to find matching patholo-

gies. This can be computationally expensive, since

symptom tests could be expensive. Our goal is to re-

duce the number of symptoms the agent tests for when

diagnosing a problem. An efficient way to do this is to

build a decision tree from the pathology specifications.

We evaluate the overhead of the algorithms in Section 8.

In order to generate diagnosis code, the agent gener-

ates an intermediate representation of the specifications:

a diagnosis forest. A diagnosis forest is a forest of de-

cision trees (or diagnosis trees). A diagnosis tree is an

3-ary tree with two types of nodes: the leaf nodes are

pathologies, and rest of the nodes are symptoms. The

tree edges are labeled either true, false or unused,

depending on whether that symptom is required to be

true or false, or if the symptom is not used. Hence, a

path from the root node to a leaf node L in a diagnosis

tree corresponds to a logical conjunction of symptoms

for pathology L (specifically, symptoms that have non-

unused edge labels).

Why not existing methods? There are several variants

of decision tree construction methods such as the C4.5

and ID3. These algorithms iteratively choose an attribute

(symptom) based on the criteria of one that best classifies

the instances (pathologies). They generate small trees by

pruning and ignoring attributes that are not “significant”.

We found that existing construction methods are not suit-

able for the pathology specifications input for three rea-

sons. First, pathologies may use only a small subset

of symptoms (hence, we cannot treat unused as an at-

tribute value in existing tree construction algorithms). In

addition, not all outcomes of the symptom may be used

in diagnosis; for example, Pythia does not include any

pathologies which require the “loss exists” symptom to

be false. Second, a pathology is required to be diag-

nosed using all symptoms in its specification (existing

decision tree methods consider the smallest set of symp-

toms). Third, pathologies may exist simultaneously in an

end-to-end path, and hence can be diagnosed in parallel

(unlike a decision tree). Two pathologies can be diag-

nosed in parallel if both of their specifications match the

problem timeseries.

Forest construction: The diagnosis forest is constructed

in two steps. In the first step, the agent divides the set

of pathologies P into disjoint subsets {P1 . . .Pk}, such

that: (1) pathologies in each Pi use overlapping symp-

toms, and (2) sets Pi and Pj (i �= j) do not use common

symptoms. Since no two members of the set {P1 . . .Pk}

use overlapping symptoms, we can run tests for Pi and Pj

independently, and potentially have multiple diagnoses

for a problem.

In the second step, the agent constructs a decision tree

for diagnosing members in each pathology subset Pi. The

initial tree is constructed such that the root node is the

symptom that is most frequently used by pathologies, and

such that the frequency of symptom usage drops as we

go towards the leaves (Fig. 2). At the end of this step,

the trees will contain all symptoms that are required to

diagnose each pathology. We may, however, have some

symptoms with unused outgoing edge labels.

Finally, the tree construction algorithm prunes as

many unused symptoms as possible in the decision

tree(s). This consists of two rounds of pruning on each

tree (Fig. 2; the leaves are pathologies, and shades show

symptoms). First, we ensure that each symptom node has

4
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Unused
True
False

Figure 2: Decision tree construction: pruning and merging.

unique outgoing edge labels by merging edges with same

labels. Second, we delete all edges with labels unused

where feasible4.

The default diagnosis rules configured in Pythia result

in a forest of two trees – the first for diagnosis of de-

lay and loss-based problems, and the second for diagno-

sis of reordering-based problems. The agent generates

diagnosis code by traversing the decision forest. Each

symptom node in a tree corresponds to a procedure call

implemented by the agent for that symptom; and each

leaf (pathology) node indicates a diagnosis output.

Unknowns: In practice none of the pathology defini-

tions may match a detected problem timeseries. In such

cases, the problem is tagged by the diagnosis logic as

“unknown”. For each “unknown” problem, the agent

checks whether the problem originated from a monitor,

by looking at diagnoses across monitored paths in the

system (see Section 6.6). In our data, we have observed

that less than 10% of problems are tagged as “unknown”.

6 Common Diagnosis Specifications

We configure Pythia with a set of pathology specifica-

tions based on our domain knowledge of performance

problems, and based on inputs from network operators.

We expect that the network operator would add more

based on her domain and operational knowledge of the

network. Our goal behind the default choice of patholo-

gies in Pythia is to provide the network operator with

useful diagnosis information of the monitored networks.

In this section, we cover five classes of pathology

specifications, and the statistical tests for matching the

associated symptoms. We design boolean tests for symp-

toms by extracting salient and noise-resilient features of

pathology models. The symptoms are defined over the

measured timeseries for an end-to-end path - which in-

cludes delay, loss and reordering measurements. Table

1 lists the symptoms we test for. Some of the symp-

toms use domain knowledge-based thresholds, and can

be fine-tuned by the operator.

Our network path model is as follows. An end-to-end

path consists of a sequence of store-and-forward hops

having a limited buffer size. We do not assume that

links are work conserving, FIFO, or of a constant capac-

4More specifically, for each edge A → B, we delete A and move B

upwards if (1) A → B has label unused (i.e., symptom A is unused in

diagnosis of the sub-tree of A), and (2) B does not have any siblings.

ity (for example, 802.11 wireless links violate these as-

sumptions). Monitoring hosts may induce delays, losses

and “noise” in measurements.

6.1 End-host Pathologies

Our experience deploying Pythia on production moni-

tors showed occurrence of short-term end-host patholo-

gies – significant delays induced by effects inherent to

commodity operating systems and userspace tools. Such

pathologies occur at the monitoring nodes on which a

Pythia agent runs. End-host pathologies may also refer

to significant delays induced due to measurement appli-

cation behavior (e.g., due to delays in timestamping or

delays in sending probe packets). End-host effects may

not be useful to the network operator; however, it is im-

portant for Pythia to identify and discard them, and not

report them as pathological network delays5.

End-host effects: A common artifact of commodity

OSes is context switches. A busy OS environment may

lead to significant packet wait delays at the sender and/or

the receiver-side measurement end points. For example,

these could be delays: (i) after a userspace send() call

till packet transmission, or (ii) after the network deliv-

ers a packet to the OS until userspace recv() call (and

corresponding timestamping).6

We can model an end-host induced delay symptom

as follows. We model the buffered path from a mea-

surement application to the NIC buffer (and the reverse

path) as a single abstract buffer. Under normal condi-

tions, this buffer services packets as they arrive from the

measurement tool (or from the network). Under patho-

logical conditions (e.g., when the OS is busy schedul-

ing other processes or not processing I/O), the buffer is

a non-work conserving server with “vacation periods”.

If a vacation period of W is induced while packet i is

being served, successive packet arrivals will see steadily

decreasing wait delays (Ti is the send timestamp of i):

di+k = max{W − [Ti+k −Ti] ,0} (1)

at the end-host (assuming the other packets do not see

new vacation periods, and no other sources of delay vari-

ation). This behavior manifests in end-to-end delay mea-

surement timeseries as a “triangular peak” symptom of

height W , and the duration of this peak is also W .

It can be argued that a vacation period could be a burst

of cross traffic that arrived in the inter-probe duration δ .

We choose our threshold for W to avoid matching such

cases. Suppose that a burst arrived at a rate λ at a link of

5An alternative approach is to tackle end-host pathologies by rewrit-

ing the monitoring tool to reduce OS-level noise; e.g., by running in

kernel space. It is, however, not feasible to do this in production.
6Note that context switches may also occur in network devices due

to wait periods when the OS resources are busy; in practice, the likeli-

hood is much higher in end-hosts, since they may be running multiple

resource intensive processes (other than measurement tools).

5
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Table 1: Default symptoms and their boolean-valued tests. Tests take input delay sample D = {d1 . . .dn}, and the estimated

baseline delay is b (both in ms). Tests work on a reordering metric timeseries R = {R1 . . .Rl}. I (x) is the 0-1 indicator function,

and m(. . .) is the sample median. The default thresholds are tuned using empirical observations on perfSONAR data.

Symptom Sample Boolean-valued Test

High delay utilization More than 50% are large delays: ∑
n
i=1I (di > b+1) > 0.5n

Bursty delays Largest delay hill duration less than 70% of delay hill duration

Extreme delay range Very small: D0.95 −D0.05 < 1ms; very large: D0.95 −D0.05 > 500ms

Delay-loss correlation For a lost packet i: d j > b+1ms, for majority of j ∈ [i−5, i+5]−{i}

Small loss duration All packets between i and j > i+1 are lost, and Tj −Ti > 1s

Delay level shift (LS) Estimate LS: first/last di < b±10ms; 10% points before/after LS

Large triangle Sudden rises in delay over 300ms: ∑
n
i=1I (di+1 −di > 300)< 0.1n

Single-point peaks Median of neighbors of i:di > b+1ms ≈ median of d j:d j ≤ b+1

Reordering shift One-proportion test for: ∑
k
i=l/2+1

I
(

Ri > m(R1 . . .Rl/2)
)
= 0.5(l/2)

capacity C. If the delay increase was due to cross traffic,

we have the following condition for the queue backlog:(
λ−C

C

)
δ ≥ W ; in other words: λ ≥

(
1+ W

δ

)
C. In our

monitoring infrastructure, δ = 100ms; so we can define

a threshold for W by choosing an upper bound for the

input-output ratio λ/C. We use a ratio of 4, giving us

W ≥ 300ms in case of an end-host pathology.

Depending on the magnitude of the vacation period W ,

we can have two end-host pathology symptoms. First, if

W is of the order of 100s of milliseconds (e.g., when the

receiver application does not process a probe in time), we

will observe a “large triangle” delay signature (see Ta-

ble 1), described by Equation 17. Second, if W is much

smaller – of the order of 10s of milliseconds (typical du-

ration of context switches in a busy commodity OS) –

and if the inter-probe gap is close to W , the delay symp-

tom is a set of “single-point peaks”: delay spikes that are

made of a single (or few) point(s) higher than the base-

line delay. The number of spikes is a function of the OS

resource utilization during measurement.

6.2 Congestion and Buffers

Network congestion: We define congestion as a signif-

icant cross traffic backlog in one or more queues in the

network for an extended period of time (few seconds or

longer). Pythia identifies two forms of congestion based

on the backlogged link’s queueing dynamics. First, con-

gestion overload is a case of a significant and persistent

queue backlog in one or more links along the path. Over-

load may be due to a single traffic source or an aggregate

of sources with a persistent arrival rate larger than the

serving link’s capacity. The congestion overload speci-

fication requires a high delay utilization above the base-

line, and a traffic aggregate that is not bursty.

7We assume that the inter-probe gap is much lower than such W .

Second, bursty congestion is a case of a significant

backlog in one or more network queues, but where the

traffic aggregate is bursty (i.e., high variability in the

backlog). We use the term “bursty” to refer to a spe-

cific backlog condition that is not persistent. The bursty

congestion specification requires a high delay utilization,

and “bursty” delays, i.e., the timeseries shows multiple

delay hills each of reasonable duration. Both congestion

specifications require that the timeseries does not show

end-host pathology symptoms.

Buffering: A buffer misconfiguration is either an

over-provisioned buffer or an under-provisioned buffer.

Over-buffering has the potential to induce large delays

for other traffic flows, while under-buffering may induce

losses (and thus degrade TCP throughput). Pythia di-

agnoses a path as having a buffer that is either over- or

under-provisioned based on two symptoms. First, the

delay range during the problem is either too large or

too small. Second, an under-provisioned buffer diag-

nosis requires that there is delay-correlated packet loss

during the problem (see Section 6.3). We do not make

any assumption about the buffer management on the path

(RED, DropTail, etc.). We choose thresholds for large

and small delay ranges as values that fall outside the typi-

cal queueing delays on the Internet (the operator can tune

the values based on knowledge of network paths).

6.3 Loss Events

Random / delay-correlated loss: Packet losses can

severely impact TCP and application performance. It is

useful for the operator to know if the losses that flows

see on a path are correlated with delays - in other words,

delay samples in the neighborhood of the loss are larger

than baseline delay. Examples of delay-correlated losses

include losses caused by buffering in a network device,

such as a full DropTail buffer, or a RED buffer over the

6
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minimum backlog threshold.

On the other hand, random losses are probe losses

which do not show an increase in neighborhood delays.

Random losses may be indicative of a potential physi-

cal layer problem, such as line card failure, bad fiber or

connector, or a duplex mismatch (we defined these based

on operator feedback [2]). In theory, a random loss is

the conditional event: P[loss | delay increase in neigh-

borhood] = P[loss], where the neighborhood is a short

window of delay samples. In practice, we may not have

sufficient losses during the problem to estimate the prob-

abilities; hence we look at the delay neighborhood8. Our

loss-based pathologies may not have one-to-one corre-

spondence with a root cause; however, operators have

found them useful in troubleshooting [2].

Short outage: Network operators are well aware of

long outages. They may overlook infrequent short out-

ages, possibly caused by an impending hardware fail-

ure. A short outage can disrupt existing communications.

Pythia diagnoses loss bursts that have a small loss dura-

tion (one to few seconds) as short outages.

6.4 Route Changes

The symptom of a route change is a level shift in the de-

lay timeseries (and possibly, packet loss during the level

shift). Routing events could be either long-term route

changes, or route flaps. Pythia currently diagnoses long-

term route changes. It does so by finding significant

changes in the baseline and in the propagation delay.

Note that delay level shifts can also occur due to clock

synchronization at the monitors; Pythia currently reports

delay level shifts as “either route change or clock syn-

chronization”. We do not support identification of clock

synchronization events9.

6.5 Reordering Problems

Reordering may occur either due to a network configu-

ration such as per-packet multi-path routing or a routing

change; or it could be internal to a network device (e.g.,

switching fabric design in high-speed devices) [4]. Re-

ordering may not be a pathology, but it can significantly

degrade TCP performance. If it exists, reordering will

be either persistent and stationary (e.g., due to a switch-

ing fabric or multi-path routing), or non-stationary (e.g.,

routing changes).

Pythia diagnoses the above two types of reordering.

The detection logic computes a reordering metric R for

each time window of measurements (Section 4). R is

zero if there is no reordering, and it increases with the

amount of reordering on the path. Pythia diagnoses re-

8For a loss burst, Pythia considers delays before and after the burst.
9Identification of clock sync. events is an expensive operation. It

can be done, for example, at a monitor M by correlating delays from

all timeseries destined to or starting at M; if there is a clock sync, all

timeseries will show a level shift at about the same time.

ordering non-stationarity by looking at the set of 10 most

recent reordering measurements. Pythia uses the “re-

ordering shift test” to diagnose non-stationarity (or sta-

tionarity) in reordering (see Table 1).

6.6 Unknowns

In practice, there may be detected problems that do not

match any of the input pathology specifications. We call

such problems as “Unknown” problems. When an agent

finds that a problem is unknown, it performs an addi-

tional check across the monitored network to diagnose if

the problem is a result of an end-host (monitor) pathol-

ogy. Specifically, the agent checks whether a significant

number of paths ending at/starting from its monitor show

a performance problem at the same time. It does this

by querying the Pythia database. The agent tags all un-

known problems as end-host pathologies if a majority

of paths were diagnosed as having an “Unknown” or an

end-host problem.

7 Live Deployment

Many wide area ISPs consist of geographically dis-

tributed networks connected using inter-domain paths.

Monitoring infrastructure in such ISPs consists of nodes

in the constituent networks. For example, the US De-

partment of Energy’s Energy Sciences Network (ESnet),

a wide area research backbone, connects several stub net-

works, each hosting several perfSONAR monitors.

We deploy Pythia on a wide area perfSONAR mon-

itoring infrastructure that spans seven ESnet monitors

across the US, a Georgia Tech monitor and monitors in

15 K-12 school district networks in GA, USA10. The cur-

rent deployment uses the default corpus of 11 perfor-

mance pathology definitions, some of which were for-

mulated based on ESnet and Internet2 operational expe-

rience. We are in the process of expanding Pythia to sev-

eral monitors in ESnet, Internet2 and other networks.

Our live deployment showed some interesting patterns

from K-12 networks. We found using Pythia that in

a typical week, about 70% of network-related patholo-

gies are related to congestion, leading to packet losses.

In particular, about 29% of the problems are due to

traffic burstiness. Pythia also found that about 5% of

the problems are packet losses not related to buffering,

which may be due to physical layer-related problems.

Moreover, Pythia’s localization shows that almost 80%

of the network interfaces are affected by one or more

performance problems. Pythia also showed diurnal and

weekday-related congestion patterns. Pythia’s findings

confirm with a prior study on the same K-12 networks in

2010 [18]. We use monitoring data to do a large-scale

study of pathologies in Section 9.

10The infrastructure is a part of the Georgia Measurement and Mon-

itoring (GAMMON) project, which aims to assess the feasibility of

online learning requirements of Georgia Department of Education.

7
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Figure 3: Agent run time vs. input measurement duration: me-

dian, 5th and 95th percentile across 100 sample measurement

files, excluding database commit times.

8 Monitoring data and Validation

In the remainder of the paper, we look at how the differ-

ent performance pathologies that Pythia diagnoses (§6)

manifest in core and edge networks in the Internet. In or-

der to do this, we collect data from production monitor-

ing deployments in two backbone networks and leverage

a popular measurement tool run by home users; we run

the agent on the data. We collect data since we use it for

offline validation and accuracy estimation.

Datasets: We collect data from production wide area

monitoring deployments in backbone networks, and we

build our own monitoring infrastructure to collect data

from edge networks. We use four sources of data:

Backbone: This is data from production perfSONAR

monitoring infrastructure in ESnet (33 monitors, 12

days) and Internet2 (9 monitors, 22 days). This data rep-

resents high-capacity, wide area inter-domain networks.

Residential: We use residential user-generated data from

ShaperProbe [11]. ShaperProbe includes a 10s probing

session in upstream and downstream directions. We con-

sider 58,000 user runs across seven months in 2012.

PlanetLab: We build and deploy a full-mesh monitor-

ing infrastructure similar to perfSONAR, using 70 nodes.

We collect data for 12 hours in March 2011. We monitor

commercial and academic networks.

Our data comes from 40 byte UDP probes, with an

average sampling rate of 10Hz per path. OWAMP (perf-

SONAR) uses a Poisson process, while ShaperProbe and

PlanetLab tools maintain a constant packet rate. All

monitored networks have wide area inter-domain paths.

Agent overhead: We first measure the run time of de-

tection and diagnosis algorithms in the agent. Figure 3

shows the agent run time as a function of input size –

duration of measurements for a path – on a 3GHz Xeon

processor. We use 100 randomly picked measurement

timeseries from ESnet and Internet2. On an average, the

agent takes about 60µs to process a single e2e measure-

ment. Hence, the agent can handle large monitoring de-

ployments (i.e., several measurement paths per monitor).
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Figure 4: Validation of diagnosis logic: classification accu-

racy of different diagnoses. Datasets include academic, re-

search, commercial and residential broadband networks.

Validation: It is hard to validate an inter-domain diag-

nosis method, since it is not feasible to get systematic

“ground truth” diagnoses (labeled data) of performance

problems across the network. This is further complicated

by our focus on (i) short-term problems which are typi-

cally unnoticed by network operators, and (ii) wide area

ISPs, which include problems from multiple networks

and inter-domain links.

In order to overcome paucity of labeled data, we use

manually classified pathology data. We first run Pythia

to find and classify performance problems in the data

into different pathology types. For each of the four data

sources, we choose a uniform random sample of 10 prob-

lems from each pathology type. We select a total of 382

problems for manual classification. Note that we would

not be able to evaluate the false negative detection rate;

it is infeasible to find problems that go undetected given

the size of our data. Our detection methods, however,

are not based on symptoms, and hence do not introduce

systematic biases towards/against certain pathologies.

We manually observe the delay and loss timeseries of

each problem and classify it into one or more patholo-

gies (or as “Unknown”). For each problem, we mark as

many valid (matching) pathologies as we see fit. We con-

sider this as our ground truth. This approach has limita-

tions. First, a high delay range in the timeseries (e.g., due

to few outliers) may visually mask problems that occur

over a smaller delays. Second, if the problem is long-

duration, it may be hard to visualize small timescale be-

havior (e.g., a small burst of packet losses will be visual-

ized as a single loss). Third, if there are unsupported di-

agnoses (e.g., short-term delay level shifts), the matching

pathology definitions would be wrong, while the ground

truth would be correct. Finally, the ground truth gen-

eration does not include “cross-path” checks that Pythia

uses. An example of such checks is for diagnosing end-

host pathologies in “Unknown” problems (§6.6).

To validate, we compare the diagnoses generated by

Pythia for each problem with the manually classified di-

8
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Table 2: Occurrence of non-network problems in different

datasets. Acronyms: “E.H.N.” - “EndHostNoise”, “C.S.” -

“ContextSwitch”, “Unk.” - “Unknown”.

Dataset # Problems E.H.N. C.S. Unk.

ESnet 465,135 52% 43% 3%

Internet2 18,774 1% 3% 13%

PlanetLab 718,459 56% 16% 1%

ShaperProbe 8,790 54% 9% 9%

agnoses. We did not find any false positive detections in

manual inspection. We define “accuracy” as follows11.

We ignore problems that were manually classified as

“Unknown”. We show two measures of diagnosis ac-

curacy. For each problem:

• A diagnosis is correct if at least one of Pythia’s diag-

noses exists in the manually classified diagnoses. The

diagnosis accuracy across all problems is 96%.

• A diagnosis is correct if all of Pythia’s diagnoses exist

in the manually classified diagnoses. The diagnosis

accuracy across all problems is 74%. There were 1.42

diagnoses per problem on average.

Figure 4 shows validation accuracy for each pathology;

we ignore pathologies for which we have less than 35 in-

stances. A diagnosis for a problem is marked as “correct”

if it exists in the ground truth. The “CongestionOver-

load” and “CongestionBursty” diagnoses include short-

term delay level shifts; these are false diagnoses, since

Pythia does not support them, and they comprise 42% of

the total false diagnoses of the two congestion types.

9 Case Studies of Networks

In this section, we use Pythia to study performance prob-

lems in the Internet. We use measurements from pro-

duction monitoring deployments in backbone and edge

networks (see §8 for details of the data).

9.1 Monitor-related problems

Before we look at network pathologies, we study end-

host (monitor) pathologies across different monitoring

infrastructures. Our data comes from a wide variety of

monitor platforms: Linux-based dedicated servers (ES-

net and Internet2), desktop and laptops running differ-

ent OSes at homes (ShaperProbe), and virtual machines

(PlanetLab). Table 2 shows the fraction of detected prob-

lems that are diagnosed as end-host pathologies. We

show frequencies separately for the two forms of end-

host pathologies: “EndHostNoise” (short wait periods)

and “ContextSwitch” (long wait periods).

The table shows an interesting feature that validates

known differences between monitor types. The Internet2

11Our diagnosis is a multiclass multilabel classifier that includes the

“Unknown problem” output. It is not straightforward to define preci-

sion and recall in this case. We define accuracy as fraction of classified

samples that are not unknown and are “correct”.

 0

 10

 20

 30

 40

 50

 60

 70

CongestionBursty

CongestionOverload

DelayCorrelatedLoss

LargeBuffer

RandomLoss

RouteNTPChange

ShortOutage

SmallBuffer

Fr
ac

tio
n 

of
 p

ro
bl

em
s 

(%
)

ESnet
I2

ShaperProbe
PlanetLab

Figure 5: Breakdown of network-based pathologies among the

four datasets (omitting “Unknown” and end-host pathologies).

monitors are dedicated resources for measurement tools,

while the ESnet monitors also run MySQL databases for

indexing measurement streams. Hence, Internet2 data

shows a smaller fraction of end-host-related pathologies

than ESnet, since the OS environment is more likely to be

busy in ESnet monitors. The PlanetLab environment is

also likely to be busy, given that the resources are shared

among virtual machines. ShaperProbe data comes from

a userspace tool running on commodity OSes, and where

the users run other processes such as web browsers.12

The table also shows that the fraction of problems

that Pythia diagnoses as “Unknown“ are typically lower

than 10%. In the rest of this section, we focus on

network-related problems (i.e., excluding end-host and

“Unknown” pathologies).

Implications: Production monitoring infrastructure is

dedicated to measurements, and hence is not expected to

induce large delays in measurements (other than monitor

downtime). While this may be true for long-term moni-

toring (minutes to hours), we find that when the focus is

on short-lived problems, we see a nontrivial proportion

of monitor-induced delays. It hence becomes important

to diagnose and separate such problems.

9.2 Core vs. Edge networks

We look at the composition of network-related patholo-

gies in the different networks in Figure 5. We see that the

high-capacity backbone networks, ESnet and Internet2,

show a high incidence of congestion pathologies (both

overload and bursty congestion). Moreover, there is no

significant difference in the composition of pathologies

between the two (similar) core networks.

The residential edge (ShaperProbe) shows a high in-

cidence of both congestion and loss pathologies. Note

that we do not see a significant fraction of “LargeBuffer”

pathologies in home networks, though the presence of

large buffers in home networks has been shown before

12We note that “ContextSwitch” problems in ShaperProbe may in-

clude problems arising from either end-hosts or 802.11 links inside the

home (Section 6.1). Separating end-host pathologies in ShaperProbe

data allows us to focus on the ISP access link.

9
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Figure 6: Composition of different network-based pathologies

among the four residential ISPs (both up and downstream).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Comcast

RoadRunner

Cox
AT&T

Fr
ac

tio
n 

of
 ru

ns
 d

et
ec

te
d 

as
 p

ro
bl

em
 (%

)

Upstream
Downstream

Figure 7: Residential broadband networks: fraction of runs

detected as pathology in upstream and downstream directions,

for three cable and one DSL provider.

[12]. This is because Pythia can diagnose a large buffer

problem only if cross traffic creates a significant back-

log in the buffer during the 10s probing time. Planet-

Lab data shows a high incidence of loss pathologies, but

not congestion. The pathologies include delay-correlated

and random losses, as well as short outages.

Implications: The results show differences in problems

between backbone and edge networks. Despite the pres-

ence of large buffers, home networks are prone to loss-

based problems, which can significantly degrade perfor-

mance of web sessions. This may be due to 802.11 wire-

less links inside homes. A real time e2e diagnosis system

can help quickly address customer trouble tickets.

9.3 Residential network pathologies

We look at four large residential broadband providers

in our dataset: cable providers Comcast, Road Runner

and Cox; and DSL provider AT&T. The number of net-

work problems in our data depends on the number of runs

ShaperProbe receives from ISP users (problems per link

ranged from about 250 in AT&T to 12,000 in Comcast).

Note that ShaperProbe data has an inherent “bias” – the

tool is more likely to be run by a home user when the

user perceives a performance problem.
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Figure 8: Composition of different network-based pathologies

in Comcast, as a function of link direction.

Figure 7 shows fraction of user runs showing perfor-

mance problem in the upstream and downstream direc-

tions for the four ISPs. We use runs which had recorded

over 50% of expected number of measurement samples

in 10s (at 10Hz). We see a difference in the frequency

of problems in upstream and downstream directions be-

tween cable and DSL providers. A plausible explanation

is that in the case of cable, DOCSIS uplink is a non-FIFO

scheduler, while the downlink is multiplexed with neigh-

borhood homes; DSL uses FIFO statistical multiplexing

in both directions, but the link capacity is relatively more

asymmetric. To cross-check the problem detection num-

bers, we look at the difference between 95th and 5th

percentiles of the delay distribution during the problem.

We find that about 59% upstream and 25% downstream

Comcast runs have a difference exceeding 5ms (the de-

fault delay detection threshold); while for AT&T, the fig-

ures were 45% and 63% respectively.

Figure 6 shows composition of performance patholo-

gies in each of the four ISPs. We see that the DSL

provider AT&T shows a higher incidence of loss patholo-

gies than the cable providers (both delay-correlated and

random loss pathologies).

We next look at whether cable links show different

pathology distributions among problems in the upstream

and downstream directions. Figure 8 shows composition

of pathologies across runs from Comcast. We do not see

a significant difference in the composition of patholo-

gies, even though there are more problem detections in

the cable upstream than downstream.

Implications: We see that within residential ISPs the na-

ture and composition of performance pathologies varies.

Hence, we cannot build a one-size-fits-all system for res-

idential ISPs; the system should allow operators to input

domain knowledge-based pathologies.

10 Discussion and Limitations

In this paper, we presented Pythia, a system for detec-

tion and diagnosis of performance problems in wide area

providers. Prior work has taken two key approaches

10
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to performance diagnosis in ISPs (see §11). The first

approach involves designing and deploying new prob-

ing tools that diagnose specific pathologies. This en-

ables detailed diagnosis, but new tools add probing over-

head. The second approach involves mining network-

wide data, from every network device and other data

such as trouble tickets. This enables detailed diagnosis

as well, but does not work in wide area ISPs, where paths

can be inter-domain.

We explore a new complimentary approach that works

with existing monitoring infrastructure and tools, and

works in the inter-domain case. Pythia uses diagnosis

rules, which are defined as logical expressions over prob-

lem symptoms. Operators can add these rules to the sys-

tem using a specification language. This design enables

ISPs to incrementally deploy diagnosis in production:

not only when adding new monitors to the network, but

also as and when new performance problems are seen by

operators. At the same time, this approach eliminates the

need for training data, which is hard to have in wide area

ISPs. Pythia provides real time diagnosis summaries by

using non-invasive detection and diagnosis algorithms at

the monitors. In the course of building Pythia, we have

noted some limitations and considerations when building

and deploying the system.

Monitoring: Pythia relies on existing monitoring in the

ISP. This could mean that the diagnosis may be limited

by probing (e.g., probing frequency). For example, our

results on home networks show a low incidence of large

buffer-related problems, since not all large buffer delay

increases may not sampled by the probing process.

Specifications: Language specifications of diagnosis

rules may have limitations, despite the flexibility that

they offer. When adding diagnosis rules, operators need

to consider the tradeoff between specificity and general-

ity of new diagnosis rules relative to existing rules – in

particular with large number of rules. Further, it may not

be feasible to specify some pathologies, since the moni-

tored feature set, and hence the symptom set, is limited.

Sensitivity: In practice, Pythia’s detection logic can lead

to a large number of reported pathologies. We address

this by including a knob that allows the operator to tune

sensitivity, defined as the magnitude of deviation from

the baseline (§4). We leave it to future work to rank

pathologies based on operator interest and criticality.

Symptoms: The symptoms used in diagnosis rules may

be based on models of performance (e.g., the end-host

class), or may be based on static thresholds. We note that

symptoms based on static thresholds may be common in

practice, since they are likely to be based on operator ex-

perience. Since these thresholds could change with time,

an open feature in Pythia is to extend the specification

language to support threshold declarations.

Pathologies: Our deployment experience has shown that

signatures induced by monitors may be common in prac-

tice when the focus of diagnosis is on short-lived prob-

lems. We leave open the analysis of problems that Pythia

finds “Unknown”. Pythia could augment these with a

similarity measure over a specified space of features.

Similarity compares the problem against a representative

set of diagnoses to find the most similar diagnosis.

11 Related work

There has been significant prior work on detection and

diagnosis of performance problems. The prior work falls

into two classes of design. We present representative

work in each class.

Data-oriented methods: These are diagnosis methods

that use significant amount of data sources that are usu-

ally available in enterprises and single administrative

domains, but not in wide area inter-domain settings.

These methods give detailed diagnosis; there is a trade-

off, however, between how detailed the diagnosis can

be and the wide-area applicability (generality) of a di-

agnosis method. A summary of some of these meth-

ods follows. AT&T’s G-RCA [24] works on data from

a single network such as SNMP traps, syslogs, alarms,

router configurations, topology and end-to-end measure-

ments. It mines dependency graphs from the data and

constructs diagnosis rules from the graphs. SyslogDi-

gest [19] mines faults from router syslogs. NetMedic

[10] and Sherlock [3] diagnose faults in enterprise set-

tings by profiling end-host variables and by mining de-

pendencies from historic data. NICE [16] enables trou-

bleshooting by analyzing correlations across logs, router

data and loss measurements. META [23] looks at spa-

tial and temporal features of network data to learn fault

signatures. A recent study [22] uses email logs and net-

work data to analyze routing-based failures. Learning

methods may require prior training; however, they can

complement Pythia by classifying problems that cannot

be diagnosed using domain knowledge.

Data-oriented methods have also been used to diag-

nose specific pathologies in the context of a single net-

work. Feather et al. look at diagnosing soft failures in

a LAN using domain knowledge on a pre-defined set

of features [5]. We take a similar approach to diagno-

sis using domain knowledge, but in the more general

wide area inter-domain context. Lakhina et al. used un-

supervised clustering methods on packet-level features

in packet traces to classify performance anomalies [14].

Huang et al. use structural properties of packet traces to

detect performance problems in a LAN [7]. Huang et

al. identified inter-domain routing anomalies using BGP

updates [8]. There has been extensive work on structural

methods to detect anomalies in volume data in an ISP;

for example, the influential work by Lakhina et al. uses

dimensionality reduction on volume data [13].

Active probing methods: These methods rely on ac-

11
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tive probing, and are typically based on domain knowl-

edge. They can reveal detailed and accurate diagnosis,

since they provide the choice of carefully crafting prob-

ing structures. It is, however, hard to widely deploy a

new active probing tool in a large monitoring network,

especially if some of the monitors are in other ASes. We

summarize a few representative tools below. Netalyzr

[12] probes to help a user with troubleshooting infor-

mation. Tulip [15] diagnoses and localizes reordering,

loss and congestion using a single end-point. PlanetSeer

[26] uses a combination of active and passive methods to

monitor path failures. Prior work designed probing tools

for specific diagnoses such as Ethernet duplex mismatch

[20] and buffering problems [17].

12 Conclusion

In this paper, we have designed a performance problem

detection and diagnosis system for wide area ISPs, that

works in conjunction with deployed monitoring infras-

tructure. Pythia only requires a lightweight agent pro-

cess running on the monitors. We have designed efficient

detection and diagnosis algorithms that enable such an

agent without affecting measurements. Pythia provides

an expressive language to the operator to specify per-

formance pathology definitions based on domain knowl-

edge. We have deployed Pythia in monitoring infrastruc-

ture in wide area ISPs, diagnosing over 300 inter-domain

paths. We used Pythia to study performance patholo-

gies in backbone and edge networks. Our experience

with Pythia has shown that existing monitoring infras-

tructure in ISPs is a good starting point for building near

real time wide area problem diagnosis systems, enabling

incremental diagnosis deployment.
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