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Abstract

Many storage customers are adopting encryption solu-
tions to protect critical data. Most existing encryption
solutions sit in, or near, the application that is the source
of critical data, upstream of the primary storage system.
Placing encryption near the source ensures that data re-
mains encrypted throughout the storage stack, making it
easier to use untrusted storage, such as public clouds.

Unfortunately, such a strategy also prevents down-
stream storage systems from applying content-based fea-
tures, such as deduplication, to the data. In this paper, we
present Lamassu, an encryption solution that uses block-
oriented, host-based, convergent encryption to secure
data, while preserving storage-based data deduplication.
Unlike past convergent encryption systems, which typi-
cally store encryption metadata in a dedicated store, our
system transparently inserts its metadata into each file’s
data stream. This allows us to add Lamassu to an applica-
tion stack without modifying either the client application
or the storage controller.

In this paper, we lay out the architecture and security
model used in our system, and present a new model for
maintaining metadata consistency and data integrity in a
convergent encryption environment. We also evaluate its
storage efficiency and I/O performance by using a variety
of microbenchmarks, showing that Lamassu provides ex-
cellent storage efficiency, while achieving I/O through-
put on par with similar conventional encryption systems.

1 Introduction

Storage users are understandably sensitive to data secu-
rity on shared storage systems. Adding encryption to an
existing solution can help to address such concerns by
preventing unauthorized parties from accessing the con-
tents of critical data. One popular approach that seems
to have quite a lot of traction is to encrypt data close
to the application, or even inside an application itself.
This strategy simplifies down-stream security by ensur-
ing that data is in an encrypted state by default as it

moves downstream through the stack. This strategy can
take many forms, such as built-in application encryption,
OS-based file system encryption or VM-level encryp-
tion [3, 19, 22]. We term any encryption that runs on
the same physical hardware as the primary application
data-source encryption.

In general, existing data-source encryption solutions
interfere with content-driven data management features
provided by storage systems — in particular, deduplica-
tion. If a storage controller does not have access to the
keys used to secure data, it cannot compare the contents
of encrypted data to determine which sections, if any, are
duplicates.

In this paper, we present an alternative encryption
strategy that provides the benefits of upstream encryp-
tion while preserving storage-based data deduplication
on downstream storage. Based on these conflicting pri-
orities, we name our system Lamassu, after the Assyrian
guardian deity that combines elements of several crea-
tures. Our system builds upon existing work in con-
vergent encryption [10, 6, 18] to enable deduplication
of encrypted data, but extends it to provide its services
in a manner transparent to both application and stor-
age, without the need for dedicated metadata storage
or additional files. This makes our system flexible and
portable, allowing it to be self-contained, and greatly
simplifying deployment in existing application environ-
ments. Our work also introduces a scheme for providing
crash-tolerant data consistency in a convergent system,
as well as a mechanism for verifying the integrity of data
after a crash.

Lamassu preserves deduplication at the storage back
end by using a message-locked, convergent encryption
strategy [10] to secure data in a way that preserves block-
equality relationships in the ciphertext. In such a scheme,
data is encrypted using keys that are derived from the
plaintext, thus the message is locked under itself [S]. The
actual cipher used to secure the data can be any stan-
dard encryption scheme, such as the Advanced Encryp-
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tion Standard (AES). By using this approach, any two
users who have access to the same plaintext will deter-
ministically arrive at the same ciphertext before storing it
on the back end. As aresult, the storage system receiving
that data will be able to identify and deduplicate redun-
dant blocks, even though it is unable to decrypt them.

Convergent encryption provides strong security on
data that has high min-entropy, where it is very difficult
to guess at the contents of messages accurately. Unfor-
tunately, real production data is often much less random
than ideal data; there are often identifiable patterns that
an outsider can exploit to guess at data contents with a
much higher success rate than random guessing. As a re-
sult, this approach is vulnerable to the so-called chosen-
plaintext attack [6, 20]. In this attack, an adversary takes
advantage of the nonrandom nature of production data
by guessing the data rather than the encryption key. If
attackers guess correctly, they can generate the match-
ing key and verify their guesses by generating ciphertext
blocks that match the victim’s blocks.

Other work in this field has explored alternative de-
fenses against the chosen-plaintext attack. For example,
DupLESS [6] provides a mechanism that uses a double-
blind key generation scheme to allow an application host
and a key server to cooperatively derive convergent keys.
In the DupLESS scheme, the key server never sees the
data to be encrypted, and the application host never has
access to the secret keys stored on the key server. The
disadvantage of that system is that each key generation
operation requires multiple network round-trips between
the application host and the key server, making it imprac-
tical for block-level operation.

We have chosen a relatively simple defense against
the chosen-plaintext attack by adding in a secret key
to derive the convergent key before using it for encryp-
tion [20]. This mechanism is similar to the domain key
used to derive keys in DupLESS, but in Lamassu, clients
are permitted direct access to the secret key and gener-
ate their convergent keys locally. With this mechanism,
an attacker executing a chosen-plaintext attack needs to
guess both the contents of the plaintext and the secret
key in order to generate a matching convergent key, and
to succeed.

Lamassu instances that use different secret keys will
produce different ciphertext from the same plaintext, and
data across those instances will not be deduplicated. On
the other hand, if two (or more) clients share a single se-
cret key, they can all read and write data to a shared stor-
age system through Lamassu, and their shared data can
be deduplicated by that system. In effect, a set of clients
that share a single secret constitute both a security zone
and a deduplication group. We collectively term a group
of tenants that share a key an isolation zone. The details
of how this shared secret is implemented is discussed in

further detail in §2.

In order to retrieve Lamassu-encrypted data from stor-
age, a user must have access to the encryption keys used
to secure that data. Because message-locked encryption
produces keys based on plaintext, it produces a large
number of keys that must be fetched along with the ci-
phertext in order to retrieve data. This unbounded mass
of keys presents a metadata management problem that is
intrinsic to a message-locked encryption strategy.

Past solutions have managed this cryptographic meta-
data by storing keys alongside the encrypted file data [10,
6], or by building a dedicated metadata store that stores
the keys separately from the primary data [18]. In both
cases, the cryptographic metadata itself must be secured,
usually by means of either symmetric or asymmetric key
encryption. Such solutions complicate the process of
replicating or migrating encrypted data, because the sep-
arated key information must be managed in parallel. For
cases in which the cryptographic metadata is kept in a
dedicated store, that functionality must also be replicated
wherever the data is to be housed. Providing full replica-
tion or migration capabilities may require either modifi-
cation to the underlying storage controller’s facilities or
the addition of external tools to provide those capabilities
outside of the controller.

In contrast, Lamassu implicitly inserts the crypto-
graphic metadata generated by encryption into the data
stream for each file. In order to avoid polluting the file’s
data blocks with highly entropic key information, thus
hindering deduplication, Lamassu places this data into
reserved sections of the file. In effect, a predetermined
fraction of the blocks stored at the storage controller will
be devoted to encrypted metadata, rather than file data.
These encrypted metadata blocks are indistinguishable
from random data, and will not be deduplicated by the
storage controller.

Contributions. To the best of our knowledge, Lamassu
is the first system that achieves the following: First,
it provides strong data-source encryption that preserves
storage-based block deduplication, without requiring
modifications to the application or storage, and without
requiring a dedicated metadata store to manage conver-
gent keys; second, by embedding cryptographic meta-
data inside encrypted files, Lamassu allows both data and
metadata to be automatically managed by existing tools
and storage features; and third, our metadata structure
provides a mechanism for maintaining consistency be-
tween a file’s data and its cryptographic metadata. In
order to accomplish those goals, Lamassu uses these key
techniques: block-oriented convergent encryption, inser-
tion of encryption metadata to the data stream, efficient
metadata layout and multiphase commit algorithm, and a
built-in data integrity check mechanism.

The rest of this paper is organized as follows. In §2, we
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will lay out the design of our system, including our threat
model, detailed encryption strategy, and metadata lay-
out. We will also describe our consistency and integrity
model. §3 provides details on our prototype implemen-
tation, followed by §4 which shows our experimental re-
sults. Finally, we discuss related work and conclude in
85 and §6, respectively.

2 Design
2.1 Threat Model

Our threat model is informed by the ones used by past
secure deduplication work [10, 6], and by our own anal-
ysis of the level of security that could make sense in an
enterprise environment. Our threat model takes the form
of a series of explicit assumptions about the capabilities
of a potential attacker, and of the hardware and software
available in our expected deployment environment, as
follows:

e We assume that the basic cryptographic primitives
such as AES that we use, represent an “ideal” en-
cryption function and cannot be broken by attack-
ers. We further assume that any potential attacker
is aware of the encryption mechanism that we have
chosen and how it works.

o We assume that data will be stored on an untrusted,
shared storage system. We further assume that the
shared system may behave as an honest-but-curious
attacker [11], attempting to read stored data, but not
acting to maliciously destroy data. An example of
such an environment might be a public cloud stor-
age system, which can reasonably be expected to
preserve stored data, but which must be prevented
from viewing data contents.

e We assume that the storage system will have full ac-
cess to all data that it stores, but that it will not have
any prior knowledge of the contents of encrypted
data, or of the keys used to encrypt that data.

e We assume that the storage system stores data from
multiple tenants, and that those tenants might not
trust each other. We assume that these tenants might
gain access to any data stored on the storage system,
including access to data blocks that they are not au-
thorized to access, such as through improperly ap-
plied access control.

e We assume that the data-source systems that belong
to a single trust domain may share secret informa-
tion through some mechanism, such as a key server
and KMIP (Key Management Interoperability Pro-
tocol).

Convergent encryption, applied upstream of the stor-
age system, effectively prevents that system from read-
ing the contents of the data. We assume that an attacker
cannot compromise the key manager shared by clients to
gain access to their shared master keys. If that happens,
the attacker can effectively read the data stored by clients
sharing that trust domain. Note that it would be feasible
to adapt our system to use a double-blind key generation
system that protects against that sort of attack, such as
that described by Bellare et al. [6] at the cost of reduced
I/0O performance. However, we have not pursued this op-
tion due to the large performance overhead involved.

The work presented here focuses on protecting the
contents of user data from an outside attacker, while pre-
serving deduplication, but does not include protection for
directory structure information. It should be possible to
improve on this limitation by adding encryption for file
and directory names in a future revision.

2.2 Encryption

The term convergent encryption describes any encryp-
tion scheme that preserves the following property: Given
a particular plaintext, it will always generate the same
ciphertext. In every other respect, a convergent encryp-
tion scheme should share the same properties as stan-
dard encryption schemes. Lamassu exploits this prop-
erty to enable deduplication of encrypted data by ensur-
ing that identical plaintext blocks are stored as identical
ciphertext blocks. This means that Lamassu exposes in-
formation about block equality to any potential outside
observer, but does not expose any additional informa-
tion about the data. Existing work on convergent en-
cryption strategies discusses the cryptographic security
of this approach [10, 6]. In general, larger block sizes re-
duce the granularity of information exposed to a potential
attacker, and reduce the amount of information that can
be gleaned from the pattern of blocks stored on disk.

Lamassu uses a two-tier encryption strategy, laid out in
Figure 1. The first tier is the convergent encryption ap-
plied to the application data written to each file. To pro-
tect against the chosen-plaintext attack, described previ-
ously, Lamassu uses a secret key in the process of de-
riving each convergent key. The second tier is standard
(nonconvergent) encryption applied to the cryptographic
metadata stored inside each file by using a second secret
key. Data encrypted by separate Lamassu instances can
be read or written by either instance, provided that those
two instances share both of these secret keys.

The first of the two secret keys used by Lamassu is an
inner key (Kj,), used when encrypting file data blocks.
When Lamassu writes a block to storage, it starts by
taking a cryptographic hash! (H) of the data block in

! Our current prototype is using SHA-256 in order to generate 32-
byte hashes from fixed-size data blocks.
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memory. The convergent encryption key for that block
(CEKey) is derived from the hash value and the inner
key by the following equation:

CEKey; = F(H(Block;), Kiy) (1)

where F represents a key derivation function (KDF).
In our current implementation, this is accomplished by
AES-encryption of the block hash using the inner key,
but other key derivation functions could also work. This
modified CEKey is used to encrypt the actual data block
before it is sent to disk as shown in the following equa-
tion:

CipherBlock; = Exps(Block;, CEKey;,IVixeq) 2)

where E4gg represents the AES encryption function. For
data block encryption, Lamassu uses AES-256 in CBC
mode. As with previous convergent encryption systems,
Lamassu uses a fixed initialization vector? (IVixeq) for
this process, so that future encryption of the same data
will result in identical ciphertext [10]. The block key
is stored inside the file so that it can be easily retrieved
when reading the file, allowing Lamassu to decrypt the
data block and recover its contents. The block key is
stored in a reserved metadata section of the encrypted
file. Further details will be described in §2.3.

Because the convergent keys are derived with key
derivation function that uses a secret inner key (Kjy,), it
is extremely unlikely that at encrypted block will match
any data encrypted with the same technique, but using a
different inner key. This property allows the inner key to
be used to define a deduplication domain for data by re-
stricting deduplication to just the data encrypted with the
same inner key. In addition to preventing unauthorized
parties from decrypting stored data, this also prevents
an attacker from learning anything about secured data
through the behavior of deduplication on multi-tenant,
shared storage. This property allows tenants to define
their own security isolation zone through the use of secret
keys that are kept outside of the shared storage system.

The second shared secret used by Lamassu is an outer
key (K, ) that is used to secure the metadata stored in-
side specially reserved sections of the file, including the
per-block keys described previously. Lamassu encrypts
the metadata blocks by using the AES in Galois/Counter
mode (GCM), rather than in CBC mode as when en-
crypting data blocks. Lamassu also seeds its metadata
block encryption with a randomly generated initializa-
tion vector (IV,4,4) like conventional encryption systems,
as shown in the following equation:

CipherMeta; = Exps(Meta;, Koy, 1Vyana) 3)

2Standard AES-CBC takes a randomly generated initialization vec-
tor (IV) as well as a key as inputs. Convergent encryption uses an
invariant IV to preserve data equality in the ciphertext [10].

Figure 1: Lamassu’s two-tier encryption model

where Meta; denotes a metadata block. A message au-
thentication code (or tag) generated from AES-GCM will
be added to each metadata block and used for anintegrity
check. (The details will be discussed in §2.4.)

In order to read any of the data in the file, a Lamassu
instance must have access to the outer key, thus defining
a trust domain based on access to this key. Note that the
outer key does not affect the boundaries of data dedupli-
cation, only data access. It would be possible to broadly
share the inner key among many clients, while giving
each one a separate outer key. The result would allow
all of those clients to share a single deduplication isola-
tion zone, while restricting them to reading and writing
only their own private data. However, note that cryp-
tographic security among those clients would be exactly
equal to that of basic convergent encryption. They would
no longer have any protection against chosen-plaintext
attacks executed by their peers.

The inner and outer keys dictate how Lamassu would
approach periodic key rotation. Our experimental sys-
tem does not include a mechanism to re-key Lamassu
files, but it would be possible to approach the problem
by rotating the secret keys stored in the key server. Key
rotation would have to be initiated by a higher layer in
the application with the ability to update the key server
and to identify which files or directories need to be reen-
crypted with the new keys. An interesting side effect of
Lamassu’s encryption model is that it is possible to per-
form a less secure, but much faster partial re-keying of
Lamassu data by changing the outer key, but not the in-
ner key. In that case, only the metadata blocks in each
file would need to be re-keyed, rather than entire files.

2.3 Metadata Layout

Lamassu’s convergent encryption strategy operates on a
per-block basis. This means that the base unit for any
read or write is a full block. It is not possible for Lamassu
to update a piece of a block without fully reencrypting
the whole block with its new data. Furthermore, any
change to a data block must be accompanied by a cor-
responding update to the hash key for that block in the
metadata section of the file. We will discuss our strategy
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for maintaining consistency between data and metadata
in §2.4.

Lamassu embeds its extra metadata into a file’s data
stream. This metadata is highly entropic by nature, and is
extremely unlikely to result in any identifiable redundant
sections for the storage controller to deduplicate. Be-
cause our metadata is produced in 32-byte sections rather
than in full block-sized chunks, writing the data into ar-
bitrary sections of the file can pollute potentially dedu-
plicable chunks, preventing them from matching other,
similar blocks. It can also interfere with block-alignment
throughout the file, making it harder for a fixed-block
deduplication to work.

Our solution is to place metadata in reserved sections
of each file, segregating cryptographic metadata from en-
crypted primary data completely. These sections are de-
signed to align with the underlying file system’s block
size so that they do not alter the block-alignment of
any primary data. Our system is designed so that the
chosen block size is easily variable. The chosen block
size for our tests is 4096 bytes, with matching, aligned,
4096-byte reserved metadata sections inserted into the
stream. This arrangement favors files that are at least
a few megabytes in size, because this pre-allocation of
space magnifies the space overhead of our solution in
very small files. A smaller block size reduces the rel-
ative penalty for smaller files, but slightly increases the
overall metadata space overhead for each file.

Because a file’s size may be very large, and, more im-
portantly, may change over time, Lamassu does not pre-
allocate space for all of a file’s metadata in advance. In-
stead, Lamassu distributes metadata blocks at regular in-
tervals throughout the file, adding more as necessary. For
simplicity, these blocks are placed in regular, predictable
locations within the file, rather than in dynamically se-
lected positions. Furthermore, each metadata block is
placed in a position adjacent to the data blocks whose
encryption keys it contains. We refer to a section of a
file containing a single metadata block and all of the data
blocks associated with it as a segment.

Figure 2 shows the internal layout of a Lamassu file,
based on a 4KB block size, with the file further broken
up into smaller segments and blocks. The size of each
segment is defined by the number of 32-byte encryption
keys that can be stored inside a single metadata block.
That number is affected by several factors, including the
amount of space occupied by additional metadata infor-
mation, and on tunable factors that are outlined in §2.4.

Inside each metadata block, the first 48 bytes of space
are used for general file metadata, rather than for encryp-
tion keys. Figure 3 shows the contents of this metadata
space, which includes the random initialization vector
(IV) used to encrypt the remainder of that block, a mes-
sage authentication tag generated by AES-GCM, and the

On-Disk File Layout

‘ Segment 0 ‘ Segment 1 ‘ Segment 2 ‘ ‘Segmentm ‘

Fixed-Size Segment
Physical Offset 0

Logical Offset 0

Physical Offse 4K

Logical Offset 1024K

Segment Layout

Data 0 ‘ Data 1 ‘ Data 2 ‘

‘ Datan ‘

Fixed-Size Data Block
Figure 2: Internal layout of a Lamassu file

Sioto | siot1 | stz | -+ | Sotn |

32-Byte Key Slot

Logical

AES-GCM Tag File Size Flags

Rsrvd

08B 168 328 40B 44B  48B
Figure 3: Internal layout of a Lamassu metadata block

logical size of the file’s contents. The remaining space
in each metadata block is taken up by a table of 32-byte
encryption keys.

The size of each metadata block’s key table deter-
mines the number of data blocks that can follow a single
metadata block, and, by extension the size of a segment.
Because each segment carries a mandatory one-block
penalty for storing the metadata block, the most space-
efficient arrangement is to maximize the size of each seg-
ment by filling as much space as possible with encryption
keys. Lamassu trades away some of that space efficiency
for better crash consistency, as will be discussed in §2.4.
When the size of plaintext data is n bytes and each meta-
data block can store up to NumKeysyp keys, the num-
ber of data blocks (Npp) and metadata blocks (Nyp), the
size of the encrypted file (n'), and the space overhead
of Lamassu can be formulated with the following set of
equations:

Npg = [n/BlockSize] 4)

Nus = [Npg/NumKeysyg] (5)

n" = (Npp-+Nyg)-BlockSize (6)
Overhead = n' —n @)

The space overhead is minimized when n is exactly
a multiple of the Lamassu block size and the last meta-
data block has no empty key table slot, as shown in the
following equation:

Overhead,in, = n/NumKeysyp (8)

As previously mentioned, the metadata stored at the
beginning of each metadata block includes a logical file
size. The reason for this is that Lamassu always encrypts
data in full block-sized chunks, and, therefore, it both
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reads and writes data in full-block chunks. As a result,
when writing to the end of a file whose size is not an
integer multiple of the block size, Lamassu will pad the
final block with zeroes before writing it. In order to keep
track of this padding and report a correct file size to the
application at a later time, Lamassu maintains the log-
ical size of the file without this padding. (The logical
size does not include the extra space taken up by key
blocks stored inside the file.) This information is stored
inside the Lamassu metadata blocks of the file. Since it
is highly inefficient to update every such block in a large
file whenever the file changes, and it is always necessary
to write to the file’s last metadata block when changing
its size, the updated size is written to the metadata block
only for the final segment. The system always treats the
file size stored in the final metadata block as the authori-
tative logical size for the file and ignores stale sizes that
might be stored in any other blocks.

2.4 Crash Consistency

Lamassu’s encryption model requires that the key for
each data block be stored in the corresponding seg-
ment metadata block. Without a matching key, a data
block cannot be decrypted, and becomes unreadable.
This means that there is a critical failure mode wherein
Lamassu crashes in between updating a data block in a
segment and updating the metadata block for that seg-
ment, leaving the two in an unmatched, inconsistent
state.

Lamassu addresses the threat of inconsistency due to
incomplete writes by implementing a multiphase com-
mit algorithm for writes. The sequence for each update
is to first update the metadata block for the affected seg-
ment, and mark the segment as being in a midupdate
state. When that has been completed, the modified data
block is written out, and then, finally, the metadata block
is re-marked to indicate that the update has completed.

To enable segment recovery after a failure, Lamassu
stores extra key information in each metadata block dur-
ing the update process. When Lamassu updates the seg-
ment metadata at the beginning of a data block write,
it stores both the new key and the existing key for that
block in the metadata block. Lamassu overprovisions the
key table in each metadata block to provide space for a
small number of transient, extra keys, stored during file
writes. If the data block write succeeds, the subsequent
update to the metadata block clears the update flag to in-
dicate that the keys in the key table and the data in the
data blocks are once again in sync. Key table overpro-
visioning slightly reduces the number of keys stored in
each segment, and consequently the amount of data in
each segment, but we believe this to be a good trade-off
for increased crash resiliency.

If Lamassu fails during the update process, it can re-

cover based on the contents of the metadata block. If the
system discovers a segment that is marked as midupdate,
it can infer that a data block update was previously inter-
rupted. If that is the case, it can detect which data block
was in the middle of an update by reading the block num-
ber attached to the key, or keys, stored in the reserved
space at the end of the key table. Once it has identified
an affected block, it will be able to decrypt it using ei-
ther the current key, stored in the key table, or the older
key, stored in the reserved space, depending on whether
or not the new version of the data block made it to disk
before the crash.

Lamassu depends on the underlying storage system
to provide consistency guarantees on whether or not a
single block-level write reaches disk. Therefore, our
method does not provide any mechanism for handling a
partial-block write failure or disk write failures.

The penalty for the consistency model outlined above
is an amplification in the number of disk I/Os that
Lamassu has to perform whenever it updates a data
block. To ameliorate this draw-back, Lamassu includes
the ability to batch updates for multiple data blocks into a
single update operation. To do this, Lamassu writes mul-
tiple keys to a metadata block as a single block update.

Because each block included in the update must have
two versions of its key written to the metadata block dur-
ing the update, the number of blocks that can be com-
bined into a single update is limited by the number of
keys that can fit in the reserved space at the end of each
metadata block. The precise amount of extra space re-
served is adjustable at build time in our implementation.
We use the parameter R to represent the number of ex-
tra keys that can be stored in the reserved space for each
metadata block. Thus, with a single extra slot reserved
(i.e., R = 1), Lamassu will update a single data block at
a time, requiring three I/Os for each block write: two for
the metadata updates, and one for the data block itself.
Increasing the number of reserved slots in each metadata
block allows Lamassu to batch multiple data block writes
into a single commit operation, amortizing the cost of the
metadata updates across R block updates.

Batching effectively reduces the system’s I/O over-
head. However, reserving more key slots for old keys re-
duces the number of blocks that can be managed in a sin-
gle segment, increasing the space overhead of Lamassu
metadata. We will discuss the space and performance
trade-offs introduced by varying R in §4.3 with experi-
mental results. Increasing R also increases the amount of
data that might be lost as a result of a midupdate crash.

2.5 Data Integrity

A useful property of Lamassu’s encryption strategy is
that it can automatically check whether the encryption
key it uses to decrypt a data bock is the correct key for
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that block. When Lamassu decrypts a data block by us-
ing a convergent hash key, it can immediately attempt to
re-hash the decrypted block and recompute the hash key
based on the resulting plaintext. If the plaintext is cor-
rect, the resulting hash key will match the one used in the
decryption. If not, the resultant key is extremely unlikely
to match the original hash key. Thus, a hash mismatch
indicates a block-key mismatch. Lamassu takes advan-
tage of this property to check the integrity of individual
data blocks, checking the hash of decrypted data against
the hash key stored inside the metadata blocks.

In the event of a crash and recovery, this hash-
checking mechanism is what allows Lamassu to deter-
mine which of the two keys assigned to a data block
matches the contents of that block. If Lamassu detects
a block-key mismatch that does not result from an in-
terrupted write, it cannot correct the problem, but it can
detect it and notify the client application.

Lamassu also includes integrity checking for meta-
data blocks, using AES-GCM authenticated encryp-
tion. AES-GCM attaches a message authentication code
(MAC) to the encrypted metadata block. Decrypting the
metadata block requires that the reader provide the MAC
as well. In order to do that, the reader must already have
access to the encryption key used to secure the block,
and the secure hash of the block’s original contents with
which to verify its integrity.

Our design does not provide file integrity protection
beyond the segment level. A malicious or defective stor-
age system could, for example, roll the contents of a seg-
ment back from a current valid state to a previous valid
state without having to read the contents of that segment.
Our scheme would not detect such a change. To provide
integrity checking at the level of a complete file, Lamassu
would need to store data outside of the primary storage
system, such as an on-premises store or, perhaps, in the
key server. Lamassu’s stackable design makes it possible
to add an integrity layer on top of Lamassu, using a new,
or existing, integrity checking system.

3 Implementation

The Lamassu prototype system takes the form of a shim
layer, sitting in the data path between the application and
the back-end storage system. Lamassu encrypts the data
written by the application, inserts its metadata into the
input data stream, and writes them all to the the back-
ing store. The precise amount of space overhead from
metadata depends on the size of the files involved, and
on the block size used. Assuming the block size is 4096
bytes and that a single metadata block can store 125 keys
per segment (when R = 1), the minimum space overhead
ratio is 1/125 = 0.8%.

We selected the Linux File System in User Space
(FUSE) [2] as the infrastructure for our prototype. This

&] Lamassu

Application

Network

VFS

Linux Kernel

Shared
Storage

NFS

Figure 4: Lamassu prototype architecture

arrangement allowed us to build our prototype as a self-
contained user-mode program that can easily be ported
into another application or infrastructure in the future.
Placing everything in a user space module also simpli-
fied our development and experimentation work.

Figure 4 shows the flow of data through the system. At
start time, the Lamassu prototype selects a configurable
directory, mounted on the native Linux file system, as its
backing store. Lamassu will treat all files and directories
in that mount point as Lamassu objects for it to manage.
The underlying storage infrastructure for that directory
can take any form, such as a local Linux file system, or
an NFS mount point. Lamassu exports a file system in-
terface to any Linux-resident application through FUSE
and the Linux VFS layer. It accepts standard I/O re-
quests and implicitly applies encryption, segmentation,
and block chunking to each file before forwarding them
to the backing storage system. For most of our exper-
iments, we used a NetApp® clustered Data ONTAP®
storage controller mounted over NFS as a deduplicating
store. Linux applications can access the encrypted file
system through the Lamassu export by using standard file
I/O interfaces.

For key management, we used the Cryptsoft KMIP
(Key Management Interoperability Protocol) SDK [9].
Two 256-bit AES encryption keys are retrieved at start
time from a KMIP server: One is used as an inner key
(Kin), and the other is used as an outer key (K, ), as de-
scribed in §2.2. Every key created at the KMIP server
contains an associated integer attribute called an isola-
tion zone: The clients in a single isolation zone obtain the
same set of encryption keys. This arrangement allows us
to consistently match each Lamassu isolation zone to a
KMIP isolation zone.

Our implementation exploits the architectural features
provided by Intel processors to accelerate certain crypto-
graphic operations. For the SHA-256 hash function, we
make use of the Advanced Vector Extensions (AVX) in-
struction set by using an assembler library provided by
Intel [14]. Where supported, our prototype also takes ad-
vantage of Intel’s AES acceleration instruction set, AES-
NI (Advanced Encryption Standard New Instructions), to
maximize encryption performance. In such cases, the
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Figure 5: Experimental setup

prototype uses AES-256 CBC encryption and decryp-
tion functions provided by the Intel AES-NI Sample Li-
brary [15]. On platforms where hardware acceleration
is not available, our prototype defaults to the OpenSSL
implementations for these functions.

4 Experimental Results

Setup. For experiments, we set up an IBM server
x3550 running 64-bit Linux (Fedora 20, Linux Kernel
3.3) as a host machine. It has an Intel Xeon CPU E5-
2630, an 8-core processor supporting AES-NI, which is
critical for AES encryption/decryption performance. The
host machine is connected with a NetApp FAS3250 con-
troller running clustered Data ONTAP 8 via a Gigabit
Ethernet switch. Figure 5 illustrates the experimental
setup.

In addition to LamassuF'S, our FUSE-based Lamassu
file system implementation, we set up two additional file
systems that operate via FUSE.? First, for a compari-
son with a conventional encrypted file system, we chose
EncFS [12], an open-source FUSE-based encrypted file
system that uses standard AES in CBC mode for encryp-
tion.* Second, we also set up an unencrypted file system
via FUSE, which we refer to as PlainF'S. This is mainly
to provide a fair comparison of performance against an
unencrypted system that still inludes the FUSE overhead.
PlainFS is a simple pass-through front end for the rel-
evant Linux system calls associated with FUSE opera-
tions.’

We created three separate volumes — plainvol,
encfsvol, and Imsfsvol — to be used as backing
stores for PlainFS, EncFS, and LamassuFS, respectively.
Each volume is mounted on the host via NFSv3 at a
distinct mount point, and is used as a backing store for

3FUSE version 2.9.3-2
4EncFS version 1.8-rcl
5 Most code from fuse-examplefs [1]

EncFS mmmm PlainFS ——— LamassuFS

100
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Figure 6: Storage efficiency with synthetic files

the corresponding FUSE-based file system. We used the
same 4096-byte block size for both EncFS and Lamas-
suFS. This helped to keep our comparisons fair, and en-
sured that I/O operations for both would be aligned with
the native block sizes of our storage controller. For most
experiments, the number of reserved key slots in the
metadata block (R) was fixed to 8. With this setup, a sin-
gle segment is composed of one metadata block followed
118 data blocks, and the minimum amount of space over-
head is 0.85%.

4.1 Storage Efficiency

We first evaluated Lamassu storage efficiency to make
sure that we could achieve the deduplication goals we
had set. To do this, we wrote a simple tool to generate
4GB synthetic data files with various redundancy profiles
(as the percentage of redundant 4KB blocks in a file, de-
noted ) ranging from 10% to 50%. Each data file was
copied over NFS to different volumes in the storage sys-
tem through PlainFS, EncFS, and LamassuFS. When the
copy completed, we manually triggered deduplication on
the storage system. We measured the difference in disk
space usage before and after deduplication using d £, run
on the controller itself.

The relative percentage disk usage after deduplication
is plotted in Figure 6. EncFS shows 100% for all cases
because no deduplication occurred by using standard
AES encryption. For PlainFS where data files are stored
as unencrypted blocks, the relative disk usage is exactly
(1 — o). These results match our expectations, with the
space savings from deduplication on unencrypted data
mapping 1-to-1 with the known level of data redundancy
on the test data. LamassuFS achieved nearly the same
storage efficiency as PlainFS, but with a small amount of
space overhead due to the embedded cryptographic meta-
data. This overhead is constant, relative to the nondedu-
plicated size of a file, but the relative overhead on dedu-
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Table 1: Storage efficiency with VM images

. . % deduplicated Space
VM image Size PlainFS LamassuFS overhead
FreeDOS.vdi 379M 9.35% 9.18% 1.07%
FreeBSD-7.1-1386.vdi 1.8G 15.40% 15.11% 1.35%
xubuntu_1204.vdi 2.3G 22.07% 21.95% 1.01%
Fedora-17-x86.vdi 2.6G 36.73% 36.46% 1.83%
opensolaris-x86.vdi 3.5G 8.08% 7.87% 1.14%

plicated storage increases as the data file redundancy ()
increases: 1.01%, 1.06%, 1.21%, 1.43%, and 1.81% re-
spectively, i.e., inversely proportional to (1 — ).

The same set of experiments was performed by us-
ing real virtual machine images® with various sizes as
shown in Table 1. Note that EncFS results have omit-
ted because they were all zero. The storage efficiency
results with real files are completely consistent with the
results from synthetic data shown in Figure 6: Lamas-
suFS achieves almost the same amount of deduplication
as PlainFS, with a small amount of space overhead of
less than 2%.

4.2 Performance

Because AES encryption and decryption are a compute-
intensive jobs, using encryption in a file system incurs
a performance overhead. In order to examine this, we
evaluated the I/O performance of PlainFS, EncFS, and
LamassuFS. For a fair comparison, we carefully chose
the EncFS configuration parameters: 4096 bytes for
a block size, AES-256 in CBC mode for an encryp-
tion algorithm, and no file name encryption. We also
turned off all EncFS features that insert metadata be-
tween blocks. This change caused EncFS to write data
in a block-aligned pattern, similar to Lamassu’s. We did
this because we have observed that EncFS performs quite
poorly when allowed to write in an unaligned pattern.
EncFS also uses AES-NI through the OpenSSL library
on platforms that support it.

In order to examine the performance of Lamassu under
a larger variety of circumstances, we used FIO-tester [4],
which generates various types of synthetic workloads to
all 3 file systems. We applied 5 different workloads to a
single 256MB file with 4KB-block synchronous I/O: se-
quential reads (seq-read), sequential writes (seq-write),
random reads (rand-read), random writes (rand-write),
and mixed random reads/writes with the read/write ratio
of 7:3 (rand-rw). The I/O throughput (bandwidth) was
measured through 10 runs; the Linux kernel page cache
was flushed before each run so that no data block was
cached at the host memory. For LamassuFS, one more
variation was added: LamassuFS(meta-only), where the
read path only checks the integrity of metadata blocks
without checking the integrity of data blocks. This would

60Obtained from http://virtualboxes.org/images/
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Figure 7: Single-file I/O throughput with a remote filer

give a good indication of how much performance is pe-
nalized when providing a full data integrity check to the
system.

Figure 7 shows the single-file I/O throughput of
PlainFS, EncFS, LamassuFS, and LamassuFS(meta-
only) working with the remote filer via NFS. With pure
write workloads (seq-write and rand-write), we see that
PlainFS performs much better than both EncFS and
LamassuFS. With pure read workloads (seq-read and
rand-read), the throughput does not show any meaning-
ful difference across all FS: LamassuFS shows slightly
worse performance than EncFS (1.6% to 12.4% worse)
with read workloads. However, LamassuFS is noticeably
worse than EncFS with write workloads: 32.9% for seq-
write and 32.2% for rand-write.

The difference in write performance is due to per-
block SHA-256 hash computations that are necessary
for convergent encryption. Because this happens at
the very beginning of block encryption process, ex-
tra latency caused by SHA-256 computation has a di-
rect negative impact on I/O throughput. On the other
hand, extra SHA-256 computation that happens dur-
ing the LamassuFS read path (for data block integrity
checking) rarely affects the performance: LamassuFS
and LamassuFS(meta-only) do not show any meaning-
ful throughput difference. This suggests that NFS I/O
is a dominant performance bottleneck in read workloads,
and therefore the rest of the computation that happens af-
ter I/O has almost has no impact on overall I/O through-
put. This also explains why both EncFS and LamassuFS
are as good as PlainFS with read workloads. A possible
option for improving the write performance is to increase
the number of reserved key slots (R) in a metadata block
— with some trade-offs; we will discuss this later in §4.3.

Overall, despite the performance overhead caused by
the extra hash computation and metadata I/O, we can
say that the performance of LamassuFS is competitive
with that of EncFS in an NFS-shared storage environ-
ment. Lamassu’s strategy of inserting metadata blocks in

USENIX Association

2015 USENIX Annual Technical Conference 341



1000 2561

PlainF'S ——
m EncFS ===
LamassuFS
800 r LamassuFS mmmm
(meta-only)

600

400

"t I M e

S
., -

Bandwidth (MB/s)

a,, )
Seq, (O “ang, "W ., % .y,

FIO-tester workload

Figure 8: Single-file I/O throughput with a RAM disk

a block-aligned fashion turns out to play a significant role
in terms of performance in our experimental environ-
ment. We have observed that block-unaligned accesses
over NFS incur a huge performance overhead. For exam-
ple, block-unaligned EncFS is at least 10x slower than
block-aligned one when used over NFS: 7MB/s versus
85MB/s throughput in the case of seq-write. For this rea-
son, to ensure as fair a comparison as possible, we have
configured EncFS so that it does not add any unaligned
metadata in our experiments.

In order to evaluate the pure performance overhead of
encryption without the impact of NFS I/O affected by the
network bandwidth, we ran the same set of FIO tests by
setting up all file systems so that they used a local RAM
disk (tmpfs in Linux) as backing stores, instead of the
remote filer. Figure 8 shows the single-file I/O through-
put of all FS with a local RAM disk. PlainFS always
noticeably performed better than EncFS and LamassuFS
across all workloads: The difference is the greatest with
seq-read showing 2.80x over EncFS, 16.70x over Lamas-
suFS (note that the graph has a short y-axis).

After removing the NFS I/O bottleneck from the read
path, computation that occurs after I/O becomes a domi-
nant bottleneck. In particular, extra SHA-256 hash com-
putation that is added for a data block integrity check
negatively affects the read throughput of LamassuFS
significantly: LamassuFS performs 83.2% worse than
EncFS with a full data integrity check, but it performs
only 22.8% worse without it. LamassuFS also performs
worse than EncFS with the rand-read workload: 47%
worse than EncFS. However, it shows a slightly better
(8.1%) throughput than EncFS without full data integrity
checking (meta-only): This is due to a small amount
of write buffering introduced to provide consistency and
reduce overall I/O. (Recall that R = 8 in these experi-
ments.) The seq-write and rand-write results are quite
similar to those of NFS cases: EncFS performs 26.8% to
27.5% better than LamassuFS with write workloads.

In order to evaluate the impact of SHA-256 hash com-

40
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Figure 9: Write/read latency breakdown of LamassuFS
with, and without, a full data integrity check, on a RAM
disk

putation on performance, we broke down the write and
read latency of LamassuFS when it operates on a local
RAM disk. By inserting the instrumentation code, the
time spent on the LamassuFS read or write path is mea-
sured and divided into five categories: Encrypt, Decrypt,
GetCEKey, I/O and Misc. Note that the major work-
load of GetCEKey is SHA-256 hash computation. Fig-
ure 9 shows seq-write and seq-read latency breakdown of
LamassuFS with, and without, full data integrity check.
For both writes and reads, GetCEKey consumes the most
time: 58% of seq-write, 80% of seq-read latency. With-
out full data integrity check (meta-only), the read latency
reduces drastically (81%) because SHA-256 hash com-
putation is not on the read path.

There are a couple of possible options to improve
the performance of LamassuFS. Since we have identi-
fied that the SHA-256 hash computation is the biggest
performance bottleneck, the first option is using a dif-
ferent cryptographic hash function that consumes fewer
CPU cycles. For example, our microbenchmark results
showed that OpenSSL SHA-1 consumes 58% fewer, and
OpenSSL MDS5 consumes 38% fewer CPU cycles for
computing the same 4KB block-hash compared with our
SHA-256 function using the Intel AVX instruction set.
The exact implication of using a less secure hash func-
tion (e.g., SHA-1 or MDS5 generates 128-bit keys instead
of 256-bit keys) for convergent encryption could be un-
derstood only with comprehensive cryptographic analy-
sis, and hence we will leave it for future work.

The second option is to forgo data block integrity
check in the read path. This will improve the read
performance significantly, as shown in Figure 8 with
LamassuFS(meta-only). Remember that Lamassu is still
doing metadata block integrity checking via AES-GCM:
It is always able to detect any data corruption that oc-
curs within or across metadata blocks (e.g., first 4KB
block from one hundred and nineteen 4KB blocks if
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R = 8). This covers cases such as accidentally overwrit-
ing a whole file, or the beginning of a file. In an enter-
prise storage environment with no malicious user who
intentionally corrupts the user data, this could be a vi-
able option for improving performance while sacrificing
a little on security.

4.3 Number of Reserved Key Slots

As described in §2.4, Lamassu maintains a certain num-
ber of reserved key slots (denoted R) in a metadata block
to maintain consistency. As R increases, the amount of
space taken up by Lamassu metadata in each file in-
creases, and thus storage efficiency decreases. On the
other hand, increasing R reduces the number of addi-
tional metadata I/Os that Lamassu must perform. To
maintain consistency, Lamassu caches block writes in
memory and writes them to disk along with their meta-
data as part of a commit operation. That occurs once
for every R data block writes. The decreased number
of writes positively affects the write throughput, while
the increased metadata space overhead negatively affects
storage efficiency. In order to understand this trade-off,
we evaluated the performance and storage efficiency of
LamassuFS by varying R = 1, 2, 8, 32, 48, 52, 56, and
60.

Figure 10 shows the single-file I/O throughput in
bandwidth when applying four different FIO-tester

workloads to LamassuFS with a local RAM disk back-
end. By increasing R, the write throughput continuously
improves up to a certain point and then decreases: The
throughput reaches its peak around R = 48 achieving
1.60x and 1.57x speedups over R = 1 for seq-write and
rand-write respectively. For write workloads, the posi-
tive impact of buffering and batching of writes (i.e., re-
duced metadata I/0) is a dominant factor as it increases
the write throughput significantly. On the other hand, the
read throughput tends to decrease slightly as R increases:
from 1 to 60, 4.71% and 4.40% decreases for seq-read
and rand-read, respectively. This is because Lamassu
must read more metadata blocks per unit file size with a
larger R value (i.e., metadata space overhead increases),
resulting in a slight increase in I/O overhead.

Figure 11 shows storage efficiency as the percent-
age of data blocks, excluding metadata blocks, in dif-
ferent encrypted files with various redundancy profiles
(denoted as & in §4.1). The storage efficiency decreases
as R increases because of the larger space overhead of
metadata. The storage efficiency also decreases as there
are more redundant blocks in a plaintext file (i.e., ¢ in-
creases) because the metadata blocks are not dedupli-
cated, as previously shown in §4.1.

The right value of R should be chosen with consider-
ation for this trade-off. If an application requires higher
write IOPS, a larger R can be chosen while sacrificing a
little space efficiency. However, with larger R, the gran-
ularity of crash consistency becomes coarser, (i.e., it in-
creases the recovery point objective [RPO] of the sys-
tem.), and LamassuFS consumes the additional memory
space for more write buffers. For the proceeding set of
experiments, we fixed R to be 8 to achieve a balanced
trade-off.

5 Related Work

5.1 Encrypted File Systems

Full disk encryption (FDE) is a popular choice for
the storage encryption. NetApp Storage Encryption
(NSE) [16] is a hardware-based implementation of FDE
that uses self-encrypting drives (SEDs) from drive ven-
dors. FileVault 2 [3] is a software-based FDE in Mac
OS X that uses Intel’s AES-NI. As encryption occurs at
the lowest stack just before data blocks are written to the
disk, FDE is quite a different approach from our data-
source encryption strategy.

FDE encrypts whole blocks in a volume, including
file system metadata, while file-system-level encryption
enables encryption of individual files or directories, of-
fering a finer granularity of control. There are general-
purpose file systems that have integrated encryption fea-
tures, such as ZFS and Encrypting File System (EFS)
in NTFS. Some cryptographic file systems — such as
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CFS [7], TCFS [8], Cryptfs [22] and eCryptfs [13] —
are stackable on top of another general-purpose file sys-
tem; eCryptFS is widely used, included in Ubuntu’s en-
crypted home directory and Google’s Chrome OS. There
are a few FUSE-based encrypted file systems available;
only EncFS [12] is notable in terms of its maturity and
wide acceptance.

With regard to our data-source encryption strategy,
any stackable or FUSE-based encrypted file systems can
serve the same purpose because they can transparently
work on top of an existing system. However, to the best
of our knowledge, none of them provides the explicit
ability to enable deduplication at downstream storage de-
vices as Lamassu does. We chose a FUSE-based file sys-
tem for our prototype implementation due to its better
debuggability and easier deployment; it can also be im-
plemented as a kernel-level file system if necessary.

5.2 Convergent Encryption

Deduplication of previously encrypted data is normally
impossible because of the nature of encrypted data. Con-
vergent encryption (CE) was proposed to address this is-
sue. The concept of convergent encryption was intro-
duced by Douceur et al. [10]: By definition, CE produces
identical ciphertext files from identical plaintext files. A
common approach is deriving the encryption key from a
secure hash of the plaintext. Using convergent encryp-
tion results in the ciphertext having the same levels of
duplication as the plaintext. However, the weakness of
CE is the leakage of information about the plaintext; an
attacker can observe the ciphertext and deduce the con-
tents of the plaintext by using a variety of different at-
tacks [20].

While the system described by Douceur, et al.[10]
works only with the whole files, Storer et al. [18] later
designed a CE solution that provides sub-file granular-
ity encryption and deduplication, in both fixed and vari-
able sized chunks. Bellare et al. [5] formalized CE
as Message-Locked Encryption (MLE) with a crypto-
graphic analysis. DupLESS [6] tried to overcome CE’s
weakness — leakage of information about the plaintext
— with an obfuscated key exchange mechanism with
a key server in order to achieve stronger confidential-
ity; however, the performance overhead turns out to be
quite costly as it requires 3-way key exchange with a key
server for every block access. ClouDedup [17] uses a
semi-trusted server between users and the cloud provider
to encrypt the ciphertext resulting from CE with another
encryption algorithm, and a metadata manager to store
encryption keys and block signatures. It introduces much
more complexity to the system, compared to Lamassu,
and might incur performance penalty due to double en-
cryption.

Lamassu is targeted at enterprise environments in

which multiple hosts store data in a large shared storage
appliance. Therefore, it tries to achieve a balance be-
tween performance and security. Lamassu can be easily
added to an existing enterprise environment. It only in-
curs a mimal performance overhead, and does not require
an extra system for a metadata store. In a multitenant sys-
tem, tenant data can be securely separated by using per-
tenant keys to create isolation zones. Tahoe-LAFS [21]
used a similar approach of adding a secret during hash
key generation [20], but its convergent encryption works
on a per-file basis, limiting the storage efficiency com-
pared with Lamassu’s per-block approach.

6 Conclusion

In this paper, we presented Lamassu, a new, transpar-
ent, encryption system that provides strong data-source
encryption, while preserving downstream storage-based
data deduplication. Lamassu uses block-oriented conver-
gent encryption to align with existing block-based dedu-
plication systems. It takes a new approach to manage
convergent encryption key metadata by inserting it into
each file’s data stream, eliminating the need for addi-
tional infrastructure. Therefore, it can be inserted into
an existing application stack without any modification to
either host-side applications or the storage controller. We
also introduced a strategy for maintaining consistency
between file data and convergent metadata, and for pro-
viding data integrity checking for application data in a
convergent encryption system.

Our results showed that it is possible to insert conver-
gent encryption into an application with a performance
overhead similar to non-convergent options, placing en-
cryption near the top of the application stack, and making
it easier to provide strong security across the whole stack.
Our security model leaks only the information that is ab-
solutely necessary for deduplication to the storage sys-
tem, resulting in strong encryption, well suited to many
applications. Our system provides a clear advantage over
analogous solutions by preserving storage-based dedu-
plication without compromising on encryption.
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