
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Scalable NUMA-aware Blocking
Synchronization Primitives

Sanidhya Kashyap, Changwoo Min, and Taesoo Kim, Georgia Institute of Technology

https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap

Scalable NUMA-aware Blocking Synchronization Primitives
Sanidhya Kashyap Changwoo Min Taesoo Kim

Georgia Institute of Technology

Abstract
Application scalability is a critical aspect to efficiently
use NUMA machines with many cores. To achieve that,
various techniques ranging from task placement to data
sharding are used in practice. However, from the perspec-
tive of an operating system, these techniques often do not
work as expected because various subsystems in the OS
interact and share data structures among themselves, re-
sulting in scalability bottlenecks. Although current OSes
attempt to tackle this problem by introducing a wide range
of synchronization primitives such as spinlock and mu-
tex, the widely used synchronization mechanisms are not
designed to handle both under- and over-subscribed sce-
narios in a scalable fashion. In particular, the current
blocking synchronization primitives that are designed to
address both scenarios are NUMA oblivious, meaning
that they suffer from cache-line contention in an under-
subscribed situation, and even worse, inherently spur long
scheduler intervention, which leads to sub-optimal perfor-
mance in an over-subscribed situation.

In this work, we present several design choices to im-
plement scalable blocking synchronization primitives that
can address both under- and over-subscribed scenarios.
Such design decisions include memory-efficient NUMA-
aware locks (favorable for deployment) and scheduling-
aware, scalable parking and wake-up strategies. To vali-
date our design choices, we implement two new blocking
synchronization primitives, which are variants of mutex
and read-write semaphore in the Linux kernel. Our evalu-
ation shows that these locks can scale real-world applica-
tions by 1.2–1.6× and some of the file system operations
up to 4.7× in both under- and over-subscribed scenarios.
Moreover, they use 1.5–10× less memory than the state-
of-the-art NUMA-aware locks on a 120-core machine.

1 Introduction
Over the last decade, microprocessor vendors have been
pursuing the direction of bigger multi-core and multi-
socket (NUMA) machines [16, 31] to provide large
chunks of memory, which is accessible by multiple CPUs.
Nowadays, these machines are a norm to further scale ap-
plications such as large in-memory databases (Microsoft
SQL server [26]) and processing engines [34, 41]. Thus,
achieving application scalability is critical for efficiently
using these NUMA machines, which today can have up
to 4096 hardware threads organized into sockets. To
achieve high performance, various applications such as
databases [26], processing engines [34, 41], and oper-
ating systems (OS) often rely on NUMA partitioning
to mitigate the cost of remote memory access either by

0k

100k

200k

300k

400k

500k

0 30 60 90 120
0

100

200

300

400

500

0 30 60 90 120

O
ps

/s
ec

#core

(a) File creation in a shared directory

Vanilla
Cohort

CST

M
em

or
y

(M
B

)

#core

(b) Memory used by lock instances

Figure 1: Impact of NUMA-aware locks on a file-system micro-
benchmark that spawns processes to create new files in a shared
directory (MWCM in [27]). It stresses either the mutex or the writer
side of the read-write semaphore and memory allocation. Figure
(a) presents the results up to 120 threads on a 120-core machine
and Figure (b) shows the memory utilized by locks during the
experiment. Here, Vanilla is Linux’s native version, and Cohort
is an in-kernel ported version of NUMA-aware locks [4, 11],
and our NUMA-aware lock (CST).

data or task placement. However, these approaches do
not address how to efficiently modify shared data struc-
tures such as inodes, dentry cache, or even the structures
of the memory allocator that span multiple sockets in a
large multi-core machine. As a result, synchronization
primitives are inevitably the basic building blocks for
such multi-threaded applications and are critical in deter-
mining their scalability [2]. Hence, the state-of-the-art
locks [4, 5, 10, 11, 23, 24], which are NUMA-aware, are
the apt choice to efficiently exploit the NUMA behavior
for achieving scalability on these multi-core machines.

NUMA-aware locks do improve application scalability,
but they are difficult to adopt in practice. They either
require application modification [5, 11, 23] or statically
allocate a considerable amount of memory that can bloat
shared data structures [4, 5, 11], as thousands to millions
of lock instances can be instantiated in a large multi-
core machine. For instance, a similar issue of adopting
non-blocking queue-based locks occurred with Linux.
Wickizier et al. [2] showed that a ticket lock suffers from
cache-line contention with increasing core count. They
replace it with the MCS lock to mitigate such an effect,
which improved the system performance. Unfortunately,
its adoption faced several challenges due to the change in
the structure size and the lock function API [21].

We observe a similar trend in the case of blocking
synchronization primitives, which suffer from numerous
problems: 1) OS developers rely on TTAS locks or their
variant [12, 18, 39], as they are simple and cache-line
contention is not evident at smaller core count. However,
they deter scalability on large multi-core machines (Fig-
ure 1 (a)). 2) The proposed blocking synchronization
primitives [35, 36] are NUMA-oblivious and suffer from

USENIX Association 2017 USENIX Annual Technical Conference 603

high memory management cost for every lock acquisition,
which impedes scalability. 3) NUMA-aware locks (Cohort
locks) suffer from memory bloat as they statically allo-
cate memory for all sockets, which is a serious issue in
an OS [3] (Figure 1 (b)) and are non-blocking. 4) Finally,
current blocking primitives severely suffer from the poor
parking strategy because of cache-line contention, use of
a global parking list, inefficient scheduling decisions, and
inefficient system load estimation.

In this work, we design and implement two scalable
blocking synchronization primitives, namely CST-mutex
and CST-rwsem, from an OS perspective. Our primitives
are memory-efficient, support blocking synchronization,
and are tightly coupled with the scheduler, thereby result-
ing in better scalability beyond 100 physical cores for both
under- and over-subscribed situations (tested up to 5×
over-subscription). CST locks support blocking, as they
incorporate a timeout capability for waiters, including
readers and writers, in which waiters can park and wake-
up without hurting the performance of the system. We use
four key ideas to implement a scalable blocking synchro-
nization primitive: First, we consciously allocate memory
by maintaining a dynamic list of per-socket structures that
is a basic building block of NUMA-aware locks. Second,
instead of passing the lock to the very next waiter, we
pass it to a not-yet-parked (still spinning) waiter, which
removes the scheduler intervention while passing the lock
to a waiter. Third, we keep track of the parked waiters in
a separate, per-socket list without manipulating the actual
waiting list maintained by the lock protocol. Lastly, we
maintain a per-core scheduling information to efficiently
estimate the system load. Thus, our blocking primitives
improve the application performance by 1.2–1.6×, and
they are 10× faster than existing blocking primitives in
over-subscribed scenarios for various micro-benchmarks.
Moreover, our approach uses 1.5–10× less memory com-
pared with the state-of-the-art NUMA-aware locks.

In summary, we make the following contributions:

• Two blocking synchronization primitives. We
design and implement two blocking synchroniza-
tion primitives (CST-mutex and CST-rwsem) that effi-
ciently scale beyond 100 physical cores.

• Memory-efficient data structure. We maintain a
dynamically allocated list of per-socket structures
that address the issue of memory bloat.

• Scheduling-aware parking/wake-up strategy.
Our approach mitigates the scheduler interaction by
passing the lock to a spinning waiter and batching
the wake-up operation.

• Lightweight schedule information. We extend the
scheduler to estimate the system load to efficiently
handle both over- and under-subscription cases.

2 Background and Motivation
We first classify prior research directions into two cate-
gories: NUMA-aware locks and runtime contention man-
agement. We later give a primer on blocking synchroniza-
tion primitives used in Linux.

NUMA-aware locks. NUMA-aware locks address the
limitation of NUMA-oblivious locks [25] by amortizing
the cost of accessing the remote memory. Most of the
locks are hierarchical in nature such that they maintain
multiple levels of lock [6, 10, 11, 14, 24] in the form of a
tree. Inspired by prior hierarchical locks [10, 24], Cohort
locks [6, 11] generalized the design of any two types of
locks in a hierarchical fashion for two-level NUMA ma-
chines and later extended them for the read-write locks [4].
However, neither of them addresses the memory utiliza-
tion issue nor supports blocking synchronization, which
leads to sub-optimal performance when multiple instances
of locks are used or when the system is overloaded. Be-
sides Cohort locks, another category of locking mech-
anism is based on combining [13, 32] and the remote
core execution approach [23] in which a thread executes
several critical sections without any synchronization. Al-
though it outperforms Cohort locks [23], the mechanism
requires application modification, which is not practical
for applications with a large code base.

Our design of NUMA-aware locks is memory con-
scious, as we defer the allocation of per-socket locks until
required, unlike prior ones. In addition, CST locks are
blocking, meaning that they support timeout capability
while maintaining the locality awareness, unlike the exist-
ing NUMA-oblivious locks that allocate memory for each
lock acquisition [35, 36]. Moreover, none of the NUMA-
aware read-write locks support blocking readers, but the
ones that do support [19, 28, 30] are NUMA oblivious
and are designed specifically for read-mostly operations.

Contention management. The interaction between
lock contention and thread scheduling determines appli-
cation scalability, which is an important criterion to de-
cide whether to spin or park a thread in an under- or
over-subscribed scenario. Johnson et al. [17] addressed
this problem by separating contention management and
scheduling in the user space. They use admission control
to handle the number of spinning threads by running a
system-wide daemon that globally measures the load on
the system. Similar approaches have been used by run-
times [7] and task placement strategies inside the kernel
without considering the lock subsystem [42]. Along these
lines, the Malthusian lock [9], a NUMA-oblivious lock,
handles thread over-subscription by randomly moving a
waiter from an active list to a passive list (concurrency
culling), which is inspired by Johnson et al.

CST locks handle the over-subscription by maintaining
a separate list in which waiters independently add them-

604 2017 USENIX Annual Technical Conference USENIX Association

selves to a separate list after timing out. Our approach is
different from the Malthusian lock and does not lengthen
the unlock phase because wake-up and parking strategies
are independent. Moreover, CST locks adopt the idea
of a separate parking list from existing synchronization
primitives [28, 29] or wait queues [38], but remove the
cache-line bouncing by maintaining a per-socket, separate
parking list for both readers and writers.

Design of Linux’s mutex and rwsem. Many OSes, in-
cluding Linux, do not allow nested critical sections for
any blocking locks. The current design of mutex is based
on the TTAS lock, which is coupled with a global queue-
based instance [22] and a parking list per-lock instance.
The algorithm works by first trying to atomically update
the lock variable, called fast path; on failure, the mid-path
phase (optimistic spinning) begins in which only a single
waiter is queued up if there is no spinning waiter and
optimistically spins until its schedule quota expires. If
the waiter still does not acquire the lock, it goes to the
slow-path phase in which it acquires a lock on the parking
list (parking lock), adds itself, and schedules out after
releasing the parking lock. During the unlock phase, the
lock holder first resets the TTAS variable and wakes up
a waiter from the parking list while holding the parking
lock. Meanwhile, it is possible that either a new waiter
can acquire the lock in the fast path or a spinning waiter in
the mid path. Now, once a waiter is scheduled in, it again
acquires the parking lock and tries to acquire the TTAS
lock. If successful, it removes itself from the parking
list and enters the critical section; otherwise, it schedules
itself out again and sleeps until a lock holder wakes it up.
The current algorithm is unfair because of the TTAS lock;
even starves its waiters in the slow-path phase. Moreover,
the algorithm also suffers from cache-line contention be-
cause of the TTAS lock and waiters maintenance, and even
worse is the scheduling overhead in the slow-path phase
and the unlock phase for parking and wake up.

The read-write semaphore is an extension of mutex,
with a writer-preferred version. Both the write lock and
the reader count are encoded in a word to decide readers,
writer, and waiting readers. Moreover, rwsem maintains a
single parking list in which both readers and writers are
added. Thus, in addition to inheriting the issues of mutex,
rwsem also suffers from reader starvation due to the writer-
preferred version. Interestingly, developers found that the
neutral algorithm suffers from scheduler overhead [20],
while the writer-preferred version mitigated this overhead
and improved the performance by 50% [37].

3 Challenges and Approaches
We present challenges and our approaches in designing
practical synchronization primitives that can scale beyond
100 physical cores.

C1. NUMA awareness. A synchronization primitive

should scale under high contention even in NUMA ma-
chines. Although locks that are used in practice [18, 28,
29] address cache-line contention by using queue-based
locks [22] for high contention, they do not address the
cache-line bouncing (remote socket access) introduced
in NUMA machines. The remote access is at least 1.6×
slower than the local access within a socket, which is a
deterrent to the scalability of an application.

Approach: To achieve scalability in NUMA ma-
chines, hierarchical locks (e.g., Cohort lock) are an
apt choice. They mitigate the cache-line bouncing by
passing a lock within a socket, which relaxes the strict
fairness guarantee of FIFO locks for throughput.

C2. Memory-efficient data structures. Unfortunately,
current hierarchical locks severely bloat the memory due
to their large structure size (e.g., a Cohort lock requires
1,600 bytes in an eight-socket machine1), which they stat-
ically allocate for all sockets that may be unused. Memory
bloat is a serious concern because it stresses the memory
allocator and is alarming for synchronization primitives as
they statically allocate the memory. For example, the size
of the XFS inode structure increased by 4% after adding
16 bytes to the rwsem structure, which had an impact on
the footprint and performance, as there can be millions of
inodes cached on a system [8]. Thus, existing hierarchical
locks are difficult to adopt in practice because they stati-
cally allocate per-socket structures during initialization.

Approach: A hierarchical lock should dynamically
allocate per-socket structure only when it is being
used to avoid the memory bloat problem and reduce
the memory pressure on a system.

C3. Effective contention management for both over-
and under-subscribed scenarios. Designing synchro-
nization primitives that perform equally well for both
over- and under-subscribed situations is challenging. Non-
blocking synchronization primitives, such as spinlocks
including Cohort locks, work well when a system is under-
loaded. However, for an over-loaded system, they perform
poorly because spinning waiters and a lock holder con-
tend each other, which deters the progress. On the other
hand, blocking synchronization primitives such as mutex
and rwsem are designed to handle an over-loaded system.
Instead of spinning, waiting threads sleep until a lock
holder wakes one up upon lock release. However, this
procedure imposes the overhead of waking up in every
unlock operation, which increases the length of the criti-
cal section. Also, frequent sleep and wake-up operations
impose additional overhead on the scheduler, which can
result in scalability collapse, especially when multiple
lock instances are involved. To mitigate this issue, many
blocking synchronization primitives [18, 28, 29] employ

164-byte cache line size × (3 cache lines for the socket lock × 8
sockets + 1 cache line for the top lock).

USENIX Association 2017 USENIX Annual Technical Conference 605

the spin-then-park strategy: a waiter spins for a while,
and then parks itself out. Unfortunately, this approach is
agnostic of system-wide contention, which leads to sub-
optimal performance when multiple locks are contending.
Ryan et al. [17] addressed the problem by designing a
system-wide load controller, but its centralized design
has memory hot spots for its control variables (e.g., the
number of ever-slept threads) to decide whether a thread
should sleep or spin.

Approach: To work equally well in both over- and
under-loaded cases, we must address the system-wide
load that allows waiters to optimistically spin in under-
loaded cases and park themselves out in over-loaded
cases. In addition, such a decision should be taken in
a distributed way to keep the contention management
from becoming a scalability bottleneck.

C4. Scalable parking and wake-up strategy. To im-
plement an efficient blocking synchronization primitive,
the most important aspects are how and when to park
(schedule out) and wake up waiters with minimal over-
head. The current approach [28, 29] maintains a global
parking list to keep track of parked waiters and a lock
holder wakes one of the parked waiters at the unlock
operation. However, this design has several drawbacks:
The frequent updating of a global parking list becomes
a single point of contention in an over-loaded system,
which leads to severe performance degradation because
a lock holder has to wake up each sleeping waiter dur-
ing the unlock phase, which adds extra pressure on the
scheduler subsystem and lengthens the critical section:
the cost of waking up varies from 2,000–8,000 cycles in
the kernel-space or from 5,000–50,000 cycles in the user-
space (futex() overhead). Thus, according to Amdahl’s
Law, an increased sequential part can significantly affect
the scalability, especially in a large multi-core machine.

Approach: Instead of waking up the very next waiter,
a lock holder passes the lock to a non-sleeping waiter,
if any. Thus, this approach not only avoids waking
up other threads under high contention, but also mini-
mizes the access of the parking list and scheduler inter-
actions. Furthermore, we maintain a per-socket park-
ing list to remove costly cache-line bouncing among
NUMA domains for accessing the parking list.

4 Design Principles
We present two scalable NUMA-aware blocking synchro-
nization primitives, a mutex (CST-mutex) and a read-write
semaphore (CST-rwsem), that can scale beyond 100 physi-
cal cores. At a high level, our lock is a two-level NUMA-
aware lock, where a global lock is an MCS lock [25] and
a per-socket local lock is a K42 lock [15] (see Figure 2).
While the first level localizes the cache-line contention
within a socket, the second one mitigates the cache-line
bouncing among sockets. To enter a critical section, a

Per-NUMA snode Per-thread qnode

Socket 1
waiting_list

parking_list

L

T1
PW

T2
UW

T3

Socket 2
waiting_list

parking_list

Global lock Local lock

PW

T4
PW

T5

Socket 3
waiting_list

parking_list

Figure 2: A CST-mutex is active on sockets: 1, 2, and 3. Cur-
rently, socket 1 is being served. T1 now holds the lock (L); T3 is
spinning for its turn (UW: unparked waiting); T2, T4, and T5 are
sleeping (PW: parked waiting) until a lock holder wakes them up.
A lock holder, T1, will pass the lock to T3, which is spinning,
skipping the sleeping T2, to minimize the overhead of wake-up.

thread first acquires the per-socket local lock and then
the global lock. During the release phase, it first releases
the global lock followed by the local lock. To mitigate
memory bloating, we dynamically allocate the per-socket
structure (snode) when a thread first tries to acquire the
lock on a specific NUMA domain, and maintain it until
the life-cycle of the lock. Each snode maintains a per-
thread qnode in two lists: waiting_list—a K42-style list
of waiters and parking_list—a list of parked (or sleep-
ing) waiters. To acquire the lock, a thread first appends its
qnode to the waiting_list of the corresponding snode
in a UW (unparked waiting or spinning) status (T3 in Fig-
ure 2) and spins until its schedule quota is over. On timing
out, T3 parks itself by changing its status to PW (parked
waiting) and adds itself to the parking_list (T2). A lock
holder (T1) that acquires its local and the global lock,
passes the lock in the same NUMA domain by traversing
the waiting_list during the release phase. It skips the
parked waiter (T2) and passes the lock to an active waiter
(T3). If there is no active waiter, the lock holder wakes up
parked waiters in the same or other NUMA nodes to pass
the lock. Our rwsem additionally maintains a separate
reader parking list, besides writer parking list, to handle
the over-subscription of the readers.

We explain our design principles on efficient memory
usage (C1 and C2 in §4.1) and parking/wake-up strategy
(C3 and C4 in §4.2). We later show how to apply our
approaches to design blocking synchronization primitives:
CST-mutex (§5.1) and CST-rwsem (§5.2).
4.1 Memory-efficient NUMA-aware Lock
Unlike other hierarchical locks that statically allocate per-
NUMA structures for all sockets during the initialization,
CST defers the snode allocation until the moment it is
accessed first. The allocated snodes are active until the
lock is destroyed. Our dynamic allocation of snode is
especially beneficial in two cases: 1) when the number
of objects is unbounded, such as inode and mm_struct in
Linux kernel,2 and 2) when threads are restricted to access

2The static allocation of all snodes increases the inode structure size
by 3.8× and mm_struct size by 2.6× in an eight-socket machine.

606 2017 USENIX Annual Technical Conference USENIX Association

Per-NUMA snode Per-thread qnode

qtail

parking_list

L

next

p_next

UW UWT1 T2 T3

(i) Intial status

qtail

parking_list

L

next

p_next

PW UWT1 T2 T3

(ii) Thread T2 times out and changes its status to PW

qtail

parking_list
next

p_next

PW LT1 T2 T3

(iii) Thread T1 passes the lock to T3

(a) Pass the lock to an active waiter
Per-NUMA snode Per-thread qnode

qtail

parking_list
next

p_next

PW LT2 T3

(i) Intial status

(iii) Thread T2 acquires the lock

qtail

parking_list
next

p_next

LT2

(ii) Thread T3 wakes up T2

qtail

parking_list
next

p_next

UWT2 T3

(b) Pass the lock to a parked waiter
Per-NUMA snode Per-thread qnode

qtail

parking_list

PW

next

p_next

LT2 T3

(i) Intial status

(ii) Thread T2 wakes up T3 and pass the lock

qtail

parking_list
next

p_next

LT3 T2

(c) Pass the lock to the last parked waiter

Figure 3: Figure (a) shows the passing of a lock to a spinning waiter inside a per-socket structure (snode). (i) T1 is the current lock
holder, and T2 and T3 are in the waiting_list, and qtail points to the qnode of T3. (ii) T2 times out, successfully CASes its state
from UW to PW, and adds itself to the parking_list. (iii) T1 exits the critical section. It tries to pass the lock to T2, but fails to CAS the
state of T2 from UW to L. T1 goes to T3 via next pointer of T2, successfully CASes the state of T3 from UW to L, and leaves the unlock
phase. Figure (b) shows the passing of the lock to a parked waiter in the parking_list. (i) T3 (lock holder) is in the unlock phase. It
finds that waiting_list is empty as T2 is in the parking_list. T3 successfully CASes qtail to NULL. (ii) Now, T3 checks for parked
waiters in parking_list, finds T2, and updates the state of T2 from PW to R. (iii) Since stail is NULL and there are no prior waiters, T2
sets its state to L and acquires the local lock, and later goes to acquire the global lock. Figure (c) illustrates the passing of the lock to
a parked waiter at the end of the waiting_list. (i) On exiting the critical section, T2 fails to CAS the state of T3 to L, since it is parked.
(ii) T2 then explicitly SWAPs the state of T3 to L and wakes it up. T3 now holds the local lock and goes to acquire the global lock.

a subset of sockets such as running a multi-core virtual
machine on a subset of sockets in a cloud environment.

For every lock operation, we first check whether a cor-
responding snode is present, and then get the snode to
acquire the local lock. To efficiently determine whether
an snode is present, a lock maintains a global bit vector in
which each bit denotes the presence of a particular snode.
Hence, each thread relies on the bit vector for determin-
ing the presence of an snode. We use CAS to atomically
update the bit vector, but the number of CAS operations is
bounded to the number of sockets in a system during the
lifetime of a lock. A lock maintains allocated snodes in
snode_list, which is traversed by a thread to find the cor-
responding snode. We separate the snode into two cache
lines, almost-read-only for snode traversal and read-write
for the local lock operation, which prevents snode traver-
sal from incurring cache-line bouncing among sockets.

4.2 Scheduling-aware Parking/Wake-up Strategy
As discussed in the previous section, the most widely used
spin-then-park policy fails to address the issue of scalabil-
ity in NUMA machines. It works by maintaining a single,
global parking list to account for the sleeping waiters, and
wakes one or some waiters to pass the lock at the time
of release. Hence, this approach is not scalable because
it incurs contention on the parking list and suffers from
scheduler interaction as it passes the lock to a potentially
sleeping waiter in an over-subscribed condition.

To address these issues, the CST lock uses two key
ideas: it maintains a per-socket parking_list, which
minimizes costly cross-socket cache-line bouncing and
passes the lock to a spinning waiter, whose time quota is
not over yet, to minimize costly wake-up operations. We
wake up a set of skipped sleeping waiters in bulk when
there are no active waiters in the serving snode or pass the

global lock to the other waiting snode. Thus, by relaxing
the strict FIFO guarantee, we mitigate the lock-waiter
preemption problem.

4.2.1 Low-contending List Management

In a CST lock, each snode maintains the K42-style wait-
ing list that comprises its own tail pointer: qtail. For
parked waiters, the snode also maintains a per-socket
parking_list to account for the parked waiters, which
avoids the costly cache-line bouncing while manipulating
the parking_list. For a rwsem, we maintain a separate
readers and writers parking_list, which simplifies the
list processing in the unlock phase, as the lock holder
can pass the lock to all parked readers or to one of the
writers. Moreover, this approach enables a distributed
parallel waking of readers at a socket level, which can
improve the throughput of readers in an over-subscribed
scenario (refer §5.2).

4.2.2 Scheduling-aware Parking/wake-up Decision

For a blocking synchronization primitive, the most impor-
tant question is how to efficiently pass the lock or wake up
a waiter, while maintaining an on-par performance in both
the under- and over-subscribed cases. For the scalable
parking/wake-up decision, we remove costly scheduler
operations (i.e., wake-up) from the common, critical path
and employ a distributed parking decision while consid-
ering the load on a system. We discuss three key ideas
to address the problem of 1) whom to pass the lock to,
2) when to park oneself, and 3) how to take the parking
decisions for blocking synchronization primitives.
Passing lock to an active spinning waiter. In queue-
based locks (e.g., MCS, K42, and CLH), the successor of
a lock holder always acquires the lock, which guarantees
complete fairness, but, unfortunately, causes severe perfor-

USENIX Association 2017 USENIX Annual Technical Conference 607

mance degradation in an over-subscribed system, as this
invariant stresses the scheduler to always issue a call to
wake up the parked waiter. To mitigate this issue, we mod-
ify the invariant of a succeeding lock holder from the next
waiter to a nearest active waiter, which is still spinning
for the lock acquisition. Hence, the waiting_list com-
prises both active and parked waiters in its queue, and the
parked waiters are added to a separate list: parking_list.
Figure 3 (a) illustrates this scenario, where T1 passes the
lock to T3 instead of T2, since T2 is parked. Later, parked
waiters are woken up in batches up to the number of
physical cores in a socket once there is no active waiter
in the waiting_list. When a parked waiter is woken
up, it generally re-queues itself back at the end of the
waiting_list, and again actively spins for the lock. This
approach is effective because we can avoid scheduler in-
tervention under high contention by passing the lock to
an active waiter. In addition, a batched wake-up strategy
amortizes the cost of the wake-up phase.
Scheduling-aware spinning. Current hierarchical
locks [4, 6, 11] do not consider the amount of time
a waiter should spin before parking itself out. Thus,
in an over-loaded system, waiting threads and a lock
holder will contend with each other, which deters the
system progress. Instead, in CST locks, waiting threads
park themselves as soon as their time quota is about to
cease. To check the quota, we rely on the scheduler
and its APIs for this information. Specifically in the
Linux kernel, the scheduler exposes need_resched() to
know whether the task should run, and preemption APIs
(preempt_disable() / preempt_enable()) to explicitly
disable or enable the task preemption. These APIs work
with both preemptive and non-preemptive kernels. Limit-
ing the duration of spinning up to the time quota proposed
by the scheduler has several advantages: 1) It guaran-
tees the forward progress of the system in an over-loaded
system by allowing the current lock holder to do useful
work while mitigating its preemption. 2) It allows other
tasks to do some useful work rather than wasting the CPU
cycles. 3) By only spinning for the specified duration,
the primitive respects the fair scheduling decision of the
scheduler.
Scheduling-aware parking. The current blocking syn-
chronization primitives [28, 29] do not efficiently account
for the system load; thus, they naively park waiters even
in under-loaded scenarios. Hence, a naive use of the spin-
then-park approach results in scheduler intervention, as
the waiters park themselves as soon as their time quota
ceases, and the lock holder has to do an extra operation
of waking them up, which severely degrades the perfor-
mance of the system in an under-loaded scenario [27].
Also, previous research [17] has shown that estimating
system load is critical to the spin-then-park approach be-
cause it not only removes the scheduler interaction from

the parking phase, but also improves the latency of the
lock/unlock phase.

We gauge the system load by peeking at the number of
running tasks on a CPU (i.e., the length of scheduling run
queue for a CPU). Checking the number of running tasks
is almost free because a modern OS kernel, including
Linux, has a per-CPU scheduler queue, which already
maintains an up-to-date per-CPU active task information.
On the other hand, maintaining system-wide, central in-
formation, like the approach used by Johnson et al. [17],
is costly because the cost of collecting the total number of
active tasks increases with increasing core count, which
may not catch the load imbalance due to the new incoming
tasks or the rescheduling of periodic tasks.

5 Scalable Blocking Synchronizations
We now discuss the design and implementation of

the two types of NUMA-aware blocking synchronization
primitives (mutex and rwsem) using our design decisions.
We first present the design of mutex (CST-mutex) along
with the parking strategy and later extend it to rwsem
(CST-rwsem). Figure 4 presents their pseudo-code.
5.1 Mutex (CST-mutex)
CST-mutex is a two-level hierarchical lock, which is ex-
tended to support blocking behavior by adding several
design choices, such as scheduling-awareness, efficient
spinning and parking strategy, and passing of the lock to
the spinning waiter. The global lock employs an MCS
lock, whereas the local lock is a K42 lock [15], a variant
of the MCS lock. We choose the K42 lock because it does
not require an extra argument in the function call as it
maintains a qnode structure on the stack, but we can use
any queue-based lock for the local lock. The top level
lock maintains a dynamically allocated per-socket struc-
ture (snode) to keep track of the global lock and local lock
information such as its waiting_list and the next waiter
(for the K42 lock), and also parking_list information
for the parked waiters. The MCS lock protocol has two
status values: waiting (lock waiter) and locked state (lock
holder). To support the blocking behavior, we keep the
locked state (denoted as L) intact and extend the waiting
state to the spinning/unparked (UW) and parked (PW) state.
We also introduce a special state, called re-queue (R), that
notifies the waiter to re-acquire the local lock.

Extended Cohort lock/unlock protocol. A thread
starts by trying to acquire a local lock inside a socket. If
there are no predecessors during the lock acquisition, it ac-
quires the global lock, thereby becoming the lock holder,
and enters the critical section (CS). The other threads that
do not acquire the local lock are the local waiters, and
the ones waiting for the global lock are the socket leaders.
They wait for their respective predecessor to pass the lock.
In the release phase, the lock holder locally tries to pass
the lock to a successor. Thus, on success, the successor

608 2017 USENIX Annual Technical Conference USENIX Association

1 def mutex_lock(lock):
2 snode = find_or_add_snode(lock) # Find or allocate snode once
3 while True:
4 lock_status = acquire_local_lock(snode)
5 if lock_status & ACQUIRE_GLOLBAL_LOCK is True: # Acquire global lock?
6 acquire_global_lock(lock, snode)
7 return
8
9 def acquire_local_lock(snode):

10 cur_qnode = init_qnode(status=UW, next=None) # Initialize qnode on the function stack
11 pred_qnode = SWAP(&snode.qtail, &cur_qnode) # Add to snode’s waiting list
12 if pred_qnode is None: # Check for predecessor
13 cur_qnode.status = L|ACQUIRE_GLOLBAL_LOCK # Should acquire global lock
14 return cur_qnode.status
15 pred_qnode.next = &cur_qnode # Update predecessor next pointer
16 cur_qnode.task = current_task
17 while cur_qnode.status == UW: # Spinning for the local lock
18 if task_timed_out(cur_qnode.task): # Time quota is over
19 if park_write_qnode(snode, cur_qnode) == REQUEUE: # Check for requeue state
20 if cur_qnode.status == L: # Local lock acquired
21 break
22 else:
23 return R # Restart the local lock acquisition
24 update_next_qnode(snode, cur_qnode) # Update the next qnode (k42 protocol)
25 return cur_qnode.status
26
27 def acquire_global_lock(lock, snode):
28 snode = init_snode(snode, status=UW, next=None) # Initialize snode
29 pred_snode = SWAP(&lock.stail, &snode) # Add to global lock’s waiting list
30 if pred_snode is None:
31 snode.status = L # Acquired global lock
32 return
33 pred_snode.next_snode = snode # Update predecessor next pointer
34 snode.leader_task = current_task
35 while snode.status == UW: # Spin till the global lock holder passes the lock
36 if task_timed_out(current_task): # Leader time quota is over
37 if CAS(&snode.status, UW, PW): # Modify the state to PW
38 schedule_out(snode.leader_task) # Schedule out the task
39 lock.current_serving_socket = snode
40
41 def mutex_unlock(lock):
42 snode = lock.current_serving_socket # Get the lock holder’s snode #
43 if snode.local_batch_count < BATCH_COUNT: # local lock batching
44 snode.local_batch_count += 1
45 # Pass the lock to waiter with UW state and already has the global lock
46 if pass_local_lock(snode, acquire_global=False) is True:
47 return # Successfully found an active waiter
48 snode.local_batch_count = 0 # Reset the batch count
49 release_global_lock(lock, snode) # Release the global lock
50 release_local_lock(lock, snode) # Release the local lock
51 if snode_parking_list_is_not_empty(snode): # Remove parked waiter starvation
52 wake_up_parked_waiters(snode) # Wake up set of parked waiters
53
54 def release_local_lock(lock, snode):
55 if snode.qnext is None: # Check for next qnode, if any
56 if CAS(&snode.qtail, &snode.qnext, None) is True: # No qnode present
57 wake_up_parked_waiters(snode) # Wake up set of parked waiters
58 while snode.qnext is None: # qnode joined the qtail (waiting)
59 continue
60 if pass_local_lock(snode, acquire_global=True) is False:
61 with parking_list_lock(snode): # Acquire parking list lock to wake up a waiter
62 snode.qnext.status = L|ACQUIRE_GLOLBAL_LOCK # Update status
63 remove_from_parking_list(snode.qnext) # Update the parking list
64 schedule_in(snode.qnext.task) # Wake up the parked waiter
65
66 def release_global_lock(lock, snode):
67 if snode.next_snode is None: # Check for next snode, if any
68 if CAS(&lock.stail, snode, NULL) is True: # No snode present
69 return
70 while snode.next_snode is None: # Some snode joined the global lock stail
71 continue
72 if CAS(&snode.next_snode.status, UW, L) is False: # Check for parked snode
73 snode.next_snode.status = L # next snode is parked, still pass the lock
74 schedule_in(snode.next_snode.leader_task) # Wake it up for global lock acquisition

75 def park_write_qnode(snode, cur_qnode):
76 park_flag = False # Denotes whether waiter is parked
77 with parking_list_lock(snode): # Acquire parking list lock
78 if CAS(&cur_qnode.status, UW, PW) is True: # Try to update the state
79 add_to_parking_list(snode, cur_qnode) # Update parking list
80 park_flag = True # Parking was successful
81 if park_flag is True:
82 schedule_out(cur_qnode.task) # Schedule the task out
83 # cur_qnode.task is now awake, the task now returns REQUEUE
84 return REQUEUE # Should check for requeue phase
85 else:
86 return DO_NOT_REQUEUE # Acquired the lock
87
88 def pass_local_lock(snode, acquire_global):
89 qnode = snode.qnext # Search from snode.next
90 while True: # Search for an active waiter
91 if CAS(&qnode.status, UW, L) is True:
92 if acquire_global is True: # Need to acquire the global lock
93 L = L|ACQUIRE_GLOLBAL_LOCK # Update L status bit
94 return True
95 if qnode.next is None:
96 break
97 qnode = qnode.next # Find next qnode
98 snode.qnext = qnode # Found no one, updating qnext with tail
99 return False

100
101 def wake_up_parked_waiters(snode):
102 with parking_list_lock(snode): # Acquire the parking list
103 for qnode in parking_list(snode): # Iterate over stored parked waiters
104 qnode.status = R # All waiter should requeue right now
105 remove_from_parking_list(snode, qnode) # Update parking list
106 schedule_in(qnode.task) # Schedule in the waiter
107
108 def write_lock(lock):
109 mutex_lock(lock) # Acquire mutex first
110 for s in snode_list(lock): # Check for active readers
111 while s.active_readers is not 0:
112 if task_timed_out(current_task):
113 schedule() # Only schedule, will come back
114
115 def write_unlock(lock):
116 mutex_unlock(lock) # Release the mutex
117 if lock.stail is None: # There is no waiting snode
118 for s in snode_list(lock): # Traverse the snode
119 wake_up_first_read_waiter(s.reader_parking_list) # Wake-up a reader
120
121 def read_lock(lock):
122 snode = find_or_add_snode(lock) # Find or allocate the snode
123 ret = True
124 while True: # Spin, till acquired the lock
125 while lock.stail is not None: # Check for no waiters
126 if task_timed_out(current_task):
127 ret = park_reader_task(lock, snode) # park the reader
128 if ret is True:
129 FAA(&snode.active_readers, 1)
130 if lock.stail is not None: # No one in the global lock tail
131 FAA(&snode.active_readers, -1)
132 ret = True
133 continue
134 break
135
136 def read_unlock(lock):
137 snode = find_or_add_snode(lock)
138 FAA(&snode.active_readers, -1) # Update the snode readers count.
139
140 def park_reader_task(lock, snode):
141 # Wait and park youself until global lock tail is NULL
142 park_and_wait_on_event(&snode.reader_parking_list, (lock.stail is not None))
143 if CAS(&snode.reader_is_parked_leader, False, True) is True:
144 FAA(&snode.active_readers, 1) # Decrease the active reader count
145 wake_up_all_read_waiters(&snode.reader_parking_list) # Wake up all readers
146 snode.reader_is_parked_leader = False
147 return False
148 return True

Figure 4: Pseudo-code of CST-mutex (lines 1 – 74), CST-rwsem (lines 108 – 148), and their parking/wake up (lines 75 – 106). We
use three atomic instructions: CAS(addr,new,old) atomically updates the value at addr to new and returns True if the value at addr is
old. Otherwise, it returns False without updating addr. SWAP(addr,val) atomically writes val to addr and returns the old value at
addr. FAA(addr,val) atomically increases the value at addr by val.
does not acquire the global lock and immediately enters
the critical section. To prevent starvation, a lock holder
later passes the global lock to a globally waiting successor
(socket leader) after a bounded number of local acquisi-
tions. We now describe the CST-mutex protocol in detail,
which is an extension of the aforementioned steps.

Acquire local lock: A thread T starts by first finding (or
adding if not present) its snode (line 2). Unlike the Cohort
lock protocol, T tries to acquire the local lock (line 4) in
an infinite for loop because it may restart the protocol
after being parked. In the local lock phase, T initializes
its qnode (line 10) and then SWAPs the qtail of snode
with qnode. It then acquires the global lock when no

waiters are present. Otherwise, T spins on its status, which
changes to either the L or R state (line 17). While waiting,
T initiates the parking protocol (lines 75 – 86) on timing
out, where it tries to CAS the status of qnode from UW to
PW. T returns back on failure; otherwise, it adds itself to
the parking_list and schedules out. Later, when a lock
holder wakes it up, it resumes (line 83) and either acquires
the local lock or restarts the protocol, depending on its
updated status. If T has L status after being woken up, it
goes on to acquire the global lock as the previous lock
holder releases the global lock before waking up sleeping
waiters. To mitigate cache-line bouncing, T checks for the
global lock flag (line 5). If not set, T already holds the

USENIX Association 2017 USENIX Annual Technical Conference 609

global lock, or else it goes to acquire it.

Acquire global lock: T initializes its snode (line 28) and
adds itself to the waiting_list (line 29). It then acquires
the global lock if there is no waiter (line 31), or waits until
its predecessor snode passes the lock (line 35). On timing
out, while spinning (line 35), T CASes status of snode from
UW to PW and schedules out (line 38); otherwise, it acquires
the lock as the predecessor passed the lock. Note that even
after being woken up, T always acquires the global lock
without re-queueing itself.

Release local lock: T gets the current snode (line 42) and
tries to locally pass the lock if it is within the batching
threshold (line 43). To locally pass the lock, T first tries
to CAS the status of its successor from UW to L. On suc-
cess, the unlock phase is over; otherwise, it traverses the
waiting_list to find an actively running waiter (lines 88
– 99). Figure 3 (a) illustrates this scenario, where T1 ends
up passing the lock to T3 since T2 has PW state. Note that
if all waiters are parked, (line 99), T releases the global
lock (line 49) and then the local lock (line 50). T can also
initiate both release phases when an snode exceeds the
batching threshold. In the local unlock phase, T finds the
snode qnext pointer to pass the lock. If qnext is NULL, T
updates the qtail of snode with NULL (line 68) and wakes
up waiters in the parking list to the R state to re-queue
them back to the waiting_list (line 101). Figure 3 (b)
illustrates the scenario, where T3 is the last one in the
waiting_list. In the release phase, after resetting qtail
to NULL, T3 wakes up parked T2 after updating its status
from PW to UW. If there are waiters (lines 60 – 64), then
T again tries to pass the lock to a spinning waiter in the
waiting_list (line 88). If successful, a waiter acquires
the local lock and then goes for the global lock since T
has already released that one. If all, including the last
waiter, are parked (lines 60–64), T passes the local lock
to the last waiter and wakes it up because T cannot reset
the qtail pointer, as there maybe some parked waiters;
hence, passing the lock to the last waiter is mandatory.
Figure 3 (c) shows this scenario in which T2 is about to
release the local lock and finds that T3 is the last one and
has PW status. T2 has to wake up T3 with an L state (not R),
so that T3 can maintain the K42/MCS lock protocol.

Release global lock: The protocol differs from the MCS
protocol for passing the lock. For an existing snode suc-
cessor, thread T tries to CASes the status of its succeeding
snode from UW to L. If successful, the lock is passed; oth-
erwise, T explicitly updates the status to L and wakes up
the succeeding socket leader (lines 72 – 74).
5.2 Read-write Semaphore (CST-rwsem)
CST-rwsem is a writer-preferred version of the Cohort read-
write lock [4] (CST-rwsem) with two extensions: 1) ap-
plication of our parking strategy to the readers and 2)
our own version of the mutex algorithm (§5.1). It relaxes

the condition of acquiring the CS by multiple threads
in a read mode. Hence, it maintains an active reader
count (active_readers) on each snode to localize the
contention on each socket at the cost of increasing the
latency for the writers. We further extend the snode to
support the parking of readers by maintaining a separate
parking list for them, which allows readers to separately
park themselves without intervening with the writers.

Write lock: Thread T first acquires the CST-mutex
(line 109). Then T traverses all snodes to check whether
the value of active_readers is zero (line 111). Due to
our writer-preferred algorithm, T blocks new readers from
entering the CS because they can only proceed if there is
no writer. Once the writer has acquired the mutex lock, it
does not park itself, as this is a writer-preferred algorithm
and the writer will soon enter the CS (lines 110 – 113).

Read lock: T first finds its snode (line 122) and waits until
there are no writers (line 125). On timing out, while wait-
ing, T adds itself to the parking_list and schedules itself
out until there are no writers (line 142). The last writer
wakes up the first reader in the parking_list, which
wakes up remaining sleeping waiters in its own socket.
Lines 143 – 146 present the waking up of the parked
reader and subsequent readers.

Write unlock: T first releases the writer lock (line 116).
If there are no writers (line 117), then T checks for any
sleeping waiters across all snodes. If there are any, it
wakes up the only very first waiter, which will subse-
quently wake up remaining waiters to acquire the read
lock (line 119). This approach has two advantages: 1) it
ensures distributed, parallel wake-up of the readers, and
2) it does not lengthen the writer unlock phase along with
the least number of remote memory accesses.

Read unlock: Thread T searches for its snode from
the list of existing sockets and atomically decreases the
active_readers count by 1. T does not have to wake up
any writer because our approach does not park the writer
thread, which is going to be the next lock holder.

6 Implementation
We implemented CST locks on the Linux kernel v4.6
and v4.7. We also provide a destructor API to reclaim
the snode memory while destroying a data structure (e.g.,
destroy_inode for inode). For our evaluation, we modi-
fied the inode structure to use our CST-rwsem in v4.7 and
CST-mutex in v4.6 since mutex was replaced with rwsem
from v4.7 [40]. We also modified the virtual memory
subsystem (mmap_sem) that manipulates the virtual mem-
ory area of a process. We modified 650 and five calls
for mmap_sem and inode, respectively. In total, our lock
implementation comprises 1,100 lines of code and can
substitute most of the lock instances in Linux.

610 2017 USENIX Annual Technical Conference USENIX Association

0k

1k

2k

3k

4k

5k

6k

0 20 40 60 80 100 120
0.0 KB
0.8 KB
1.6 KB
2.4 KB
3.2 KB
4.0 KB
4.8 KB
5.6 KB

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

0 20 40 60 80 100 120
0.0 KB

0.8 KB

1.6 KB

2.4 KB

3.2 KB

4.0 KB

0

40

80

120

160

200

240

0 20 40 60 80 100 120
0 MB
40 MB
80 MB
120 MB
160 MB
200 MB
240 MB
280 MB

Jo
bs

/h
ou

r

#thread

Vanilla
(a) Histogram

#thread

Cohort
(b) Metis

M
em

or
y

#thread

CST
(c) Psearchy

Figure 5: Impact of synchronization primitives on the scalability and memory utilization for three applications: (a) Histogram, (b)
Metis, and (c) Psearchy with Linux’s native rwsem (Vanilla), Cohort read-write lock, and CST-rwsem.
7 Evaluation
We evaluate the impact of CST locks by answering the
following questions:
• How do locks affect the scalability and memory uti-

lization of real-world applications? (§7.1)
• What is the impact of locks on operations provided

by the OS in various scenarios? (§7.2)
• How does each design aspect help improve the per-

formance? (§7.3, §7.4)
Evaluation setup. We evaluate CST locks on three
workloads [1, 33] in an under-subscribed scenario, three
micro-benchmarks from FXMARK [27] that stress various
file system components and the kernel memory allocator.
Finally, we breakdown the performance implication of
each design aspect using a hash table micro-benchmark.
We evaluate on an eight-socket, 120-core machine with
Intel Xeon E7-8870 v2 processors.
7.1 Application Benchmarks
We evaluate the scalability of CST-rwsem on three applica-
tions, namely Histogram [33], Metis [1], and Psearchy [1],
that scale with increasing core count and stress the mem-
ory subsystem of the Linux kernel at varying levels. We
compare our lock with the Linux’s rwsem and an in-kernel
port of Cohort locks [14]. For each benchmark results, we
use Vanilla for the native Linux’s rwsem, Cohort for the
read-write Cohort lock, and CST for the CST-rwsem lock.
Histogram is a MapReduce application, which is page-
fault intensive. It mmaps an 11 GB file at the beginning
and keeps reading this file while each thread performs
a simple computation. Figure 5 (a) shows that NUMA-
aware Cohort and CST locks outperform the native im-
plementation after 60 cores. They scale better because
both locks localize the number of active readers within
a socket, thereby having almost negligible contention
across the sockets. Moreover, both locks have 2% idle
time because the Cohort lock is non-blocking by design
and the CST-rwsem effectively behaves as a non-blocking
lock. On the other hand, the vanilla version is idle 10.5%
of the time because of its ineffective parking strategy even
in the under-subscribed situation. In summary, both locks
outperform the native rwsem by 1.2× at 120 cores.
Metis is a mix of page-fault and mmap operation work-
load. It runs a worker thread on each core and mmaps
12 GB of anonymous memory for generating tables for
map, reduce, and merge phases. Figure 5 (b) shows that
both Cohort and CST locks outperform the original ver-

sion by 1.6× as soon as the frequency of the write opera-
tion increases. Since the Cohort lock is non-blocking, it
does not sleep, whereas the CST lock efficiently handles
the under-subscribed case by not parking the threads, re-
sulting in only 0.5% of idle time. Moreover, both locks
batch readers, which improves the throughput of the work-
load. On the other hand, the original rwsem has 39% of
the idle time because of its naive parking strategy and is
1.6× slower than the others at 120 cores.
Psearchy is a parallel version of searchy that does text
indexing. It is mmap intensive, which stresses the mem-
ory subsystem with multiple userspace threads. It does
around 96,000 small and large mmap/munmap operations
from 96,000 files with multiple threads, which taxes the
writer side of the rwsem in the memory subsystem as well
as the allocation of the inodes for those files in the vir-
tual file system layer. Figure 5 (c) shows that CST-rwsem
outperform both the Cohort and native locks by 1.4× at
120 cores. Cohort locks suffer from the static allocation
because the kernel has to allocate 96,000 inodes for read-
ing files into a per-core hash table of Psearchy, which not
only stresses the memory allocator with large objects, but
also suffers from ineffective scheduling because of the
involvement of multiple instances of locks. Like prior
workloads, the native lock suffers from the scheduler in-
tervention after 45 cores, as it spends up 54.4% being idle,
whereas the CST-rwsem is only idle for 11.4% of the time.

Summary. Figure 5 shows the impact of scheduler in-
tervention with increasing contention between readers
and writers. With our efficient spinning strategy that
checks its local load, CST locks have the same benefit
as Cohort locks in the case of a highly contended but
under-subscribed system. While Cohort locks improve the
scalability of applications in highly contended and under-
subscribed scenario, they hamper the scalability of appli-
cations that allocate multiple instances of locks (Figure 5
(c)). Unlike Cohort locks, CST locks consciously allocate
memory with increasing socket count, which saves up to
10× of memory for each workload on a single socket, and
1.5 – 9.1× at 120 cores. Thus, CST locks show that dy-
namic allocation is beneficial to real applications, while
mitigating the memory bloat issue and maintaining an
on-par performance.
7.2 Over- And Under-subscribed Cases
We compare the performance of CST locks with the ker-
nel and Cohort locks in both an over- and under-subscribed

USENIX Association 2017 USENIX Annual Technical Conference 611

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 128 256
0

40
80

120
160
200
240

1 2 4 8 16 32 64 128 256

O
ps

/µ
se

c

#thread

(a) DWOM (mutex)

Vanilla
Cohort

CST

#thread

(b) MWCM (mutex)

#thread

(c) MRDL (rwsem)

Figure 6: Impact of synchronization primitives on the scalability of micro-benchmarks [27] that affect file system operations such as
(a) overwriting a block in a shared file, (b) creating, and (c) enumerating files in a shared directory.

system, where multiple instances of locks are in use. We
run FXMARK because it stresses various file system oper-
ations by only stressing various kernel components that
interact with the virtual file system layer, without any user-
space computation. We use three micro-benchmarks from
FXMARK [27] to show how multiple instances—static
lock size allocation, contention, and scheduler—affect
the scalability of file system operations: DWOM updates a
shared file in which threads overwrite a block. It rep-
resents a log in I/O workloads such as databases that
multiple threads share and manipulate. MWCM creates mul-
tiple files in a shared directory. Both stress the writer lock
of rwsem, and mutex. Finally, MRDM enumerates all files in
a shared directory and stresses the reader lock.

Block overwrite. Figure 6 (a) shows the impact of var-
ious locks on the scalability of block overwriting that
stresses the mutex. We observe that the CST lock outper-
forms the Cohort lock by 1.6× and 2.3×, and the Linux
one by 2.6× and 2.5× for 120 and 240 threads, respec-
tively. Its efficient parking design maintains an on-par
performance even in the over-subscribed scenario (i.e.,
2× more threads). Cohort locks suffer from scheduler in-
teraction because tasks get frequently rescheduled, which
consume 54.4% of the time because of no scheduling
information. The native mutex suffers from cache-line
bouncing until 60 cores, but starts to suffer from scheduler
intervention since the threads start parking themselves as
the system is 98% and 90% idle at 120 and 240 threads,
respectively.

File creation. Figure 6 (b) shows the impact of various
locks on file creation. CST-mutex outperforms the Cohort
lock by 1.4× and 1614.7×, and the Linux mutex by 1.7×
and 2.2× for 120 and 240 threads, respectively. At 240
cores, CST-mutex suffers from a bottleneck imposed on
the memory allocator because of the over-subscription,
which also happens with the Linux mutex. The Cohort
lock, stresses both the scheduler and the memory allocator,
as each operation allocates a new inode, whose size is
3.8× larger than the normal inode structure. Moreover,
at 240 cores, its performance severely degrades because
of its non-blocking nature, and is 743.0× slower than
the Linux mutex. The Linux version again suffers from
the cache-line contention after 30 cores and then from
scheduler intervention after 60 cores.

File enumeration. Figure 6 (c) shows the impact of

reading a directory. CST-rwsem achieves almost linear
scalability with increasing threads up to 120 cores and
further scales in the over-subscribed case. It outperforms
the Cohort lock by 3.3× and 3.7×, and the Linux one
by 4.6× and 4.7× for 120 and 240 threads, respectively.
The Cohort lock still suffers from scheduler interaction,
whereas the Linux version suffers from cache-line con-
tention because of the global count of readers compared
with the per-socket storage by both hierarchical locks.

7.3 Performance Breakdown
We evaluate how each component of CST contributes
to the overall performance improvement by using an in-
kernel hash table that is protected by a single lock. To
quantify the impacts of NUMA awareness and parking
strategy, we keep the read-write ratio at 90/10%. We
vary the thread count from 1 to 600 threads on 120 cores
to show the effectiveness of our blocking strategy even
in the over-subscribed scenario. Figure 7 (a) shows the
throughput of readers with increasing thread count. We
evaluate three variants of the reader-side parking strat-
egy: 1) global wake-up of parked readers (CST-Wake)
and 2) distributed wake-up (CST-DWake). In an under-
subscribed system, CST variants outperform both Cohort
and Linux by 4.6× and 10×, respectively, as Cohort locks
suffers from scheduler intervention (86.4%) and mutex is
contending on the global reader count value. Beyond 120
threads, both the Cohort and CST-Spin approaches per-
form poorly compared with Linux because they are non-
blocking. On the other hand, CST-Wake and CST-DWake
scale up to 600 threads, thereby showing the importance
of blocking behavior. CST-DWake, a distributed wake-up
scheme for readers, wakes up more readers in parallel,
thereby improving their performance by 1.2× over the
global wake-up strategy and outperforming the Linux
version by 9.1×.

Figure 7 (b) presents another micro-benchmark results
in which we update a single cache line by multiple threads
from 120 to 600. We compare the Linux’s mutex with the
Cohort lock and two CST locks: 1) CST-WA is the block-
ing lock that modifies the status invariant and wakes up all
parked waiters in a socket, and 2) CST-WS is also block-
ing but wakes up the selected number of parked waiters in
which the number of wake-ups is equal to the number of
hardware threads in a socket. At 120 threads, the native
mutex suffers from cache-line bouncing and later from

612 2017 USENIX Annual Technical Conference USENIX Association

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512

0

200

400

600

800

1000

120 240 360 480 600

4,621.3 6,167.1 10,057.0 20,322.9

R
ea

ds
/µ

se
c

#thread

(a) Hash table lookup (rwsem)

Vanilla
Cohort

CST-Wake
CST-DWake

Ti
m

e
(n

s)

#thread

(b) Single cache line access (mutex)

Vanilla
Cohort

CST-WA
CST-WS

Figure 7: Two micro-benchmarks to illustrate the performance
impact of various techniques employed by CST-rwsem and
CST-mutex. Figure (a) represents the lookup performance of
a concurrent hash table for 10% writes, which uses rwsem. Fig-
ure (b) shows the time taken to update a single cache line by
holding a mutex with increasing thread count.

contention on its global parking_list while still main-
taining a permissible performance beyond 120 threads.
On the other hand, all CST variants address the cache-line
bouncing issue for 120 threads. However, the Cohort lock
suffers from spinning at higher core count since the wait-
ers preempt the lock-holder after 120 threads. CST-WA
and CST-WS address the limitation of the Cohort lock
and maintain on-par performance even beyond 120 cores.
CST-WS further mitigates the lock-holder preemption
problem, since it does not wake up all waiters in one shot
inside a socket, which has slightly higher throughput than
CST-WA. In summary, CST-WS outperforms the Linux
version by 1.7× at 6× over-subscription.

7.4 Critical Section Latency
We evaluate the lock/unlock pair latency of rwsem to
gauge the effectiveness of CST against the Linux ver-
sion. Table 1 shows that while NUMA-aware lock is a
better fit for multiple readers/writers, it suffers in the low
contention scenario because of the costly operation of
finding the snode for readers and multiple atomic opera-
tions to obtain the lock, which we can improve with the
hysteresis-based technique [5].

8 Discussion and Limitations
The current design of CST locks can introduce starvation
in two cases: 1) re-queueing of the waiters after they are
parked, and 2) the writer-preferred version of the rwsem.
Although, in theory, we can devise a non-blocking al-
gorithm that mitigates the overhead of costly scheduler
interaction for the first case, we have not come across
such an algorithm in practice and the CST lock is a better
alternative than the current mutex that also suffers from
the same starvation issue. We believe that this can be a
plausible future research direction both in the terms of syn-
chronization primitives and lightweight scheduling. For

Latency RW-lock (ns)

Kernel Cohort CST

Reader (1 reader) 30.4 36.4 37.6
Reader (120 readers) 20,062.2 1,973.2 1,925.3
Writer (0 reader) 31.3 140.3 75.0
Writer (119 readers) 28,545.2 11,314.4 4,252.2

Table 1: Empty critical section latency for rwsem.

CST-rwsem, we choose a writer-preferred version because
it batches readers, thereby improving the throughput of
the application, which is similar to the design ideology
of the Linux rwsem [37]. We can address this limitation
by exactly adopting the writer-preferred version of the
read-write Cohort lock [4].

Even though CST locks outperform both Cohort locks
and the Linux mutex, we can further scale applications
by using combining [13, 32] or the remote-core locking
approach [23]. However, the only caveat with these ap-
proaches is that we need to rewrite some parts of the
OS, which is not easy due to the large code base and
complicated lock usage. Another area in which we can
improve the performance of CST locks is the latency in
low contention (Table 1). We are investigating the use
of hardware transactional memory (TSX) to acquire and
release the locks in a transaction as in prior work [5]. Al-
though CST locks cannot completely replace all of the
locks, they are beneficial to a few data structures that are
critical and contend as much as inode, mm, dentry, etc.

9 Conclusion
Synchronization primitives are the basic building blocks
of any parallel application, out of which the blocking syn-
chronization primitives are designed to handle both over-
and under-subscribed scenarios. We find that the existing
primitives have sub-optimal performance for machines
with large core count. They suffer either from cache-line
contention or scheduler intervention in both scenarios,
and are oblivious to the existing NUMA machines. In
this work, we present scalable NUMA-aware, memory-
efficient blocking primitives that exploit the NUMA
hardware topology along with scheduling-aware parking
and wake-up strategies. We implement CST-mutex and
CST-rwsem, which provide the same benefit of existing
non-blocking NUMA-aware locks in under-subscribed
scenario while maintaining similar peak performance
in over-subscribed cases. Our code is available here:
https://github.com/sslab-gatech/cst-locks.

10 Acknowledgment
We thank the anonymous reviewers and our shep-
herd, Jean-Pierre Lozi, for their helpful feedback.
This research was supported by the NSF award DGE-
1500084, CNS-1563848, CRI-1629851, ONR under grant
N000141512162, DARPA TC program under contract No.
DARPA FA8650-15-C-7556, DARPA XD3 program un-
der contract No. DARPA HR0011-16-C-0059, and ETRI
MSIP/IITP[B0101-15-0644].

USENIX Association 2017 USENIX Annual Technical Conference 613

https://github.com/sslab-gatech/cst-locks

References
[1] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.

Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI, 2010.

[2] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich.
Non-scalable locks are dangerous. In Proceedings of the Linux
Symposium, Ottawa, Canada, July 2012.

[3] D. Bueso and S. Norton. An Overview of Kernel Lock Im-
provements, 2014. https://events.linuxfoundation.org/
sites/events/files/slides/linuxcon-2014-locking-
final.pdf.

[4] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and
N. Shavit. NUMA-aware Reader-writer Locks. In Proceedings of
the 18th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 157–166, Shenzhen, China, Feb.
2013.

[5] M. Chabbi and J. Mellor-Crummey. Contention-conscious,
Locality-preserving Locks. In Proceedings of the 21st ACM
Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 22:1–22:14, Barcelona, Spain, Mar. 2016.

[6] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance
Locks for Multi-level NUMA Systems. In Proceedings of the
20th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), San Francisco, CA, Feb. 2015.

[7] G. Chadha, S. Mahlke, and S. Narayanasamy. When Less is
More (LIMO):Controlled Parallelism For improved Efficiency. In
Proceedings of the 2012 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES ’12,
2012.

[8] D. Chinner. Re: [regression, 3.16-rc] rwsem: optimistic spinning
causing performance degradation, 2014. https://lkml.org/
lkml/2014/7/3/25.

[9] D. Dice. Malthusian Locks. CoRR, abs/1511.06035, 2015. URL
http://arxiv.org/abs/1511.06035.

[10] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA
Locks. In Proceedings of the Twenty-third Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’11,
pages 65–74, 2011.

[11] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A Gen-
eral Technique for Designing NUMA Locks. In Proceedings of
the 17th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 247–256, New Orleans, LA, Feb.
2012.

[12] Facebook. A persistent key-value store for fast storage environ-
ments, 2012. http://rocksdb.org/.

[13] P. Fatourou and N. D. Kallimanis. Revisiting the Combining
Synchronization Technique. In Proceedings of the 17th ACM
Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 257–266, New Orleans, LA, Feb. 2012.

[14] H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The
Case is Not Closed Yet. In Proceedings of the 2016 USENIX
Annual Technical Conference (ATC), pages 649–662, Denver, CO,
June 2016.

[15] IBM. IBM K42 Group, 2016. http://researcher.watson.
ibm.com/researcher/view_group.php?id=2078.

[16] Xeon Processor E7-8890 v4 (60M Cache, 2.20 GHz). In-
tel, 2016. http://ark.intel.com/products/93790/Intel-
Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz.

[17] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decou-
pling Contention Management from Scheduling. In Proceedings of
the 15th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS),
pages 117–128, New York, NY, Mar. 2010.

[18] X. Leroy. The open group base specifications issue 7, 2016. http:
//pubs.opengroup.org/onlinepubs/9699919799/.

[19] R. Liu, H. Zhang, and H. Chen. Scalable Read-mostly Synchro-
nization Using Passive Reader-writer Locks. In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC), pages
219–230, Philadelphia, PA, June 2014.

[20] Y. Liu. aim7 performance regression by commit 5a50508 report
from LKP, 2014. https://lkml.org/lkml/2013/1/29/84.

[21] W. Long. qspinlock: Introducing a 4-byte queue spinlock, 2014.
https://lwn.net/Articles/582897/.

[22] W. Long. locking/mutex: Enable optimistic spinning of lock
waiter, 2016. https://lwn.net/Articles/696952/.

[23] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast
and Portable Locking for Multicore Architectures. ACM Trans.
Comput. Syst., 33(4):13:1–13:62, Jan. 2016.

[24] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH
Queue Lock. In Proceedings of the 12th International Conference
on Parallel Processing, Euro-Par’06, pages 801–810, 2006.

[25] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable
Synchronization on Shared-memory Multiprocessors. ACM Trans.
Comput. Syst., 9(1):21–65, Feb. 1991.

[26] Microsoft. SQL Server 2014, 2014. http://www.
microsoft.com/en-us/server-cloud/products/sql-
server/features.aspx.

[27] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understand-
ing Manycore Scalability of File Systems. In Proceedings of the
2016 USENIX Annual Technical Conference (ATC), Denver, CO,
June 2016.

[28] I. Molnar. Linux rwsem, 2006. http://www.makelinux.net/
ldd3/chp-5-sect-3.

[29] I. Molnar and D. Bueso. Generic Mutex Subsystem,
2016. https://www.kernel.org/doc/Documentation/
locking/mutex-design.txt.

[30] O. Nesterov. Linux percpu-rwsem, 2012. http://lxr.free-
electrons.com/source/include/linux/percpu-
rwsem.h.

[31] Data Sheet: SPARC M7-16 Server. Oracle, 2015.
http://www.oracle.com/us/products/servers-
storage/sparc-m7-16-ds-2687045.pdf.

[32] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel pro-
grams with synchronization bottlenecks efficiently. In Proceedings
of International Workshop on Parallel and Distributed Computing
for Symbolic and Irregular Applications (PDSIA), pages 182–204,
jul 1999.

[33] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for Multi-core and Multi-
processor Systems. In Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture,
HPCA ’07, pages 13–24, 2007.

[34] SAP. SAP HANA 2: the transformer, 2015. http://hana.sap.
com/abouthana.html.

[35] M. L. Scott. Non-blocking Timeout in Scalable Queue-based Spin
Locks. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing, PODC ’02, pages 31–40,
New York, NY, USA, 2002. ISBN 1-58113-485-1.

[36] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks
with Timeout. In Proceedings of the 6th ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages
44–52, Snowbird, Utah, June 2001.

[37] A. Shi. [PATCH] rwsem: steal writing sem for better performance,

614 2017 USENIX Annual Technical Conference USENIX Association

https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://lkml.org/lkml/2014/7/3/25
https://lkml.org/lkml/2014/7/3/25
http://arxiv.org/abs/1511.06035
http://rocksdb.org/
http://researcher.watson.ibm.com/researcher/view_group.php?id=2078
http://researcher.watson.ibm.com/researcher/view_group.php?id=2078
http://ark.intel.com/products/93790/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz
http://ark.intel.com/products/93790/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://lkml.org/lkml/2013/1/29/84
https://lwn.net/Articles/582897/
https://lwn.net/Articles/696952/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.makelinux.net/ldd3/chp-5-sect-3
http://www.makelinux.net/ldd3/chp-5-sect-3
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://hana.sap.com/abouthana.html
http://hana.sap.com/abouthana.html

2013. https://lkml.org/lkml/2013/2/5/309.

[38] L. Torvalds. Linux Wait Queues, 2005. http://www.tldp.org/
LDP/tlk/kernel/kernel.html#wait-queue-struct.

[39] L. Torvalds. The Linux Kernel Archives, 2017. https://www.
kernel.org/.

[40] A. Viro. parallel lookups, 2016. https://lwn.net/Articles/
684089/.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Comput-
ing, HotCloud’10, 2010.

[42] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Pri-
eto. Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors. ACM Comput. Surv., 45(1),
Dec. 2012.

USENIX Association 2017 USENIX Annual Technical Conference 615

https://lkml.org/lkml/2013/2/5/309
http://www.tldp.org/LDP/tlk/kernel/kernel.html#wait-queue-struct
http://www.tldp.org/LDP/tlk/kernel/kernel.html#wait-queue-struct
https://www.kernel.org/
https://www.kernel.org/
https://lwn.net/Articles/684089/
https://lwn.net/Articles/684089/

