
This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

ClickNF: a Modular Stack for
Custom Network Functions
Massimo Gallo and Rafael Laufer, Nokia Bell Labs

https://www.usenix.org/conference/atc18/presentation/gallo

ClickNF: a Modular Stack for Custom Network Functions

Massimo Gallo and Rafael Laufer
Nokia Bell Labs

Abstract

Network function virtualization has recently allowed
specialized equipment to be replaced with equivalent
software implementation. The Click router was a first
step in this direction, defining a modular platform for
generalized packet processing. Despite its major impact,
however, Click does not provides native L4 implementa-
tion and only uses nonblocking I/O, limiting its scope to
L2-L3 network functions. To overcome these limitations
we introduce ClickNF, which provides modular trans-
port and application-layer building blocks for the devel-
opment of middleboxes and server-side network func-
tions. We evaluate ClickNF to highlight its state-of-the-
art performance and showcase its modularity by compos-
ing complex functions from simple elements. ClickNF is
open source and publicly available.

1 Introduction

Software-defined networking had a significant impact on
the packet forwarding infrastructure, providing flexibil-
ity and controllability to network and datacenter opera-
tors [37]. In a similar trend, network function virtual-
ization (NFV) is sparking novel approaches for deploy-
ing flexible network functions [19], ranging from virtual
machine orchestration [24, 36, 34] to new packet pro-
cessing frameworks [8, 40]. Network functions can com-
bine packet forwarding and simple header rewriting with
awareness of stateful transport logic, and possibly exe-
cute complex application-layer operations.

A modular L2–L7 data plane would offer several ad-
vantages for the development of new network functions,
such as decoupling state and packet processing, exten-
sibility of fine-grained protocol behavior, module reuse,
and a simplification of cross-layer protocol optimizations
and debugging. Among existing approaches, Click [29]
is arguably the best starting point for such an architecture
due to its modularity and extensibility. However, several

functionalities are still missing to make Click into a full-
stack modular data plane for network functions. First, it
lacks L4 native implementation, preventing cross-layer
optimizations and stack customization. Second, it has
no support for blocking I/O primitives, forcing develop-
ers to use more complex asynchronous non-blocking I/O.
Third, Click applications must resort to the OS stack,
which leads to severe I/O bottlenecks. Finally, despite
recent improvements, Click does not support hardware
offloading and efficient timer management preventing it
to scale at high-speed in particular scenarios.

In this paper we introduce ClickNF, a framework that
overcomes the aforementioned limitations and enables
L2–L7 modular network function development in Click.
Along with legacy Click elements, ClickNF enables de-
velopers to overhaul the entire network stack, if desired.
First, it introduces a modular TCP implementation that
supports options, congestion control, and RTT estima-
tion. Second, it introduces blocking I/O support, pro-
viding applications with the illusion of running uninter-
rupted. Third, it exposes standard socket, zero-copy,
and socket multiplexing APIs as well as basic applica-
tion layer building blocks. Finally, to improve scalabil-
ity, ClickNF integrates I/O acceleration techniques first
introduced in Fastclick [9], such as Data Plane Develop-
ment Kit (DPDK) [33] and batch processing with addi-
tional support for hardware acceleration, as well as an
improved timer management system for Click.

ClickNF can be used to deploy a vast class of net-
work functions. For middleboxes, TCP termination is
needed for Split TCP, L7 firewalls, TLS/SSL proxies,
HTTP caches, etc. At the network edge, ClickNF can
be used to implement high-speed modular L7 servers us-
ing socket multiplexing primitives to handle I/O events
efficiently. As proof of concept, we compose an HTTP
cache server with optional SSL/TLS termination and a
SOCKS4 proxy. We show that ClickNF provides equiv-
alent performance and scalability as existing user-space
stacks while enabling L2–L7 modularity.

USENIX Association 2018 USENIX Annual Technical Conference 745

The paper is organized as follows. Section 2 describes
ClickNF design. Section 3 details our TCP implemen-
tation in Click and Section 4 presents application layer
modularity. Section 5 highlights a number of original
aspects about the ClickNF implementation that are eval-
uated in Section 6. Section 7 reviews the related work
and Section 8 concludes the paper.

2 ClickNF

ClickNF leverages Click [29], a software architecture for
building modular and extensible routers. Before intro-
ducing its design, we first provide an overview of Click.

2.1 Background
A router in Click is built from a set of fine-grained
packet processing modules, elements, implementing sim-
ple functions (e.g., IP routing). A configuration file
connects these elements together into a directed graph,
whose edges specify the path that packets shall traverse.
Depending on the configuration, users can implement
network functions of arbitrary complexity (e.g., switch).

Each element may define any number of input and out-
put ports to connect to other elements. Ports operate in
either push or pull mode. On a push connection, the
packet starts at the source element and moves to the des-
tination element downstream. On a pull connection, in
contrast, the destination element requests a packet from
the upstream one, which returns a packet if available or a
null pointer otherwise. In addition to push or pull, a port
may also be agnostic and behave as either push or pull
depending on the port it is connected to.

In its underlying implementation, Click employs a task
queue and a timer priority queue. An infinite loop runs
tasks in sequence and timers at expiration. Tasks are
element-defined functions that require CPU scheduling,
and initiate a sequence of push or pull requests. Most ele-
ments, however, do not require their own task, since their
push and pull methods are called by a scheduled task.
Timer callback functions are similar to tasks, except for
being scheduled at a particular time.

2.2 Design
Network protocol stacks are typically implemented as
monolithic packages, either in kernel or user-space. Net-
work function developers often experience hurdles when
attempting to debug and customize their software to ob-
tain the desired effects, as the inner workings of the
stacks are not exposed. Indeed, recent work [22, 17, 39,
38] advocates that legacy network stacks prevent inno-
vation due to the lack of flexibility and propose to move
some of their functionalities outside of the data path.

Modular Ethernet/IP

Modular TCP

Socket API

Modular App

Packet I/O

Ethernet /IP/TCP

Socket API

NIC rings

RegularApp

NIC,
Drivers

User

Kernel

RegularApp

NIC rings NIC rings

Packet I/O

copy DMA DMA

Kernel space
stack

User space
stack

ClickNF
stack

Packet I/O

Ethernet /IP/TCP

Socket API

copy

Figure 1: ClickNF design compared to alternatives.

Modular, configurable, and extensible transport proto-
cols were proposed in the past by the research commu-
nity [16, 13] and by the Linux kernel one [1] constituting
a first step in the right direction. Our goal, is along the
same lines but broader. ClickNF aims to give develop-
ers unfettered access to the entire stack by providing a
framework for the construction of modular L2-L7 net-
work functions without the concerns for the correctness
of its behavior nor the constraints added by event-driven
domain-specific APIs [26].

The design of ClickNF combines the modularity
and flexibility of Click with high-speed packet I/O
and ready-made protocol building blocks for trans-
port and application-layer features. Figure 1 com-
pares ClickNF design against legacy OSs and user space
stacks. In contrast with other approaches that con-
ceal network stack complexity into a monolithic pack-
age or does not introduce modularity at all layers, we
decompose the full L2–L7 stack into several simple el-
ements that can be individually replaced, modified or
removed by rewiring the configuration file, providing a
level of flexibility that is not available with alternative
solutions. Additionally, elements can be aggregated into
a single macro-element to hide complexity when desired.
The rationale behind this fine-grained decomposition is
twofold. First, simple elements allow the modification
and control of each aspect and mechanism of network
protocols. This enables module reuse in other contexts,
such as recycling existing congestion control strategies to
implement new protocols like QUIC [30], or new strate-
gies such as BBR [14] or DCTCP [6] with little effort.
Second, this approach helps decoupling protocol state
management and packet processing, simplifying compli-
cated tasks such as full state migration between servers
or across heterogeneous hardware (e.g., between CPUs
and smart NICs).

In the rest of the paper we focus on the description
and evaluation of ClickNF transport and application lay-
ers, and on some important implementation details that
allows ClickNF to sustain line-rate.

746 2018 USENIX Annual Technical Conference USENIX Association

from Network

TCPReplacePacket

TCPRstEncap

SetTCPChecksum

TCPUpdateTimestamp

TCPUpdateWindow

TCPUpdateAckNo

to Network

SYN RST ACK RTX

CKSUM

ACK*

TCPEstimateRTT

to ACK

to RST

to SYN

to CKSUM

TCPEstimateRTT

TCPCheckSeqNo

TCPProcessAck

TCPProcessData

TCPAckRequired

to RTX

ACK*

to ACK

to ACK

to ACK

to RST

to ACK
to RST

TCPReceiveOffload

TCPStateDemux

TCPSynOptionsParseTCPSynOptionsParse

TCPAckOptionsParse TCPSynSent TCPListen TCPClosed

TCPResetter

TCPNewRenoSynTCPNewRenoSynTCPTrimPacket

TCPReordering

TCPProcessRst

TCPProcessSyn

TCPProcessFin

TCPNewRenoAck

TCPReplacePacket

TCPRateControl

TCPSegmentation

TCPReplacePacket TCPReplacePacket

TCPSynOptionsEncap TCPAckOptionsEncap TCPAckOptionsEncap

TCPSynEncap TCPAckEncap

TCPIPEncap TCPIPEncap TCPIPEncap

SetIPChecksum

TCPEnqueue4RTX

TCPInfoTCPFlowLookup

Figure 2: cTCP configuration for incoming network packets.

3 Click TCP

Our modular Click TCP (cTCP) implementation is com-
pliant with IETF standards (RFCs 793 and 1122) and
supports TCP options (RFC 7323), New Reno conges-
tion control (RFCs 5681 and 6582), timer management,
and RTT estimation (RFC 6298). In this section we de-
scribe the cTCP element graphs used to process incom-
ing and outgoing TCP packets.

3.1 Incoming packets
The key element of cTCP is TCPInfo, which enables
state decoupling by providing other elements with access
to important data structures (i.e., TCP Control Block).
Figure 2 shows the cTCP element graph for processing

incoming packets. In essence, elements access and/or
modify the TCP control block (TCB) via the TCPInfo, as
the packet moves along the edges of the graph. The ver-
tical paths are the directions that most received packets
take. The long element sequence on the left represents
the packet processing of an established TCP connection.
The three other paths to the right take care of special sit-
uations, such as connection establishment and termina-
tion. Other paths in the graph represent a disruption in
the expected packet flow, e.g., TCPCheckSeqNo sends
an ACK back if the data is outside the receive window.

Most elements in cTCP only require the TCB to pro-
cess packets. For instance, TCPTrimPacket trims off any
out-of-window data from the packet. TCPReordering en-
forces in-order delivery by buffering out-of-order pack-
ets and releasing them in sequence once the gap is filled.

USENIX Association 2018 USENIX Annual Technical Conference 747

Elements like TCPProcess{Rst, Syn, Ack, Fin} inspect
the respective TCP flags and react accordingly. In pres-
ence of new data, TCPProcessData clones the packet
(i.e., only packet’s metadata are copied) and places it
on the RX queue for the application. After receiving
three duplicate ACKs, TCPNewRenoAck retransmits the
first unacknowledged packet. Related elements, such as
TCPNewRenoSyn and TCPNewRenoRTX, handle initial-
ization and retransmissions in congestion control.

In addition to the TCB, other cTCP elements re-
quire information previously computed by other ele-
ments. This is supported in Click via packet annotations,
i.e., packet metadata. cTCP packet annotations include:
TCB pointer: The TCB table is stored as a per-core hash
table in TCPInfo and accessed by other elements using
static functions. For each packet, TCPFlowLookup looks
the TCP flow up in the table and sets the TCB annotation
to allow other elements to easily access/modify the TCB
avoiding multiple flow table lookups.
RTT measurement: TCPAckOptionsParse computes
the RTT from the TCP timestamp, Karn’s algorithm,
and sets it as an annotation. If TCP timestamps are not
provided by NICs or by packet I/O elements, TCPEn-
queue4RTX timestamps each transmitted packet before
storing it in the retransmission (RTX) queue. In both
cases, TCPEstimateRTT uses these annotations to esti-
mate the RTT and update the retransmission timeout.
Acknowledged bytes: TCPProcessAck computes the
number of acknowledged bytes in each packet and sets it
as an annotation. This is later read by TCPNewRenoAck
to increase the congestion window. If this number is zero
and a few other conditions hold (e.g., the receive window
is unchanged), the packet is considered a duplicate ACK
and may trigger a fast retransmission.
Flags: TCP flags are used to indicate certain actions to
other elements. For instance, TCPProcessData sets a
flag when the received packet has new data. TCPAckRe-
quired then checks this flag and, if set, pushes the packet
out to trigger an ACK transmission.

3.2 Outgoing packets

Figure 3 shows the cTCP element graph for processing
outgoing packets. Applications send data using socket
or zero-copy APIs (Section 3.3) that invoke static func-
tions in TCPSocket. For each socket call, this element
looks up the socket file descriptor in a per-core socket
table in TCPInfo. For transmissions, TCPNagle first
checks if the packet should be sent according to Na-
gle’s algorithm. TCPRateControl then verifies whether
send and congestion windows allow packet transmis-
sion. If so, TCPSegmentation breaks the data up into
MTU-sized packets, and TCPAckOptionEncap, TCPAck-
Encap, and TCPIPEncap prepend TCP and IP header re-

to Applicationsfrom Applications

TCPSocket

TCPAckOptionsEncap

TCPNagle

TCPAckOptionsEncapTCPSynOptionsEncap

TCPSynEncap TCPFinEncap

TCPRateControl

TCPAckEncap

TCPSegmentation

to Network

TCPEnqueue4RTX

SetTCPChecksum

SetIPChecksum

TCPIPEncap

connect() close() push()
TCPInfo

Figure 3: cTCP configuration for outgoing packets.

spectively. Before sending it to lower layers, TCPEn-
queue4RTX clones the packet and saves it in the re-
transmission queue until acknowledged by the other end.
To initiate a TCP connection, TCPSynOptionEncap and
TCPSynEncap generate the TCP options and header and
forward the packet downstream. Similarly, to terminate
the connection, TCPAckOptionEncap and TCPFinEncap
form a TCP packet with the FIN flag set.

3.3 Transport APIs
cTCP APIs are designed with two contrasting objectives
in mind: (i) minimize the efforts required to port appli-
cation logic in ClickNF; and (ii) provide primitives to
guarantee high performance at the cost of more complex
development. We therefore provide two APIs to interact
with the ClickNF transport layer, and one for socket I/O
multiplexing.

Socket API: For each socket system call (e.g.,
send), cTCP provides a corresponding function (e.g.,
click send) for both blocking or non-blocking mode.
As in Linux, the operation mode is set on a per-socket
basis using the SOCK NONBLOCK flag. In case of blocking
sockets, the application is blocked when waiting on I/O;
in case of non-blocking sockets, the socket calls return
immediately.

748 2018 USENIX Annual Technical Conference USENIX Association

Zero-copy interface: In addition to standard Socket
API, cTCP provides click push and click pull func-
tions to enable zero-copy operations. For transmissions,
applications first allocate a packet and write data to it be-
fore pushing it down. cTCP then adds the protocol head-
ers and transmits the packet(s) to the NIC. For receptions,
packets are accessed, processed, and placed into the RX
queue of applications. To amortize per-packet overhead,
both functions can also send and receive batches, and op-
erate in either blocking or non-blocking mode.

Socket I/O multiplexing: To avoid busy-waiting on I/O,
cTCP provides a click poll and a click epoll wait

functions to multiplex events from several socket file
descriptors. As in the regular epoll API provided by
Linux kernel, applications must first register the moni-
tored socket file descriptors with click epoll ctl and
then use click epoll wait to wait on I/O.

3.4 Timer Management
In Click, timers corresponds to tasks scheduled at a given
time in the future. TCP timers are used for retransmis-
sions, keepalive messages, and delayed ACKs. Their
implementation in cTCP is critical for performance and
scalability reasons. Figure 4 shows cTCP timers’ config-
uration. After a retransmission timeout task is scheduled,
TCPTimer dequeues the head-of-line packet from the
RTX queue and pushes it out. TCPUpdateTimestamp,
TCPUpdateWindow, and TCPUpdateAckNo update the
respective TCP header fields. Similarly when a keepalive
timeout expires, TCPTimer pushes an empty packet, and
TCPAckOptionsEncap, TCPAckEncap generate the TCP
header of a regular ACK packet. DecTCPSeqNo then
decrements the TCP sequence number to trigger an ACK
back from the other host. Finally, delayed ACKs are sent
for every pair of received data packets unless a 500 ms
timeout elapses. In this case, a regular ACK is sent using
the modules described above.

3.5 Customization and Element Reuse
cTCP modularity enables code reuse and fine-grained
customization of the network stack. For instance, TCP
reliability can be disabled by simply removing TCPEn-
queue4RTX from the configuration file. In this section,
we present concrete examples to showcase the benefits
of our modular TCP implementation.

Building a traffic generator that emulates several TCP
flows concurrently sending at a constant rate is straight-
forward with ClickNF elements. The TCPInfo ele-
ment is inserted in the configuration file and initialized
with the corresponding TCBs. Data packets are gener-
ated and shaped at a constant rate by regular Click ele-
ments, InfiniteSource and Shaper, and then forwarded to

TCPAckEncap TCPAckEncap

TCPAckOptionsEncap TCPAckOptionsEncap

DecTCPSeqNo

TCPIPEncap

TCPTimer
Delayed ACKData RTX Keepalive

TCPNewRenoRTX

TCPUpdateTimestamp

TCPIPEncap

to Network

SetTCPChecksum

SetIPChecksum

TCPUpdateWindow

TCPUpdateAckNo

Figure 4: cTCP configuration for TCP timers.

a new element, TCBSelector, that randomly associates
the packet to an existing TCB using ClickNF annota-
tions. Afterwards, packets go through ClickNF elements
such as TCPAckEncap, TCPIPEncap (plus optionally
SetTCPChecksum, SetIPChecksum) to fill IP and TCP
headers before being forwarded to an I/O element.

Moreover, per-flow congestion control can be used
to ensure that specific traffic classes are processed us-
ing appropriate algorithms. Implementing such a fea-
ture in a monolithic OS network stack (e.g., Linux kernel
one) is, however, quite complicated. Due to its modu-
larity, ClickNF allows the definition of per-flow conges-
tion control by simply inserting a Classifier element that
modifies the behavior of cTCP for specific flows.

Finally, changing TCP New Reno to match data center
TCP (DCTCP) [6] is as simple as adding a new DCTCP-
ProcessECN element right after TCPProcessAck (Fig-
ure 2). This element modifies the TCP window behavior
in presence of explicit congestion notification. Similarly,
the introduction of a new congestion control algorithm,
such as BBR [14], requires the development of few addi-
tional elements of low complexity.

4 Modular application

ClickNF enables the development of modular applica-
tions on top of cTCP. L7 network functions can be imple-
mented using several flow-oriented elements, enabling
the programmer to decouple packet processing from ap-
plication state management logic. To do so, ClickNF
separates network and application execution contexts in
order to allow applications to block their execution when
waiting for I/O operations. ClickNF also provides two
fundamental building blocks, i.e., socket I/O multiplex-
ing and SSL/TLS termination elements, that enable rapid
composition of complex and customized L7 functions.

USENIX Association 2018 USENIX Annual Technical Conference 749

yield()wake_up()

Application contextNetwork context

TCPProcessData ApplicationServer

Figure 5: Context switch: TCPProcessData reschedules
a blocked task waiting on I/O.

4.1 Blocking Tasks
ClickNF implements blocking I/O to provide develop-
ers with a broader range of I/O options. In Click, tasks
are element-defined functions that require frequent CPU
scheduling, and initiate a sequence of packet process-
ing in the configuration graph. We introduce the con-
cept of blocking tasks, which can yield the CPU if a
given condition does not hold, e.g., an I/O request can-
not be promptly completed. When rescheduled, the task
resumes exactly where it left off, providing applications
with an illusion of continuous execution. Blocking tasks
are backward compatible with regular tasks, and require
no modifications to the Click task scheduler.

Context switching between tasks is light-weight, sav-
ing and restoring registers required for task execution.
ClickNF uses low-level functions to save and restore
the tasks context, just as in POSIX threads. Differently
than POSIX threads, however, ClickNF has access to the
Click task scheduler and relies on cooperative, as op-
posed to preemptive, scheduling. ClickNF uses the Boost
library to perform context switches in a handful of CPU
cycles, i.e., ≈20 cycles in x86 64 (few nanoseconds).

4.2 Network and Application Contexts
ClickNF uses blocking tasks to separate network and ap-
plication execution contexts. The network context is ac-
tive during packet reception (cf. Figure 3) and timeouts
(cf. Figure 4), and runs through regular Click tasks. The
application context, in contrast, is active during applica-
tion processing and packet transmission (cf. Figure 2)
and runs through blocking tasks.

A blocked application is scheduled when the event it is
waiting on occurs, e.g., a task blocked on accept . Fig-
ure 5 presents an example of an application task being
rescheduled by an event. In the example, Application-
Server calls epoll wait to monitor a group of active file
descriptors. Since no one is ready to perform I/O, it calls
yield to save the current context and unschedule the
task. Later on, when a data packet is received, TCPPro-
cessData checks if the application task is waiting for data
packets and calls wake up to reschedule it. The event is
then inserted into a per-core event queue that stores the
events that occurred for the sockets monitored by Ap-

TCPSocket

TCPEpollServer

SSLServer

EchoServer

Figure 6: Configuration graph of a modular echo server
in ClickNF that uses SSL/TLS encryption.

plicationServer (i.e.,different applications have separate
event queues). When the application task is executed, to
amortize the cost of the context switch, a batch of events
is handled before the network context is re-scheduled.

In ClickNF we specify a list of events needed to man-
age cTCP states and error conditions. For instance,
events are generated when the accept queue becomes
non-empty, or when the connection is established to
wake up application tasks waiting on these conditions.
Similarly, events are also generated when the TX queue
becomes non-full, the RX queue becomes non-empty,
and also when the RTX queue becomes empty. Other
events signal that the remote peer wants to close the con-
nection, the connection was closed, or an error occurred
(e.g., a reset or timeout). Despite this fine grain event
characterization, to remain compliant with the original
epoll API, we map cTCP events to standard EPOLLIN,
EPOLLOUT, and EPOLLERR events.

4.3 Application Building Blocks
To simplify application-level programming and promote
code reuse, ClickNF provides four building blocks useful
for practically relevant network functions. Such build-
ing blocks exchange control information with application
layer elements using packet annotations. In this way, ap-
plication elements are informed about the socket file de-
scriptor to which the packets belongs and about new or
closed connections. This allows them to efficiently mul-
tiplex data between different applications and multiple
sockets in both directions.

The first application-layer building block, TCPE-
pollServer, implements an epoll server concealing the
complexity of cTCP event handling and can be used to
rapidly implement server-side network functions. Sim-
ilarly, TCPEpollClient implements an epoll client to
multiplex outgoing connections. Finally, SSLServer
and SSLClient provide SSL/TLS encryption through the
OpenSSL library, and may be used to implement network
function that require end-to-end encryption. Application
data enters in an input port of SSLServer as plaintext and
leaves its output port as ciphertext; received packets take
the reverse path to decrypt ciphertext into plaintext.

750 2018 USENIX Annual Technical Conference USENIX Association

Figure 6 shows an echo server using SSL/TLS encryp-
tion as a straightforward example of a modular appli-
cation assembled from ClickNF building blocks. Upon
reception at TCPEpollServer, packets are decrypted by
SSLServer and forwarded upstream. EchoServer is a
stateless application that simply redirects the received
data back to the client. On the way back, SSLServer
encrypts the data and forwards it downstream to TCPE-
pollServer. This simple example shows how ClickNF
enables a large number of possibilities for customizing
the entire network stack of an application since any of
its building blocks can be easily disabled or rewired. For
instance, the echo server in Figure 6 can easily disable
SSL/TLS for selected flows by introducing a classifier el-
ement into the configuration graph, without any change
to the element that implements the application logic.

5 Implementation

ClickNF benefits from several improvements that the
Click codebase received over time, such as fast packet
I/O and multicore, besides introducing a brand new timer
subsystem that copes with the scaling requirements of
TCP support. This section highlights some notable tech-
nical details that characterize ClickNF implementation.

5.1 Packet I/O

Similarly to Fastclick [9], ClickNF provides fast packet
I/O by using DPDK [33] to directly interface with net-
work cards from user space. For packet reception, the
DPDK element continuously poll the NIC to fetch re-
ceived packet batches. In order to amortize the PCIe
overhead, the DPDK element waits for a batch of 64
packets before transmitting them. To avoid head-of-line
blocking and reduce latency, batches are transmitted after
at most 100 µs. When needed, ClickNF performs batch
processing (i.e., Click elements process packet batches
– implemented through packets’ linked lists – instead
of single packets) to optimize CPU cache performance.
Also in this case, a batch is forwarded downstream after
100 µs even if it is not complete.

As in Fastclick, we modify the Click packet data struc-
ture to be a wrapper around a DPDK memory buffer
(mbuf) to avoid additional memory allocation and copy
operations. Each packet has a fixed size of 8 KB and con-
sists of four sections, namely, the mbuf structure itself,
packet annotations, headroom, and data. DPDK uses the
mbuf for packet I/O whereas ClickNF uses annotations
to store packet metadata (e.g., header pointers) and the
headroom space to allow elements to prepend headers.
Applications allocate a packet by filling only the data
portion before pushing the packet down to lower layers.

Notice that, differently form Fastclick, we use a single
element for both input and output operations in order to
simplify the configuration. Moreover, ClickNF can also
leverage common NIC features to perform flow control,
TCP/IP checksum offloading, TCP segmentation (TSO),
and large receive offloading (LRO) using hardware accel-
eration. Flow control prevents buffer overflows by slow-
ing down transmitters when the RX buffer in the NIC be-
comes full. TCP/IP checksum offloading allows the NIC
to compute header checksums in hardware. TSO seg-
ments a large packet into MTU-sized packets, whereas
LRO aggregates multiple received packets into a large
TCP segment before dispatching it to higher layers. All
of these features can be toggled in ClickNF at run-time.

5.2 Multicore Scalability
Multithreading is implemented to exploit the process-
ing power in multicore CPUs and improve scalability.
We design per-core lock-free data structures aiming for
high performance. Each core maintains dedicated packet
pools, timers, transport, and application layer data struc-
tures. Receive Side Scaling (RSS) is used to distribute
packets to different cores according to their flow identi-
fier, i.e., flow 5-tuple. Each DPDK thread is pinned to a
CPU core and provided with a TX and a RX hardware
queue at the NIC, preserving flow-level core affinity.

To avoid low-level CPU synchronization primitives
each core maintains separate cache-aligned data struc-
tures. In case of multi-connection dependency, such as
a proxy server establishing a connection on behalf of a
client, the source port of the new outgoing connection is
selected such that RSS maps it to the same core of the
original connection, thus avoiding locks at the applica-
tion level. Finally, each application-layer network func-
tion is spawned on multiple cores so that flows directed
can be handled entirely on a specific core.

5.3 Timer Subsystem
Click implements its timer subsystem using a priority
queue in which the root node stores the timer closer to
expire. Given that TCP timers are often canceled be-
fore expiration, we implement a timing wheel sched-
uler for efficiency [47]. Its key advantage is that timing
wheels schedule and cancel timers in O(1), as opposed
to O(logn) in priority queues currently used in Click.

A timing wheel is composed of n buckets, an index b,
a timestamp t, and a tick granularity g (e.g., 1 ms). The
timestamp t keeps the current time and the index b, points
to its corresponding bucket. Each bucket contains timers
expiring in the future, such that bucket b contains timers
expiring within [t, t +g), and so on. To schedule a timer,
we must first find its corresponding bucket. For an ex-

USENIX Association 2018 USENIX Annual Technical Conference 751

piration time e in the interval t ≤ e < t + ng, its bucket
index is computed as b(e− t)/gc. Each bucket contains a
doubly linked list to store the timers expiring within the
same interval. Therefore, once the index is computed, the
timer is inserted at the end of the list of the bucket. To
cancel a timer, the timer is just removed from the doubly
linked list. Both operations are done in O(1) with simple
modulo operation to compute the bucket index b.

6 Evaluation

In this section, we evaluate ClickNF with three goals: (i)
evaluate its performance through a series of microbench-
marks; (ii) compare it against Linux and state-of-the-
art user space stacks; and (iii) showcase the usage of
ClickNF and its performance when building network
functions. Our evaluation setup consists of 3 machines
with Intel Xeon R© 40-core E5-2660 v3 2.60GHz pro-
cessors, 64 GB RAM, each equipped with an Intel R©

82599ES network card containing two 10 GbE inter-
faces. The machines run Ubuntu 16.10 (GNU/Linux
4.4.0-51-generic x86 64), Click 2.1, and DPDK 17.02.

6.1 Microbenchmarks
We start by analyzing individual aspects of our system
using microbenchmarks, including packet I/O through-
put, the cost of modularity, and the impact of hardware
offloading. We then evaluate two applications, namely
bulk transfer and echo server, to understand the system
performance in common scenarios. Unless otherwise
specified, the experiments presented in this section are
performed on single-core ClickNF instances.
Packet I/O and the cost of modularity: To evaluate the
throughput of our DPDK element, we run a set of tests
with the DPDK traffic generator (DPDK-TG) [25] on one
side and ClickNF on the other one. For ClickNF, we use
four configurations that respectively generate and imme-
diately discard (no I/O), receive (RX), forward (FW), and
transmit (TX) 64-byte packets. Finally, we evaluate the
cost of modularity by adding PushNull elements that re-
ceive packets on the input port and send them on the out-
put port without doing anything else.

Figure 7 presents the average throughput for the differ-
ent scenarios with a series of PushNull elements. With-
out I/O, ClickNF throughput is limited by the CPU at 43
Mpps. Increasing the number of elements increases the
time spent by a packet inside the Click graph, consider-
ably reducing the system throughput. For the RX, FW,
and TX scenarios, the throughput is limited by the NIC
line rate at 14.88 Mpps. ClickNF is still able to sustain
the line rate with up to 15–20 PushNull elements. At this
point, the throughput is limited by CPU and decreases
further as more elements are placed in the configuration.

0 10 20 30 40 50 60 70 80

Number of Elements

0

5

10

15

20

25

30

35

40

45

T
hr

ou
gh

pu
t

[M
pp

s] No I/O
RX
FW
TX

Figure 7: Throughput with 64-byte packets and increas-
ing number of Click elements in different scenarios.

However, using packet batches between Click ele-
ments (Section 5.1) reduces the cost of modularity by
improving instruction and data cache utilization. Indeed,
when processing batches instead of single packets we ex-
perimentally evaluate that ClickNF to sustain line rate
with up to 150 PushNull elements in RX, TX, and FW
configurations. In ClickNF we adopt batch processing
with batches of 32 packets to improve performance.

Checksum offloading: To evaluate hardware check-
sum offloading in our DPDK module, we measure
the throughput using software or hardware checksum
computation-verification. As in the previous tests, we
run the DPDK-TG on one side and ClickNF on the other.
We then use two different configurations for transmitting
(TX) and receiving (RX) packets belonging to a single
TCP flow. For transmissions, ClickNF computes header
checksums before transmitting the packets to the traffic
generator. For receptions, ClickNF verifies whether the
checksums are correct before discarding the packet. Both
operations are performed in hardware or in software.

Figure 8a shows the results for TX and RX with in-
creasing payload size (6–128 bytes). As expected, of-
floading checksum verification provides significant per-
formance benefits and allows ClickNF to sustain line rate
even when receiving small packets. Surprisingly, TX
checksum computation in software is significantly bet-
ter than in hardware. This is because modern CPUs are
very efficient when performing sequential operations on
cached memory, and sometimes even faster than dedi-
cated hardware. However, as we see in the next experi-
ments, this only holds because the CPU is underloaded.

Bulk transfer: To validate ClickNF in a more realistic
scenario we execute a bulk transfer of a 20 GB file from a
client to a server. Moreover, we evaluate the performance
of TCP segment offloading (TSO) and large received of-
floading (LRO), as well as equivalent implementations in
software Click elements. For comparison, we use iperf
[4] running on top of Linux network.

752 2018 USENIX Annual Technical Conference USENIX Association

0 16 32 48 64 80 96 112 128

Payload size [bytes]

5

6

7

8

9

10

T
hr

ou
gh

pu
t

[G
bp

s]

TX-HW
TX-SW
RX-HW
RX-SW

(a)

64 256 512 768 1024 1280 1448

TCP Payload [bytes]

0

2

4

6

8

10

G
oo

dp
ut

[G
bp

s]

Line rate

ClickNF-ZC-HW-CSUM
ClickNF-ZC-SW-CSUM
ClickNF-HW-CSUM
Linux

(b)

64 256 512 768 1024 1280 1448

TCP Payload [bytes]

0

2

4

6

8

10

G
oo

dp
ut

[G
bp

s] Line rate

cTCP-ZC-LRO-TSO
cTCP-ZC-LRO
Linux-LRO-TSO
Linux-LRO

(c)

Figure 8: (a) TCP throughput with and without TCP/IP checksum offloading. (b) TCP goodput in a bulk transfer with
increasing TCP payload size. (c) TCP goodput in a bulk transfer with TSO and LRO enabled.

1 2 3 4 5 6 7 8 9 10

Cores

0.0

0.5

1.0

1.5

2.0

2.5

M
sg

/s
[1

06
]

ClickNF batching
ClickNF
mTCP

(a)

1 2 3 4 5 6 7 8 9 10

Clients [103]

0

2

4

6

8

10

12

14

R
T

T
[m

s]

ClickNF batching
ClickNF
mTCP

(b)

Figure 9: Comparison between ClickNF and mTCP. (a)
Echo server message rate with increasing number of
cores. (b) RTT with increasing number of TCP clients.

Figure 8b shows the TCP goodput for increasing pay-
load sizes for ClickNF and Linux. For ClickNF, we
use the socket API with HW checksum computation-
verification (ClickNF-HW-CSUM), the zero-copy API
with either software checksum computation-verification
(ClickNF-ZC-SW-CSUM) or hardware checksum of-
floading (ClickNF-ZC-HW-CSUM). For Linux, we use
iperf for tests with hardware checksum enabled. ClickNF
significantly outperforms Linux and achieves line rate
for TCP payloads larger than 448 bytes when the packet
header overhead is smaller. For 64-byte payload, the
zero-copy API provides roughly 50% throughput im-
provement over the socket API. This occurs because,
with larger packets, the number of calls to memcopy and
recv decreases, limiting the advantage of zero copy. In
the following tests, we use the zero-copy API, as it de-
livers better performance with respect to the socket API.

Unlike what is observed in reception, TX checksum
offloading (ClickNF-ZC-HW-CSUM) provides signifi-
cant benefits with respect to software (ClickNF-ZC-SW-
CSUM). For computationally intensive workloads, TX
checksum offloading prevents the CPU from spending
precious cycles in checksum computation-verification.

Figure 8c presents the results with TSO and LRO en-
abled. ClickNF outperforms Linux, specially for small
payloads suggesting that the Linux stack is particularly
inefficient for small packets, as reported in [20, 35, 10].
ClickNF achieves line rate for TCP payloads larger than
128 bytes while Linux have similar performance with
TSO and LRO for TCP payloads larger than 192 bytes. In
the following, we always enable LRO and TSO to amor-
tize segmentation and reassembly cost.

Echo server: We also evaluate ClickNF in the presence
of short TCP connections and compare its performance
against mTCP [20], a user-space network stack with par-
ticular focus on performance and with similar goals to
ClickNF. To evaluate multicore scalability, we run an
echo server on top of both stacks. Clients running in
two separate 8-core ClickNF instances connect to the
server, send a 64-byte message, and wait for the echo re-
ply. When the client receives the message back, it resets
the connection to avoid port exhausting. The client then
repeats the operation and measures the message rate. To
provide a fair comparison against mTCP, we disable de-
layed ACKs that, when enabled, decrease the overhead
and increase the overall throughput. Figure 6 depicts the
configuration graph of the echo server used in this test,
except for the SSLServer element that is not included.

First we measure the rate obtained by ClickNF and
mTCP with a single core. ClickNF provides high
throughput, 0.5× 106 Msg/s, when using DPDK packet
I/O. Compared to legacy Click elements for packet I/O,
0.169 × 106 Msg/s, (i.e., using PCAP library linked
to FromDevice), ClickNF provides 4x higher through-
put. This shows how important kernel bypass is when
enabling zero-copy packet processing at user space.
Additionally, ClickNF outperforms mTCP, 0.415× 106

Msg/s, by approximately 20%.

USENIX Association 2018 USENIX Annual Technical Conference 753

64 512 1024 4096 8192
HTTP body [bytes]

0

2

4

6

8

10

G
oo

dp
ut

[G
bp

s]

HTTP
HTTPS - RSA 1024
HTTPS - RSA 2048

(a) HTTP cache - 10 cores with/without SSL/TLS

1 2 3 4 5 6 7 8 9 10

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G
oo

dp
ut

[G
bp

s]

RSA 2048
RSA 1024

(b) HTTP cache - with SSL/TLS

1 2 3 4 5 6 7 8 9 10

Cores

0

2

4

6

8

10

G
oo

dp
ut

[G
bp

s]

64B
1024B
4096B

(c) Proxy

Figure 10: Average goodput of the ClickNF modular HTTP(S) cache server.

to Network

TCPEpollServer

SSLServer

from Network

HTTPCache

HTTPGetParser

CheckHTTPHeader

to Network

TCPEpollServer

from Network

TCPEpollClient

Socks4Proxy

Figure 11: Configuration graphs for an HTTP cache
server with SSL/TLS and for a SOCKS4 Proxy.

Figure 9a presents the message rate obtained with
ClickNF and with mTCP for increasing number of cores.
Despite its modularity, ClickNF provides equivalent per-
formance to mTCP up to 4 cores, and scales slower for
more cores. As observed earlier, modularity has a cost,
but can be amortized with packet batches. In this case,
Click elements receives packet batches instead of sin-
gle packets hence optimizing CPU instruction and data
cache usage. We enable batching in ClickNF for L2–L3
operations to avoid packet reordering issues at L4 and re-
peated the echo server experiment. Figure 9a shows that,
ClickNF outperforms mTCP and achieves line rate with
7 cores. Results with hyperthreading (not reported here)
show higher throughput, reducing the number of cores
required to saturate the link to 4.

Since ClickNF employs batching at all levels, the risk
is that RTT might be undesirably long. Figure 9b shows
the RTT experienced by ClickNF and mTCP in the sin-
gle core echo server test with increasing number of con-
curring clients. Due to the usage of batch timeouts, the
latency introduced with increasing number of clients is
limited and lower when compared to mTCP.

6.2 Modular Network Functions

To evaluate ClickNF performance and show the benefits
of its modularity, we build two sample applications.
HTTP(S) cache: Figure 11 depicts the configuration
graph used to deploy an HTTP cache server. Using the
basic building blocks provided by ClickNF, application
logic is implemented with three simple elements.

To evaluate the performance of our modular HTTP
cache server, we run tests with SSL/TLS termination us-
ing self-signed certificates for 1024- or 2048-byte RSA
keys. Clients running in two 8-core ClickNF instances
first connect to the server and then issue HTTP GET re-
quests for web pages of size 64–8192 bytes, stored in the
HTTP cache server’s main memory. The server responds
to the requests and then closes the TCP connection.

Figure 10a,10b presents the goodput of the ClickNF
HTTP cache server with and without SSL/TLS termi-
nation. With unencrypted HTTP traffic running on 10
cores (cf. Figure 10a), ClickNF achieves high goodput
for small HTTP pages, and scales linearly with bigger
page size. With SSL/TLS termination, the goodput drops
to a maximum of ≈ 1.6 Gbps for 1024-byte keys and
10 cores. This is due to the complexity of public-key
RSA cryptographic operations during SSL/TLS hand-
shake [15]. This overhead, however, can be alleviated
by delegating such operations to GPUs [27, 48].
SOCKS4 proxy: Socket Secure (SOCKS) is a proto-
col for enabling client-server communication through a
proxy. Starting from a basic SOCKS4 proxy implemen-
tation written in C, we built a modular SOCKS4 proxy
composed by three elements namely Socks4Proxy, and
ClickNF building blocks TCPEpollServer and TCPE-
pollClient. Figure 11 depicts the high-level configura-
tion graph for the proxy. Notice that, due to ClickNF
L7 modularity, the SOCKS4 proxy graph can be eas-
ily modified to introduce additional functions (e.g., fire-
wall, SSL encryption) right before the paths connecting
TCPEpollServer and Socks4Proxy.

754 2018 USENIX Annual Technical Conference USENIX Association

To evaluate the performance of our modular SOCKS4
proxy, we run a simple test similar to the one presented
for the HTTP cache. In this case, clients connect to the
SOCKS4 proxy which opens a new connection toward
the HTTP cache. Once the connection is established,
the client requests an HTTP page of fixed size and then
resets the connection. Figure 10c presents the goodput
of the ClickNF SOCKS4 proxy with increasing num-
ber of cores and variable HTTP body sizes. Similarly
to the HTTP cache experiment, when the HTTP mes-
sage is small the overhead (connection establishment and
SOCKS protocol) is significant and prevents the system
from achieving a higher goodput. For larger page sizes,
the overhead decreases and the proxy is able to achieve
close to line rate using just two CPU cores.

7 Related Work

Click [29] and its modular data plane have been im-
proved and extended in multiple directions over almost
two decades. For instance, Routebricks [18] parallelizes
routing functionality across and within software routers
building on top of Click to scale its performance. Re-
cently, Fastclick [9] introduced high-speed packet I/O
such as DPDK and netmap [33, 44] in Click.Moreover,
GPU offloading is also proposed in [28, 46] to in-
crease throughput beyond CPU capabilities. Similarly,
ClickNP [32] provides Click-like programming abstrac-
tions to enable the construction of FPGA-accelerated
network functions. ClickNF is orthogonal to such ex-
tensions and enables the modular composition of L2–L7
stacks, bridging Click’s L2-L3 packet processing with L4
flow processing and L7 modular applications.

Click inspired other modular network function frame-
works [8, 12, 40]. These systems mainly focus on con-
trol plane operations, such as data plane element place-
ment, network function scaling, and traffic steering. For
the data plane, FlowOS [11] is proposed as a middle-
box platform that enables flow processing, but without
TCP support. CoMb [45] and xOMB [7] use Click to
consolidate middleboxes through the composition of dif-
ferent L7 elements. Both rely on the OS for packet I/O
and transport layer, reducing customization and perfor-
mance. Frameworks to enable stack customization of
L2–L7 are proposed in [42, 26]. In [42], authors in-
troduce an overview of the control and data planes of
a modular architecture, with focus on hardware accelera-
tion. In [26], the design of a modular middlebox platform
based on mTCP [20] is presented. Instead of redesign-
ing a framework with Click-like abstractions and/or pro-
viding new event-driven domain-specific APIs, ClickNF
introduces L2–L7 modularity in Click to expose and ex-
ploit its modularity, as well as benefiting from existing
Click extensions and contributions by the community.

Network stacks were proposed to overcome the I/O in-
efficiencies of OS [10, 43, 20, 35, 23, 49, 16]. IX [10]
separates the control plane and data plane processing.
Arrakis [43] is a customized OS that provide applica-
tions with direct access to I/O devices, allowing kernel
bypass for I/O operations. mTCP [20] is a user-level
TCP implementation proposed for multicore systems. It
provides a socket API for application development sup-
porting L2–L4 zero copy. In a different spirit, Stackmap
[49] provides packet I/O acceleration to TCP kernel im-
plementation obtaining better performance compared to
Linux TCP. Sandstorm [35] proposes a specialized net-
work stack with zero-copy APIs merging application and
network logics. Similarly to ClickNF, Modnet [41] has a
modular approach for providing customizable network-
ing stack, but modularity is limited to L2–L4. Few other
efforts [3, 5, 2, 16, 13] also provide efficient, sometimes
modular, networking stacks but cannot completely bene-
fit of L2–L7 modularity provided by ClickNF.

Our previous workshop paper [31] focused on pro-
viding an initial architecture for a modular TCP imple-
mentation in Click. ClickNF extends it in several direc-
tions. For instance, ClickNF takes advantage of hard-
ware offloading, multicore scalability, timing wheels,
and an epoll-based API to improve performance. Appli-
cation level modularity and SSL/TLS termination pro-
vide building blocks for novel network functions to be
deployed with little effort. We hereby propose a more
comprehensive picture of ClickNF’s performance, flexi-
bility, and ease of use.

8 Conclusions

The advent of NFV gives us a different perspective on
the way application servers and middleboxes can be im-
plemented. ClickNF enables the composition of high-
performance network functions at all layers of the net-
work stack and opens up its inner workings for the ben-
efit of developers. In this paper, we illustrated and
benchmarked several concrete examples where ClickNF
can be used to accelerate network function development
by enabling fine-grained code reuse, and highlighted
ClickNF’s good scaling properties and a reasonable price
of modularity, which arguably outweigh many of the
hurdles in network function development. The ClickNF
source code is available for download at [21].

Acknowledgments

We would like to thank our anonymous reviewers that
provided several advices to improve and further develop
our work as well as Fabio Pianese for the fruitful discus-
sions and for his countless paper revisions.

USENIX Association 2018 USENIX Annual Technical Conference 755

References
[1] The Linux Kernel. /urlhttps://www.kernel.org/.

[2] Open Fast path, 2015. http://www.openfastpath.org/.

[3] 6windgate, 2017. http://www.6wind.com/products/

6windgate/.

[4] Iperf2, 2017. https://sourceforge.net/projects/

iperf2/.

[5] The Fast Data Project FD.io, 2017. https://fd.io/.

[6] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 Conference (2010), SIGCOMM ’10.

[7] ANDERSON, J. W., BRAUD, R., KAPOOR, R., PORTER, G.,
AND VAHDAT, A. xOMB: Extensible Open Middleboxes with
Commodity Servers. In Proceedings of the Eighth ACM/IEEE
Symposium on Architectures for Networking and Communica-
tions Systems (2012), ANCS ’12, ACM.

[8] ANWER, B., BENSON, T., FEAMSTER, N., AND LEVIN, D.
Programming Slick Network Functions. In Proc. 1st ACM SIG-
COMM Symposium on Software Defined Networking Research
(2015), SOSR ’15.

[9] BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast Userspace
Packet Processing. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for Networking and Communica-
tions Systems (2015), ANCS ’15, IEEE Computer Society.

[10] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In
Proc. 11th USENIX OSDI (2014).

[11] BEZAHAF, M., ALIM, A., AND MATHY, L. FlowOS: A Flow-
based Platform for Middleboxes. In Proceedings of the 2013
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization (2013), HotMiddlebox ’13, ACM.

[12] BREMLER-BARR, A., HARCHOL, Y., AND HAY, D. Open-
box: A software-defined framework for developing, deploying,
and managing network functions. In Proc. of the 2016 ACM SIG-
COMM Conference (2016).

[13] BRIDGES, P. G., WONG, G. T., HILTUNEN, M., SCHLICHT-
ING, R. D., AND BARRICK, M. J. A configurable and extensible
transport protocol. IEEE/ACM Transactions on Networking 15, 6
(2007), 1254–1265.

[14] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH, S. H.,
AND JACOBSON, V. Bbr: Congestion-based congestion control.
Queue 14, 5 (2016), 50:20–50:53.

[15] COARFA, C., DRUSCHEL, P., AND WALLACH, D. S. Perfor-
mance analysis of TLS web servers. ACM Transaction of Com-
pututer System (2006).

[16] CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P., RHEA, S.,
AND ROSCOE, T. Finally, a use for componentized transport
protocols. In Proceedings of the 16th ACM Workshop on Hot
Topics in Networks (2005), HotNets-IV.

[17] CRONKITE-RATCLIFF, B., BERGMAN, A., VARGAFTIK, S.,
RAVI, M., MCKEOWN, N., ABRAHAM, I., AND KESLASSY,
I. Virtualized congestion control. In Proceedings of the 2016
ACM SIGCOMM Conference (2016), SIGCOMM ’16.

[18] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (2009), SOSP ’09,
ACM.

[19] ETSI. Network Function Virtualization. SDN & OpenFlow
World Congress (2014).

[20] EUNYOUNG, J., SHINAE, W., MUHAMMAD, J., HAEWON, J.,
SUNGHWAN, I., DONGSU, H., AND KYOUNGSOO, P. mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems. In
Proc. 11th USENIX NSDI (2014).

[21] GALLO, M., AND LAUFER, R. The ClickNF framework. Avail-
able on https://github.com/nokia/ClickNF, 2017.

[22] HE, K., ROZNER, E., AGARWAL, K., GU, Y. J., FELTER, W.,
CARTER, J., AND AKELLA, A. Ac/dc tcp: Virtual congestion
control enforcement for datacenter networks. In Proceedings of
the 2016 ACM SIGCOMM Conference (2016), SIGCOMM ’16.

[23] HRUBY, T., GIUFFRIDA, C., SAMBUC, L., BOS, H., AND
TANENBAUM, A. S. A NEaT Design for Reliable and Scal-
able Network Stacks. In Proceedings of the 12th International
on Conference on Emerging Networking EXperiments and Tech-
nologies (2016), CoNEXT ’16, ACM.

[24] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T. NetVM:
High Performance and Flexible Networking Using Virtualization
on Commodity Platforms. IEEE Transactions on Network and
Service Management (2015).

[25] INTEL. DPDK Traffic Generator, 2017. http://dpdk.org/

browse/apps/pktgen-dpdk/.

[26] JAMSHED, M. A., MOON, Y., KIM, D., HAN, D., AND PARK,
K. mOS: A Reusable Networking Stack for Flow Monitoring
Middleboxes. In Proc. of 14th USENIX NSDI (2017).

[27] JANG, K., HAN, S., HAN, S., MOON, S., AND PARK, K.
SSLShader: Cheap SSL Acceleration with Commodity Proces-
sors. In Proc. 8th USENIX NSDI (2011).

[28] KIM, J., JANG, K., LEE, K., MA, S., SHIM, J., AND MOON,
S. NBA (Network Balancing Act): A High-performance Packet
Processing Framework for Heterogeneous Processors. In Pro-
ceedings of the Tenth European Conference on Computer Systems
(2015), EuroSys ’15, ACM.

[29] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. ACM Trans-
action of Computer System (2000).

[30] LANGLEY, A. E. A. The quic transport protocol: Design and
internet-scale deployment. In Proc. of the 2017 ACM SIGCOMM
Conference (2017).

[31] LAUFER, R., GALLO, M., PERINO, D., AND NANDUGUDI, A.
CliMB: Enabling network function composition with Click mid-
dleboxes. In Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization (2016), Hot-
MIddlebox ’16, ACM.

[32] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU, N.,
XIONG, Y., CHENG, P., AND CHEN, E. ClickNP: Highly flexi-
ble and high performance network processing with reconfigurable
hardware. In Proc. of the 2016 ACM SIGCOMM Conference
(2016).

[33] LINUX FOUNDATION. DPDK, 2017. http://dpdk.org.

[34] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER,
S., SATI, S., YASUKATA, K., RAICIU, C., AND HUICI, F. My
vm is lighter (and safer) than your container. In Proceedings of
the Symposium on Operating Systems Principles (New York, NY,
USA, 2017), SOSP ’17, ACM, pp. 218–233.

[35] MARINOS, I., WATSON, R. N., AND HANDLEY, M. Network
Stack Specialization for Performance. In Proc. of the 2014 ACM
SIGCOMM Conference (2014), SIGCOMM ’14, ACM.

[36] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. ClickOS and the
Art of Network Function Virtualization. In Proc. 11th USENIX
NSDI (2014).

756 2018 USENIX Annual Technical Conference USENIX Association

http://www.openfastpath.org/
http://www.6wind.com/products/6windgate/
http://www.6wind.com/products/6windgate/
https://sourceforge.net/projects/iperf2/
https://sourceforge.net/projects/iperf2/
https://fd.io/
https://github.com/nokia/ClickNF
http://dpdk.org/browse/apps/pktgen-dpdk/
http://dpdk.org/browse/apps/pktgen-dpdk/

[37] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev. (2008).

[38] NARAYAN, A., CANGIALOSI, F., GOYAL, P., NARAYANA, S.,
ALIZADEH, M., AND BALAKRISHNAN, H. The case for moving
congestion control out of the datapath. In Proceedings of the 16th
ACM Workshop on Hot Topics in Networks (2017), HotNets-XVI.

[39] NIU, Z., XU, H., HAN, D., CHENG, P., XIONG, Y., CHEN, G.,
AND WINSTEIN, K. Network stack as a service in the cloud. In
Proceedings of the 16th ACM Workshop on Hot Topics in Net-
works (2017), HotNets-XVI.

[40] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RAT-
NASAMY, S., RIZZO, L., AND SHENKER, S. E2: A Framework
for NFV Applications. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), SOSP ’15, ACM.

[41] PATHAK, S., AND PAI, V. S. Modnet: A modular approach to
network stack extension. In Proc. 12th USENIX NSDI (2015).

[42] PERINO, D., GALLO, M., LAUFER, R., HOUIDI, Z. B., AND
PIANESE, F. A Programmable Data Plane for Heterogeneous
NFV Platforms. In 2016 IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS) (2016).

[43] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D.,
KRISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Ar-

rakis: The Operating System is the Control Plane. In Proc. 11th
USENIX OSDI (2014).

[44] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In
Proc. of the 2012 USENIX Annual Technical Conference (2012).

[45] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K., AND
SHI, G. Design and Implementation of a Consolidated Middle-
box Architecture. In Proc. of 9th USENIX NSDI (2012).

[46] SUN, W., AND RICCI, R. Fast and Flexible: Parallel Packet
Processing with GPUs and Click. In Proceedings of the Ninth
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (2013), ANCS ’13, IEEE Press.

[47] VARGHESE, G., AND LAUCK, A. Hashed and hierarchical tim-
ing wheels: Efficient data structures for implementing a timer
facility. IEEE/ACM Transactions on Networking (1997).

[48] VARVELLO, M., LAUFER, R., ZHANG, F., AND LAKSHMAN,
T. Multilayer packet classification with graphics processing units.
IEEE/ACM Transactions on Networking (2016).

[49] YASUKATA, K., HONDA, M., SANTRY, D., AND EGGERT,
L. Stackmap: Low-latency networking with the OS stack and
dedicated nics. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16) (2016).

USENIX Association 2018 USENIX Annual Technical Conference 757

