usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

AutoSSD: an Autonomic SSD Architecture

Bryan S. Kim, Seoul National University; Hyun Suk Yang, Hongik University;
Sang Lyul Min, Seoul National University

https://www.usenix.org/conference/atc18/presentation/kim

This paper is included in the Proceedings of the

2018 USENIX Annual Technical Conference (USENIX ATC '18).
July 11-13, 2018 « Boston, MA, USA
ISBN 978-1-939133-02-1

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference
is sponsored by USENIX.

https://www.usenix.org/conference/atc18/presentation/kim

AutoSSD: an Autonomic SSD Architecture

Bryan S.Kim
Seoul National University

Abstract

From small mobile devices to large-scale storage arrays,
flash memory-based storage systems have gained a lot of
popularity in recent years. However, the uncoordinated
use of resources by competing tasks in the flash trans-
lation layer (FTL) makes it difficult to guarantee pre-
dictable performance.

In this paper, we present AutoSSD, an autonomic SSD
architecture that self-manages FTL tasks to maintain a
high-level of QoS performance. In AutoSSD, each FTL
task is given an illusion of a dedicated flash memory sub-
system, allowing tasks to be implemented oblivious to
others and making it easy to integrate new tasks to han-
dle future flash memory quirks. Furthermore, each task is
allocated a share that represents its relative importance,
and its utilization is enforced by a simple and effective
scheduling scheme that limits the number of outstand-
ing flash memory requests for each task. The shares are
dynamically adjusted through feedback control by mon-
itoring key system states and reacting to their changes to
coordinate the progress of FTL tasks.

We demonstrate the effectiveness of AutoSSD by
holistically considering multiple facets of SSD internal
management, and by evaluating it across diverse work-
loads. Compared to state-of-the-art techniques, our de-
sign reduces the average response time by up to 18.0%,
the 3 nines (99.9%) QoS by up to 67.2%, and the 6 nines
(99.9999%) QoS by up to 76.6% for QoS-sensitive small
reads.

1 Introduction

Flash memory-based storage systems have become pop-
ular across a wide range of applications from mobile
systems to enterprise data storages. Flash memory’s
small size, resistance to shock and vibration, and low
power consumption make it the de facto storage medium
in mobile devices. On the other hand, flash memory’s

Hyun Suk Yang
Hongik University

Sang Lyul Min
Seoul National University

NG
'S

0.2

Normalized throughput
=]
N

0 -
Time

Figure 1: Performance drop and variation under 4KB random
writes.

low latency and collectively massive parallelism make
flash storage suitable for high-performance storage for
mission-critical applications. As multi-level cell tech-
nology [5] and 3D stacking [38] continue to lower the
cost per GB, flash storage will not only remain compet-
itive in the data storage market, but also will enable the
emergence of new applications in this Age of Big Data.

Large-scale deployments and user experiences, how-
ever, reveal that despite its low latency and massive par-
allelism, flash storage exhibits high performance insta-
bilities and variations [9, 17]. Garbage collection (GC)
has been pointed out as the main source of the problem
[9, 25, 28, 29, 45], and Figure 1 illustrates this case. It
shows the performance degradation of our SSD model
under small random writes, and it closely resembles mea-
sured results from commercial SSDs [2,23]. Initially, the
SSD’s performance is good because all the resources of
the flash memory subsystem can be used to service host
requests. But as the flash memory blocks are consumed
by host writes, GC needs to reclaim space by compact-
ing data spread across blocks and erasing unused blocks.
Consequently, host and GC compete for resources, and
the host performance inevitably suffers.

However, garbage collection is a necessary evil for
the flash storage. Simply putting off space reclamation
or treating GC as a low priority task will lead to larger
performance degradations, as host writes will eventually
block and wait for GC to reclaim space. Instead, garbage

USENIX Association

2018 USENIX Annual Technical Conference 677

collection must be judiciously scheduled with host re-
quests to ensure that there is enough free space for fu-
ture requests, while meeting the performance demands
of current requests. This principle of harmonious coexis-
tence, in fact, extends to every internal management task.
Map caching [15] that selectively keeps mapping data in
memory generates flash memory traffic on cache misses,
but this is a mandatory step for locating host data. Read
scrubbing [16] that preventively migrates data before its
corruption also creates traffic when blocks are repeatedly
read, but failure to perform its duty on time can lead to
data loss. As more tasks with unique responsibilities are
added to the system, it becomes increasingly difficult to
design a system that meets its performance and reliability
requirements [13].

In this paper, we present an autonomic SSD archi-
tecture called AutoSSD that self-manages its manage-
ment tasks to maintain a high-level of QoS performance.
In our design, each task is given a virtualized view of
the flash memory subsystem by hiding the details of
flash memory request scheduling. Each task is allo-
cated a share that represents the amount of progress it
can make, and a simple yet effective scheduling scheme
enforces resource arbitration according to the allotted
shares. The shares are dynamically and automatically ad-
justed through feedback control by monitoring key sys-
tem states and reacting to their changes. This achieves
predictable performance by maintaining a stable system.
We show that for small read requests, AutoSSD reduces
the average response time by up to 18.0%, the 3 nines
(99.9%) QoS by up to 67.2%, and the 6 nines (99.9999%)
QoS by up to 76.6% compared to state-of-the-art tech-
niques. Our contributions are as follows:

e We present AutoSSD, an autonomic SSD architec-
ture that dynamically manages internal housekeep-
ing tasks to maintain a stable system state. (§ 3)

e We holistically consider multiple facets of SSD in-
ternal management, including not only garbage col-
lection and host request handling, but also mapping
management and read scrubbing. (§ 4)

e We evaluate our design and compare it to the state-
of-the-art techniques across diverse workloads, an-
alyze causes for long tail latencies, and demonstrate
the advantages of dynamic management. (§ 5)

The remainder of this paper is organized as follows.
§ 2 gives a background on understanding why flash stor-
ages exhibit performance unpredictability. § 3 presents
the overall architecture of AutoSSD and explains our de-
sign choices. § 4 describes the evaluation methodology
and the SSD model that implements various FTL tasks,
and § 5 presents the experimental results under both syn-

thetic and real I/O workloads. § 6 discusses our design
in relation to prior work, and finally § 7 concludes.

2 Background

For flash memory to be used as storage, several of its
limitations need to be addressed. First, it does not allow
in-place updates, mandating a mapping table between
the logical and the physical address space. Second,
the granularities of the two state-modifying operations—
program and erase—are different in size, making it nec-
essary to perform garbage collection (GC) that copies
valid data to another location for reclaiming space. These
internal management schemes, collectively known as the
flash translation layer (FTL) [11], hide the limitations
of flash memory and provide an illusion of a traditional
block storage interface.

The role of the FTL has become increasingly im-
portant as hiding the error-prone nature of flash mem-
ory can be challenging when relying solely on hard-
ware techniques such as error correction code (ECC)
and RAID-like parity schemes. Data stored in the flash
array may become corrupt in a wide variety of ways.
Bits in a cell may be disturbed when neighboring cells
are accessed [12,41,44], and the electrons in the float-
ing gate that represent data may gradually leak over
time [6,35,44]. Sudden power loss can increase bit er-
ror rates beyond the error correction capabilities [44,47],
and error rates increase as flash memory blocks wear
out [6,12,19]. As flash memory becomes less reliable
in favor of high-density [13], more sophisticated FTL al-
gorithms are needed to complement existing reliability
enhancement techniques.

Even though modern flash storages are equipped with
sophisticated FTLs and powerful controllers, meeting
performance requirements have three main challenges.
First, as new quirks of flash memory are introduced,
more FTL tasks are added to hide the limitations, thereby
increasing the complexity of the system. Furthermore,
existing FTL algorithms need to be fine-tuned for ev-
ery new generation of flash memory, making it difficult
to design a system that universally meets performance
requirements. Second, multiple FTL tasks generate se-
quences of flash memory requests that contend for the
resources of the shared flash memory subsystem. This
resource contention creates queueing delays that increase
response times and causes long-tail latencies. Lastly, de-
pending on the state of the flash storage, the importance
of FTL tasks dynamically changes. For example, if the
flash storage runs out of free blocks for writing host data,
host request handling stalls and waits for garbage col-
lection to reclaim free space. On the other hand, with
sufficient free blocks, there is no incentive prioritizing
garbage collection over host request handling.

678 2018 USENIX Annual Technical Conference

USENIX Association

Task

Autonomic SSD

queues

Flash Translation Layer | T 1]
I Host E
ost system request
handlin
s Garbage E
collection E
[)
[)
[)
Read
scrubbing :m

Scheduling
Subsystem

Key system states
(# of clean blocks,
read count, etc)

Flash Flash channel
memory
subsystem
queue LA
E Flash channel
rusoeres| [- - -
Subsystem L]
[]
E °
Flash channel
Ty
Share
weight

Share controller

Figure 2: Overall architecture of AutoSSD and its components.

3 AutoSSD Architecture

In this section, we describe the overall architecture and
design of the autonomic SSD (AutoSSD) as shown in
Figure 3. In our model, all FTL tasks run concurrently,
with each designed and implemented specifically for its
job. Each task independently interfaces the scheduling
subsystem, and the scheduler arbitrates the resources in
the flash memory subsystem according to the assigned
share. The share controller monitors key system states
and determines the appropriate share for each FTL task.
AutoSSD is agnostic to the specifics of the FTL algo-
rithms (i.e., mapping scheme and GC victim selection),
and the following subsections focus on the overall archi-
tecture and design that enable the self-management of
the flash storage.

3.1 Virtualization of the Flash Memory
Subsystem

The architecture of AutoSSD allows each task to be inde-
pendent of others by virtualizing the flash memory sub-
system. Each FTL task is given a pair of request and re-
sponse queues to send and receive flash memory requests
and responses, respectively. This interface provides an
illusion of a dedicated (yet slower) flash memory sub-
system and allows an FTL task to generate flash memory
requests oblivious of others (whether idle or active) or
the requests they generate (intensity or which resources
they are using). Details of the flash memory subsystem
are completely abstracted by the scheduling subsystem,
and only the back-pressure of the queue limits each task
from generating more flash memory requests.

This virtualization not only effectively frees each task
from having to worry about others, but also makes it

easy to add a new FTL task to address any future flash
memory quirks. While background operations such as
garbage collection, read scrubbing, and wear leveling
have similar flash memory workload patterns (reads and
programs, and then erases), the objective of each task is
distinctly different. Garbage collection reclaims space
for writes, read scrubbing preventively relocates data to
ensure data integrity, and wear leveling swaps contents
of data to even out the damage done on flash memory
cells. Our design allows seamless integration of new
tasks without having to modify existing ones and reop-
timize the system.

3.2 Scheduling for Share Enforcement

The scheduling subsystem interfaces with each FTL task
and arbitrates the resources of the flash memory subsys-
tem. The scheduler needs to be efficient with low over-
head as it manages concurrency (tens and hundreds of
flash memory requests) and parallelism (tens and hun-
dreds of flash memory chips) at a small timescale.

In AutoSSD, we consider these unique domain char-
acteristics and arbitrate the flash memory subsystem re-
source through debit scheduling. The debit scheduler
tracks and limits the number of outstanding requests per
task across all resources, and is based on the request win-
dowing technique [14, 20, 34] from the disk scheduling
domain. If the number of outstanding requests for a task,
which we call debit, is under the limit, its requests are
eligible to be issued; if it’s not, the request cannot be
issued until one or more of requests from that task com-
pletes. The debt limit is proportional to the share set by
the share controller, allowing a task with a higher share
to potentially utilize more resources simultaneously. The
sum of all tasks’ debt limit represents the total amount of

USENIX Association

2018 USENIX Annual Technical Conference 679

Task A Task B

Debit 1>2 3 Chip 0 queue
Chip 0 i 0
Debt limit 5 3 queue full ; Chip 0
Task A queue Chip 1 queue
/%*1, 2 q
So Chip 1
~ < 4 y 4 . .
~ 5> e,
Task B queue Sa - Chip 2 queue
B0 Chip 2
At max
debt Chip 3 queue
Chip 3

(a) Task A’s request issued to Chip 2.

Task A Task B

Debit 2 2>3 Chip 0 queue
Chip 0 f 3
Debt limit 5 3 queue full Chip 0
Task A queue
A0 & hip 1
) I Crip
o0 Ve
XY
s%\)e \?»\0 -
Task B queue \ P I Chip 2 queue
S R Vs .
Chip 3 queue
Task B’s
request Chip 3
completed

(b) Task B’s request issued to Chip O.

Figure 3: Two debit scheduling examples. In the scenario of Figure 3a, no more requests can be sent to Chip 0, and Task B is at
its maximum debit. The only eligible scheduling is issuing Task A’s request to Chip 2. In the scenario of Figure 3b, while Task
A is still under the debt limit, its request cannot be issued to a chip with a full queue. On the other hand, a request from Task B can

be issued as Chip 3’s operation for Task B completes.

parallelism, and is set to the total number of requests that
can be queued in the flash memory controller.

Figure 3 illustrates two scenarios of the debit schedul-
ing. In both scenarios, the debt limit is set to 5 requests
for Task A, and 3 for Task B. In Figure 3a, no more
requests can be sent to Chip O as its queue is full, and
Task B’s requests cannot be scheduled as it is at its debt
limit. Under this circumstance, Task A’s request to Chip
2 is scheduled, increasing its debit value from 1 to 2.
In Figure 3b, the active operation at Chip 3 for Task B
completes, allowing Task B’s request to be scheduled.
Though Task B’s request to Chip 1 is not at the head of
the queue, it is scheduled out-of-order as there is no de-
pendence between the requests to Chip 0 and Chip 1.
Task A, although below the debt limit, cannot have its re-
quests issued until Chip O finishes a queued operation,
or until a new request to another chip arrives. Though not
illustrated in these scenarios, when multiple tasks under
the limit compete for the same resource, one is chosen
with skewed randomness favoring a task with a smaller
debit to debt limit ratio. Randomness is added to proba-
bilistically avoid starvation.

Debit scheduling only tracks the number of outstand-
ing requests, yet exhibits interesting properties. First, it
can make scheduling decisions without complex compu-
tations and bookkeeping. This allows the debit sched-
uler to scale with increasing number of resources. Sec-
ond, although it does not explicitly track time, it im-
plicitly favors short latency operations as they have a
faster turn-around-time. In scheduling disciplines such
as weighted round robin [26] and weighted fair queue-
ing (WFQ) [10], the latency of operations must be
known or estimated to achieve some degree of fairness.
Debit scheduling, however, approximates fairness in the

time-domain only by tracking the number of outstand-
ing requests. Lastly, the scheduler is in fact not work-
conserving. The total debt limit can be scaled up to ap-
proximate a work-conserving scheduler, but the share-
based resource reservation of the debit scheduler allows
high responsiveness, as observed in the resource reserva-
tion protocol for Ozone [36].

3.3 Feedback Control of Share

The share controller determines the appropriate share
for the scheduling subsystem by observing key system
states. States such as the number of free blocks and the
maximum read count reflect the stability of the flash stor-
age. This is critical for the overall performance and re-
liability of the system, as failure to keep these states at
a stable level can lead to an unbounded increase in re-
sponse time or even data loss.

For example, if the flash storage runs out of free
blocks, not only do host writes block, but also all other
tasks that use flash memory programs stall: activities
such as making mapping data durable and writing pe-
riodic checkpoints also depend on the garbage collection
to reclaim free space. Even worse, a poorly constructed
FTL may become deadlocked if GC is unable to obtain a
free block to write the valid data from its victim. On the
other hand, if a read count for a block exceeds its recom-
mended limit, accumulated read disturbances can lead to
data loss if the number of errors is beyond the error cor-
rection capabilities. In order to prevent falling into these
adverse system conditions, the share controller monitors
the system states and adjusts shares to control the rate of
progress for individual FTL tasks, so that the system is
maintained within stable levels.

AutoSSD uses feedback to adaptively determine the

680 2018 USENIX Annual Technical Conference

USENIX Association

shares for the internal FTL tasks. While the values of key
system states must be maintained at an adequate level,
the shares of internal tasks must not be set too high such
that they severely degrade the host performance. Once a
task becomes active, it initially is allocated a small share.
If this fails to maintain the current level of the system
state, the share is gradually increased to counteract the
momentum. The following control function is used to
achieve this behavior:

SA[I] :PA-EA[Z‘]+IA'SA[I—1} (D)

Where S4t] is the share for task A at time ¢, Sq[r — 1] is
the previous share for task A, P4 and I4 are two non-
negative coefficients for task A, and en[t] is the error
value for task A at time ¢. The error value function for
GC is defined as follows:

egc(t] = max(0,target froepik — num rreepir[t]) (2)

With target frecpir set to the GC activation threshold, the
share for GC S starts out small. If the number of free
blocks num greepik[t] falls far below target reepii, the er-
ror function egc[f] augmented by Pge ramps up the GC
share Sgc. After the number of free blocks num ¢reepii|t]
exceeds the threshold rarget fyecpix, the share Sge slowly
decays given Igc < 1.

Addition to the GC share control, the error value func-
tion for read scrubbing (RS) is defined as follows:

ers[t] = maX(O,m%(readcnti [t]) —targetreaacns) (3)
IS

Where m;ll)]i(readcnt,-[t]) is the maximum read count
ic

across all blocks in the system at time ¢, and target,eqqcns
is the RS activation threshold.

In our design, the share for internal management
schemes starts out small, anticipating host request ar-
rivals and using the minimum amount of resources to
perform its task. If the system state does not recover, the
error (the difference between the desired and the actual
system state values) accumulates, increasing the share
over time.

It is important to note that the progress rate for a task
depends not only on the share, but also on the workload,
algorithm, and system state. For example, the number of
valid data in the victim block, the location of the map-
ping data associated with the valid data, and the access
patterns at the flash memory subsystem all affect the rate
of progress for GC. A task’s progress rate is, in fact, non-
linear to the share under real-world workloads, and com-
putationally solving for the optimal share involves large
overhead, if not impossible. As a result, the two coeffi-
cients P and [for FTL tasks are empirically hand-tuned
in this work.

Table 1: System configuration.

Parameter Value Parameter Value

of channels 4 Read latency 50us

of chips/channel 4 Program latency 500us

of planes/chip 2 Erase latency Sms

of blocks/plane 1024 Data transfer rate 400MB/s
of pages/block 512 Physical capacity 256GB
Page size 16KB Logical capacity = 200GB

4 Evaluation Methodology and Modeling

We model a flash storage system on top of the DiskSim
environment [1] by enhancing its SSD extension [3]. In
this section, we describe the various components and
configuration of the SSD, and the workload and test set-
tings used for the evaluation.

4.1 Flash Memory Subsystem

Flash memory controller is based on Ozone [36] that
fully utilizes flash memory subsystem’s channel and chip
parallelism. There can be at most four requests queued
to each chip in the controller. Increasing this queue depth
does not significantly increase intra-chip parallelism, as
cached operations of flash memory have diminishing
benefits as the channel bandwidth increases. Instead, a
smaller queue depth is chosen to increase the responsive-
ness of the system.

Table 1 summarizes the default flash storage configu-
ration used in our experiments. Of the 256GB of physical
space, 200GB is addressable by the host system, giving
an over-provisioning factor of 28%.

4.2 Flash Translation Layer

We implement core FTL tasks and features that are es-
sential for storage functions, yet cause performance vari-
ations. Garbage collection reclaims space, but it de-
grades the performance of the system under host random
writes. Read scrubbing that preventively relocates data
creates background traffic on read-dominant workloads.
Mapping table lookup is necessary to locate host data,
but it increases response time on map cache misses.
Mapping. We implement an FTL with map
caching [15] and a mapping granularity of 4KB. The en-
tire mapping table is backed in flash, and mapping data,
also maintained at the 4KB granularity, is selectively
read into memory and written out to flash during runtime.
The LRU policy is used to evict mapping data, and if the
victim contains any dirty mapping entries, the 4KB map-
ping data is written to flash. By default, we use 128MB
of memory to cache the mapping table. The second-level
mapping that tracks the locations of the 4KB mapping

USENIX Association

2018 USENIX Annual Technical Conference 681

Table 2: Trace workload characteristics.

Duration Number of I/Os (Millions) Average request size(KB) Inter-arrival time (ms)
Workload (hrs) . ’ '
Write Read Write Read Average Median
DAP-DS 23.5 0.1 1.3 7.2 31.5 56.9 31.6
DAP-PS 23.5 0.5 0.6 96.7 62.1 79.9 1.7
DTRS 23.0 5.8 12.0 31.9 21.8 4.6 1.5
LM-TBE 23.0 9.2 34.7 61.9 53.2 1.9 0.8
MSN-CFS 59 1.1 3.2 12.9 8.9 4.9 2.0
MSN-BEFS 59 9.2 18.9 11.6 10.7 0.8 0.3
RAD-AS 15.3 2.0 0.2 9.9 11.0 24.9 0.8
RAD-BE 17.0 4.3 1.0 13.0 106.2 11.7 2.6

data is always kept in memory as it is accessed more fre-
quently and orders of magnitude smaller than the first-
level mapping table.

Host request handling. Upon receiving a request, the
host request handler looks up the second-level mapping
to locate the mapping data that translates the host logi-
cal address to the flash memory physical address. If the
mapping data is present in memory (hit), the host request
handler references the mapping data and generates flash
memory requests to service the host request. If it is a
miss, a flash memory read request to fetch the mapping
data is generated, and the host request waits until the
mapping data is fetched. Host requests are processed in a
non-blocking manner; if a request is waiting for the map-
ping data, other requests may be serviced out-of-order.
In our model, if the host write request is smaller than the
physical flash memory page size, multiple host writes are
aggregated to fill the page to improve storage space uti-
lization. We also take into consideration of the mapping
table access overhead and processing delays. Mapping
table lookup delay is set to be uniformly distributed be-
tween 0.5us and 1us, and the flash memory request gen-
eration delay for the host task is between 1us and 2us.

Garbage collection. The garbage collection (GC)
task runs concurrently and independently from the host
request handler and generates its own flash memory
requests. Victim blocks are selected based on cost-
benefit [40]. Once a victim block is selected, valid pages
are read and programmed to a new location. Mapping
data is updated as valid data is copied, and this process
may generate additional requests (both reads and pro-
grams) for mapping management. Once all the valid
pages have been successfully copied, the old block is
erased and marked free. GC becomes active when the
number of free blocks drops below a threshold, and stops
once the number of free blocks exceeds another thresh-
old, similar to the segment cleaning policy used for the
log-structured file system [40]. In our experiments, the
two threshold values for GC activation and deactivation
are set to 128 and 256 free blocks, respectively. The

garbage collection task also has a request generation de-
lay, set to be uniformly distributed between 1ts and 3us.

Read scrubbing. The read scrubbing (RS) task also
runs as its own stand-alone task. Victims are selected
greedily based on the read count of a block: the block
with the most number of reads is chosen. Other than
that, the process of copying valid data is identical to that
of the garbage collection task. RS becomes active when
the maximum read count of the system goes beyond a
threshold, and stops once it falls below another threshold.
The default threshold values for the activation and deac-
tivation are set to 100,000 and 80,000 reads, respectively.
Like the garbage collection task, the request generation
delay (modeling the processing overhead of read scrub-
bing) is uniformly distributed between 1us and 3us.

4.3 Workload and Test Settings

We use both synthetic workloads and real-world I/O
traces from Microsoft production servers [27] to evaluate
the autonomic SSD architecture. Synthetic workloads of
128KB sequential accesses, 4KB random reads, and 4KB
random read/writes are used to verify that our model be-
haves expectedly according to the system parameters.

From the original traces, the logical address of each
host request is modified to fit into the 200GB range, and
all the accesses are aligned to 4KB boundaries. All the
traces are run for their full duration, with some lasting up
to 24 hours and replaying up to 44 million I/Os. The trace
workload characteristics are summarized in Table 2.

Prior to each experiment, the entire physical space is
randomly written to emulate a pre-conditioned state so
that the storage would fall under the steady state perfor-
mance described in SNIA’s SSS-PTS [2]. Furthermore,
each block’s read count is initialized with a non-negative
random value less than the read scrubbing threshold to
emulate past read activities.

682 2018 USENIX Annual Technical Conference

USENIX Association

BRead N§Write

2500 1500
Ezooo £ 1200
glsoo E 900
£ 1000 . 2 600
= 9 N\
\ N £

§ 500 I§ I 5 300
i , I N N 0
=

100MB/s 200MB/s 400MB/s 1000MB/s
Single channel bandwidth

(a) 128KB sequential accesses.

s Util. (%) ==l=Avg. RT -+@+-3 nines QoS

Map cache size (MB)

(b) 4KB random reads.

S GC rate == 3 nines QoS -+ @+ 6 nines QoS
100 8 50

80 40

=N

60 30

40 20

[N}

20

Flash uitilization (%)
Response time (ms)
i
GC rate (# erase/sec)

0

=}

20% 40% 60% 80%
GC share

(c) 4KB random reads/writes.

Figure 4: Performance under synthetic workloads. Figure 4a shows the total bandwidth under 128KB sequential accesses with
respect to changes in the channel bandwidth. Figure 4b shows the performance (average response time and 3 nines QoS) and the
utilization of the flash memory subsystem with respect to changes in the size of the in-memory map cache. Figure 4c shows the
performance (3 nines and 6 nines QoS) and the GC progress rate with respect to the GC share.

S Experiment Results

This section presents experimental results under the con-
figuration and workload settings described in the previ-
ous section. The main performance metric we report is
the system response time seen at the I/O device driver.
We first validate our SSD model using synthetic work-
loads, and then present experimental results with I/O
traces. We replayed the I/O traces with the original re-
quest dispatch times, and with the dispatch times scaled
down to increase the workload intensity.

5.1 Micro-benchmark Results

Figure 4 illustrates the performance of the autonomic
SSD architecture (AutoSSD) with debit scheduling under
four micro-benchmarks. Figure 4a plots the total band-
width under 128KB sequential reads and 128KB sequen-
tial writes as we increase the channel bandwidth. As the
channel bandwidth increases, the flash memory opera-
tion latency becomes the performance bottleneck. Write
performance saturates early as the program latency can-
not be hidden with data transfers. At 1000MB/s channel
bandwidth, the read operation latency also becomes the
bottleneck, unable to further extract bandwidth from the
configured four channels. Traffic from GC and mapping
management has a negligible effect for large sequential
accesses, and RS task was disabled for this run to mea-
sure maximum raw bandwidth.

In Figure 4b, we vary the in-memory map cache size
and measure the response times of 4KB random read re-
quests when issued at 100K I/Os per second (IOPS). As
expected, the response time is the smallest when the en-
tire map is in memory, as it does not generate map read
requests once the cache is filled after cold-start misses.
However, as the map cache becomes smaller, the re-
sponse time for host reads increases not only because it
probabilistically stalls waiting for map reads from flash
memory, but also due to increased flash memory traffic,

which causes larger queueing delays.

Lastly, we demonstrate that the debit scheduling
mechanism exerts control over FTL tasks in Figure 4c.
In this scenario, 4KB random read/write requests are is-
sued at 20K IOPS with a 1-to-9 read/write ratio. Both
the response time of host read requests and GC task’s
progress (in terms of the number of erases per second
while active) are measured at fixed GC shares from 20%
to 80%. As shown by the bar graph, more blocks are
erased as the share for GC increases. Furthermore, with
more GC share, the overall host performance suffers, as
evident by the increase in the 3 nines QoS. Deceptively,
however, assigning not enough share to GC will result
in worse tail latency as shown by the 6 nines QoS. GC
needs to produce sufficient number of free blocks for the
host to consume, and failure to do so will cause the host
to block.

5.2 1/O Trace Results

Using /O traces, we evaluate the performance of Au-
toSSD and compare it to following three systems:

Vanilla represents a design without virtualization and
coordination, and all tasks dispatch requests to the
controller through a single pair of request/response
queue.

RAIN [45] uses parity to reconstruct data when ac-
cessing the chip is blocked by background tasks.
Resources are arbitrated through fixed priority
scheduling, with host requests having the highest
priority. This technique requires an additional phys-
ical capacity to store parity data.

QoSFC [28] schedules using weighted fair queueing
(WFQ) and represents a work-conserving system
that does not reserve resources. It maintains virtual
time as a measure of progress for each FTL task at
each flash memory resource.

USENIX Association

2018 USENIX Annual Technical Conference 683

OVanilla SRAIN ©QoSFC mAutoSSD
1.69

1.2

1 8 N N 3 g
) N N N N NE I
02 NN N N
0 LML LML L
S & & & & & s
& &FE & TS

& SRR

(a) Average response time.

OVanilla SRAIN ©QoSFC mAutoSSD
2.92 1.44 2.75 2.13 4.47 1.37 1.85

12
1
v
808
%06
g
= 04
02
0
&
(b) Three nines QoS.
OVanilla SRAIN ©QoSFC ®AutoSSD
12 194 217 348 203 113 269 192 279
1
wv)
8038
% 0.6
g
= 0.4
02
0
oF

(c) Six nines QoS.

Figure 5: Comparison of Vanilla, RAIN, QoSFC, and Au-
toSSD under eight different traces. Results are normalized to
the performance of RAIN. AutoSSD reduces the average re-
sponse time by up to 18.0% under MSN-BEFS (by 3.8% on aver-
age), the 3 nines QoS by up to 67.2% under RAD-AS (by 53.6%
on average). and the 6 nines QoS by up to 76.6% under RAD-AS
(by 42.7% on average).

As the focus of this paper is response time characteris-
tics, we only measure the performance of QoS-sensitive
small reads (no larger than 64KB) in terms of the average
response time, the 3 nines (99.9%) QoS figure, and the 6
nines (99.9999%).

Figure 5 compares the performance of the four sys-
tems under eight different traces. Compared to RAIN,
AutoSSD reduces the average response time by up to
18.0% under MSN-BEFS as shown in Figure 5a. For the
3 nines QoS, AutoSSD shows improvements across most
workloads, reducing it by 53.6% on average and as much
as by 67.2% under RAD-AS (see Figure 5b). For the
6 nines QoS, AutoSSD shows much greater improve-
ments, reducing it as much as by 76.6% under RAD-AS
(see Figure 5c¢). Without coordination among FTL tasks,

the Vanilla performance suffers, especially for the long
tail latencies. In terms of the 6 nines, AutoSSD per-
forms well under bursty workloads such as RAD-AS and
LM-TBE (large difference between average and median
inter-arrival times in Table 2). This is because AutoSSD
limits the progress of internal FTL tasks depending on
the state of the system, making resources available for
the host in a non-work-conserving manner. This is in
contrast to the scheduling disciplines used by the other
systems: Vanilla uses FIFO scheduling; RAIN, priority
scheduling; and QoSFC, weighted fair queueing.

To better understand the overall results in Figure 5, we
microscopically examine the performance under RAD-AS
in Figure 6 and LM-TBE in Figure 7. Figure 6a shows the
average response time of three systems—RAIN, QoSFC,
and AutoSSD—during a 10-second window, approxi-
mately 10 hours into RAD-AS. GC is active during this
window for all the three systems, and both RAIN and
QoSFC exhibit large spikes in response time. On the
other hand, AutoSSD is better able to bound the perfor-
mance degradation caused by an active garbage collec-
tion. Figure 6b shows the number of free blocks and the
GC share during that window for AutoSSD. The saw-
tooth behavior for the number of free blocks is due to
host requests consuming blocks, and GC gradually re-
claiming space. GC share is reactively increased when
the number of free blocks becomes low, thereby increas-
ing the rate at which GC produces free blocks. If the
number of free blocks exceeds the GC activation thresh-
old, the share decays gradually to allow other tasks to use
more resources. In effect, AutoSSD improves the overall
response time as shown in Figure 6c.

For LM-TBE, Figure 7a shows the average response
time of the three systems during a 20-second window,
approximately 15 hours into the workload. Here we ob-
serve read scrubbing (RS) becoming active due to the
read-dominant characteristics of LM-TBE. We observe
that both RAIN and QoSFC show large spikes in response
time that lasts longer than the perturbation caused by GC
for RAD-AS (cf. Figure 6a). While GC is incentivized to
select a block with less valid data, RS is likely to pick
a block with a lot of valid data that are frequently read
but not frequently updated: this causes the performance
degradation induced by RS to last longer than that by
GC. AutoSSD limits this effect, while still decreasing the
maximum read count in the system by dynamically ad-
justing the share of RS, as shown in Figure 7b. Figure 7¢
shows the response time CDF of the three systems.

Figure 8 illustrates the delay causes for the flash mem-
ory requests generated by the host request handling task
under MSN-BEFS. Note that this is different from the re-
sponse time of host requests: this shows the average wait
time that a flash memory request (for servicing the host)
experiences, broken down by different causes. Category

684 2018 USENIX Annual Technical Conference

USENIX Association

QOSFC e AutoSSD

— N w

Avg. response time (ms)

=]

35405

35408
Time (seconds)

35411 35414

(a) Average response time under RAD-AS.

Number of free blocks

= = # of free blocks

0

@ (GC share

z
Z 0999
40 E
- ° £ 0.998
‘,_,'-—‘ -="730 5 =
4 Z =
005 £ 0.997
&} =
10 £ 0.996 QoSFC
C — AutoSSD
0 0.995
35405 35408 35411 35414 0 04 08 1.2 1.6 2

Time (seconds)

(b) Change in GC share under RAD-AS.

Response time (ms)

(c) Response time CDF under RAD-AS.

Figure 6: Comparison of RAIN, QoSFC, and AutoSSD under RAD-AS. Figure 6a shows the average response time sampled at
100ms in the selected 10-second window. Figure 6b shows the number of free blocks and the GC share of AutoSSD for the same
10-second window. Figure 6c¢ plots the response time CDF for the entire duration.

------- RAIN QOSFC e AutoSSD = = Max read count emmmmRS share . 1
=4 - Z 0999
2 S 2
E S 100 + = == 40 2
g3 I ety o £ 0998
£ 27 30 § oy
22 S < £ 0.997
z 3 50 20 & 3 -==-RAIN
2 K " E
g1 g s 10 £ 0.996 QoSFC
o0 = © e A1t0SSD
0 s 0 0 0.995
55090 55095 55100 55105 55090 55095 55100 55105 0 04 08 12 1.6 2

Time (seconds)

(a) Average response time under LM-TBE.

Time (seconds)

(b) Change in RS share under LM-TBE.

Response time (ms)

(c) Response time CDF under LM-TBE.

Figure 7: Comparison of RAIN, QoSFC, and AutoSSD under LM-TBE. Figure 7a shows the average response time sampled at
100ms in the selected 20-second window. Figure 7b shows the maximum read count and the RS share of AutoSSD for the same
20-second window. Figure 7c plots the response time CDF for the entire duration.

BFlash @Sched OHost WParity mMap ORS SGC

AutoSSD
QoSFC
RAIN

Vanilla

100 150 200

0 50
Average wait time of flash memory requests (ps)
Figure 8: Breakdown of wait time experienced by flash mem-
ory requests under MSN-BEFS.

Flash represents flash memory latency, combining both
flash array access latency and data transfers. Sched is
the time spent waiting to be scheduled, either waiting in
the queue because the target queue is full, or waiting be-
cause the scheduler limits the progress in a non-work-
conserving manner (the case for AutoSSD). The large
Sched wait time for Vanilla is caused by uncoordinated
sharing of resources, while that for AutoSSD is small as
the scheduler reserves resources for host requests. The
remaining five categories are delays experienced due to
resource blocking. Most noticeably, the wait time caused
by GC in RAIN is higher than the other systems. When
RAIN generates alternate flash memory requests to re-
construct data through parity, these additional requests
can, in turn, be blocked again at another resource. In

-

@ GC: Dynamic share

= = GC: 5% share

=== GC: 10% share
GC: 20% share

1.6 2

Cumulative probability

o o o o
Nl Nl Nl Nl
O O O O
(=)} ~ o0 O

0.8 1.2
Response time (ms)

Figure 9: Comparison of AutoSSD with static shares and dy-
namic share under MSN-BEFS.

ttFlash [45], this problem is overcome by statically lim-
iting the number of active GC to one per parity group.
This technique is not used in our evaluation as a fixed
cap on the number of allowed GC can quickly deplete
free blocks, especially for high-intensity small random
write workloads.

Next, we examine the effectiveness of the dynamic
share assignment over the static ones. Figure 9 shows the
response time CDF of AutoSSD under MSN-BEFS with
static shares of 5%, 10%, and 20% for GC, along with
the share controlled dynamically. As illustrated by the
gray lines, decreasing the GC share from 20% to 10%
improves the overall performance. However, when fur-
ther reducing the GC share to 5%, we observe that the
curve for 5% dwindles as it approaches higher QoS and

USENIX Association

2018 USENIX Annual Technical Conference 685

performs worse than the 10% curve. This indicates that
while a lower GC share achieves better performance at
lower QoS levels, a higher GC share is desirable to re-
duce long-tail latencies as it generates free blocks at a
higher rate, preventing the number of free blocks from
becoming critically low. This observation is in accor-
dance with the performance under synthetic workload in
Figure 4c. Using feedback control to adjust the GC share
dynamically shows better performance over all the static
values, as it can adapt to an appropriate share value by
reacting to the changes in the system state.

5.3 1/0O Trace Results at Higher Intensity

In this subsection, we present experimental results with
higher request intensities. Here, the request dispatch
times are reduced in half, but other parameters such as
the access type and the target address remain unchanged.
This experiment is intended to examine the performance
of the four systems—Vanilla, RAIN, QoSFC, and Au-
toSSD—under a more stressful scenario.

Figure 10 compares the performance in the new set-
ting. AutoSSD reduces the average response time by up
to 24.6% under MSN-BEFS (see Figure 10a), the 3 nines
QoS figure by 48.6% on average and as much as 70.6%
under MSN-CFS (see Figure 10b), and the 6 nines QoS
figure by as much as 55.3% under MSN-CFS (see Fig-
ure 10c). With workload intensity increased, the over-
all improvement in long tail latency decreases due to a
smaller wiggle room for AutoSSD to manage FTL tasks.
This is especially true for high-intensity workloads such
as MSN-BEFS: with host requests arriving back-to-back
(cf. halve the inter-arrival time in Table 2), debit schedul-
ing has little advantage over other scheduling schemes.
However, AutoSSD nevertheless outperforms prior tech-
niques across the diverse set of workloads. Workloads
such as RAD-AS and LM-TBE that showed the most reduc-
tion in long tail latency under the original intensity (cf.
Figure 5c) still exhibit performance improvements with
AutoSSD in the 6 nines, even with increased workload
intensity.

We examine DTRS more closely in Figure 11. Fig-
ure 11a shows the average response time of the three
systems—RAIN, QoSFC, and AutoSSD—during a 20-
second window, approximately 2 hours into the work-
load. GC is active during this window for all the three
systems, and AutoSSD is better able to bound the per-
formance degradation caused by an active garbage col-
lection, while both RAIN and QoSFC exhibit large spikes
in response time. Figure 11b shows the number of free
blocks and the GC share during that window for Au-
toSSD. Similar to the results in the previous section,
the share for GC reactively increases at a lower num-
ber of blocks, and decays once the number of free blocks

OVanilla SRAIN ©QoSFC mAutoSSD
2.34

Average RT

oo h
L= S R = AN)
{ [T [T 1

O«S’
2
‘fp 7
J‘

(a) Average response time at 2x intensity.

OVanilla SRAIN @QoSFC ®AutoSSD
221 2.90 3.57 2.55 7.66 1.94 2.24 2.57

3 nines QoS

(b) Three nines QoS at 2x intensity.

OVanilla SRAIN ©QoSFC mAutoSSD
.92 221 2.34 3.20 1.83 18.9 1.80 2.03 2.82

6 nines QoS

oo Qo s
I S S L

(c) Six nines QoS at 2x intensity.

Figure 10: Comparison of Vanilla, RAIN, QoSFC, and Au-
toSSD under eight different traces at 2x intensity. Results are
normalized to the performance of RAIN at 2x intensity. Au-
toSSD reduces the average response time by up to 24.6% un-
der MSN-BEFS (by 4.9% on average), the 3 nines QoS by up to
70.6% under MSN-CFS (by 48.6% on average). and the 6 nines
QoS by up to 55.3% under MSN-CFS (by 33.2% on average).

reaches a stable region. Again, the number of free blocks
shows a sawtooth behavior, and the ridges of GC share
curve matches the valleys of the free block curve. Fig-
ure 11c plots the response time CDF of the three systems,
demonstrating the effectiveness of our dynamic manage-
ment.

6 Discussion and Related Work

There are several studies on real-time performance guar-
antees of flash storage, but they depend on RTOS sup-
port [7], specific mapping schemes [8, 39, 46], a num-
ber of reserve blocks [8, 39], and flash operation laten-
cies [46]. These tight couplings make it difficult to ex-
tend performance guarantees when system requirements

686 2018 USENIX Annual Technical Conference

USENIX Association

QOSFC e AutoSSD = = # of free blocks

w

N

50

Avg. response time (ms)
Number of free blocks

=]

0

7725 7725

7730

7735
Time (seconds)

7740

7730
Time (seconds)

(b) Change in GC share under 2xDTRS.
Figure 11: Comparison of the RAIN, QoSFC, and AutoSSD under DTRS running at 2x intensity. Figure 11a shows the average

7735
(a) Average response time under 2xDTRS.

response time sampled at 100ms in the selected 20-second window.

@ GC share

z
2 0.999
3
=
o £ 0.998
< @
=z £ 0.997 /
o 3 L/ ===-RAIN
€} E 7
£ 0.996 QoSFC
] e AutoSSD

7740 0.4 0.8 1.2

Response time (ms)

(c) Response time CDF under 2xDTRS.

1.6 2

Figure 11b shows the number of free blocks and the GC share

of AutoSSD for the same 20-second window. Figure 11c plots the response time CDF for the entire duration.

and flash memory technology change. On the other hand,
our architecture is FTL implementation-agnostic, allow-
ing it to be used across a wide range of flash devices and
applications.

Some techniques focus on when to perform GC (based
on threshold [31], slack [22], or host idleness [25, 37]).
These approaches complement our design that focuses
on the fine-grained scheduling and dynamic management
of multiple FTL tasks running concurrently. By incorpo-
rating workload prediction techniques to our design, we
can extend AutoSSD to increase the share on background
tasks when host idleness is expected, and decrease it
when host requests are anticipated.

Exploiting redundancy to reduce performance varia-
tion has been studied in a number of prior art. Harmo-
nia [30] and Storage engine [42] duplicate data across
multiples SSDs, placing one in read mode and the other
in write mode to eliminate GC’s impact on read perfor-
mance. ttFlash [45] uses multiple flash memory chips
to reconstruct data through a RAID-like parity scheme.
Relying on redundancy effectively reduces the storage
utilization, but otherwise complements our design of dy-
namic management of various FTL tasks.

Performance isolation aims to reduce performance
variation caused by multiple hosts through partitioning
resources (vFlash [43], FlashBlox [18]), improving GC
efficiency by grouping data from the same source (Multi-
streamed [24], OPS isolation [29]), and penalizing noisy
neighbors (WA-BC [21]). These performance isolation
techniques are complementary to our approach of fine-
grained scheduling and dynamic management of concur-
rent FTL tasks.

The design of the autonomic SSD architecture bor-
rows ideas from prior work on shared disk-based storage
systems such as Facade [33], PARDA [14], and Mae-
stro [34]. These systems aim to meet performance re-
quirements of multiple clients by throttling request rates
and dynamically adjusting the bound through a feedback
control. However, while these disk-based systems deal

with fair sharing of disk resources among multiple hosts,
we address the interplay between the foreground (host
I/0) and the background work (garbage collection and
other management schemes).

Aqueduct [32] and Duet [4] address the performance
impact of background tasks such as backup and data mi-
gration in disk-based storage systems. However, back-
ground tasks in flash storage are triggered at a much
smaller timescale, and SSDs uniquely create scenarios
where the foreground task depends on the background
task, necessitating a different approach.

7 Conclusion

In this paper, we presented the design of an autonomic
SSD architecture that self-manages concurrent FTL tasks
in the flash storage. By judiciously coordinating the
use of resources in the flash memory subsystem, the au-
tonomic SSD manages the progress of concurrent FTL
tasks and maintains the internal system states of the stor-
age at a stable level. This self-management prevents the
SSD from falling into a critical condition that causes long
tail latency. In effect, AutoSSD reduces the average re-
sponse time by up to 18.0%, the 3 nines (99.9%) QoS by
up to 67.2%, and the 6 nines (99.9999%) QoS by up to
76.6% for QoS-sensitive small reads.

Acknowledgment

We thank the anonymous reviewers for their construc-
tive and insightful comments, and also thank Jaejin Lee,
Jongmoo Choi, Hyeonsang Eom, and Eunji Lee for re-
viewing the early stages of this work. This work was
supported in part by SK Hynix and the National Research
Foundation of Korea under the PF Class Heteroge-
neous High Performance Computer Development (NRF-
2016M3C4A7952587). Institute of Computer Technol-
ogy at Seoul National University provided the research
facilities for this study.

USENIX Association

2018 USENIX Annual Technical Conference 687

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

The disksim simulation environment version 4.0 reference man-
ual (cmu-pdl-08-101). http://www.pdl.cmu.edu/PDL-FTP/
DriveChar/CMU-PDL-08-101.pdf, 2008. Parallel Data Labo-
ratory.

Solid state storage (SSS) performance test specification (PTS)
enterprise. http://snia.org/sites/default/files/SSS_
PTS_Enterprise_v1.1.pdf, 2013. Storage Networking Indus-
try Association.

AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,
J. D., MANASSE, M. S., AND PANIGRAHY, R. Design tradeoffs
for SSD performance. In USENIX Annual Technical Conference
(2008), pp. 57-70.

AMVROSIADIS, G., BROWN, A. D., AND GOEL, A. Oppor—
tunistic storage maintenance. In ACM Symposium on Operating
Systems Principles (2015), pp. 457-473.

ARITOME, S. NAND flash memory technologies. John Wiley &
Sons, 2015.

CAL Y., HARATSCH, E. F., MUTLU, O., AND MAI, K. Error
patterns in MLC NAND flash memory: Measurement, character-
ization, and analysis. In Design, Automation and Test in Europe
(2012), pp. 521-526.

CHANG, L.-P., Kuo, T.-W., AND L0, S.-W. Real-time garbage
collection for flash-memory storage systems of real-time embed-
ded systems. ACM Transactions on Embedded Computing Sys-
tems 3,4 (2004), 837-863.

CHOUDHURI, S., AND GIVARGIS, T. Deterministic ser-
vice guarantees for NAND flash using partial block clean-
ing. In IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (2008), pp. 19-24.

DEAN, J., AND BARROSO, L. A. The tail at scale. Communica-
tions of the ACM 56, 2 (2013), 74-80.

DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In ACM SIGCOMM
(1989), pp. 1-12.

GAL, E., AND TOLEDO, S. Algorithms and data structures for
flash memories. ACM Computing Surveys 37, 2 (2005), 138-163.

GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON,
S., YAAKOBI, E., SIEGEL, P. H., AND WOLF, J. K. Char-
acterizing flash memory: anomalies, observations, and applica-
tions. In IEEE/ACM International Symposium on Microarchitec-
ture (2009), pp. 24-33.

GRUPP, L. M., DAvis, J. D., AND SWANSON, S. The bleak
future of NAND flash memory. In USENIX Conference on File
and Storage Technologies (2012), pp. 17-24.

GULATI, A., AHMAD, [., WALDSPURGER, C. A., ET AL.
PARDA: Proportional allocation of resources for distributed stor-
age access. In USENIX Conference on File and Storage Tech-
nologies (2009), pp. 85-98.

GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a flash
translation layer employing demand-based selective caching of
page-level address mappings. In ACM International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (2009), pp. 229-240.

HA, K., JEONG, J., AND KIM, J. An integrated approach for
managing read disturbs in high-density NAND flash memory.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 35,7 (2016), 1079-1091.

HAO, M., SOUNDARARAJAN, G., KENCHAMMANA-
HOSEKOTE, D. R., CHIEN, A. A., AND GUNAWI, H. S.
The tail at store: A revelation from millions of hours of disk and
SSD deployments. In USENIX Conference on File and Storage
Technologies (2016), pp. 263-276.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

HUANG, J., BADAM, A., CAULFIELD, L., NATH, S., SEN-
GUPTA, S., SHARMA, B., AND QURESHI, M. K. FlashBlox:
Achieving both performance isolation and uniform lifetime for
virtualized SSDs. In USENIX Conference on File and Storage
Technologies (2017), pp. 375-390.

JIMENEZ, X., NovO, D., AND IENNE, P. Wear unleveling: im-
proving NAND flash lifetime by balancing page endurance. In
USENIX Conference on File and Storage Technologies (2014),
pp. 47-59.

JIN, W., CHASE, J. S., AND KAUR, J. Interposed propor-
tional sharing for a storage service utility. In ACM SIGMETRICS
(2004), pp. 37-48.

JUN, B., AND SHIN, D. Workload-aware budget compensation
scheduling for NVMe solid state drives. In IEEE Non-Volatile
Memory System and Applications Symposium (2015), pp. 1-6.

JUNG, M., CHOI, W., SRIKANTAIAH, S., YOO, J., AND KAN-
DEMIR, M. T. HIOS: A host interface I/O scheduler for solid
state disks. In ACM International Symposium on Computer Ar-
chitecture (2014), pp. 289-300.

JUNG, M., AND KANDEMIR, M. Revisiting widely held SSD
expectations and rethinking system-level implications. In ACM
International Conference on Measurement and Modeling of Com-
puter Systems (2013), pp. 203-216.

KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-
streamed solid-state drive. In USENIX Workshop on Hot Topics
in Storage and File Systems (2014).

KANG, W., SHIN, D., AND YOO, S. Reinforcement learning-
assisted garbage collection to mitigate long-tail latency in SSD.
ACM Transactions on Embedded Computing Systems 16, 5s
(2017), 134.

KATEVENIS, M., SIDIROPOULOS, S., AND COURCOUBETIS,
C. Weighted round-robin cell multiplexing in a general-purpose
ATM switch chip. IEEE Journal on selected Areas in Communi-
cations 9, 8 (1991), 1265-1279.

KAVALANEKAR, S., WORTHINGTON, B., ZHANG, Q., AND
SHARDA, V. Characterization of storage workload traces from
production Windows servers. In IEEE International Symposium
on Workload Characterization (2008), pp. 119-128.

KiMm, B. S., AND MIN, S. L. QoS-aware flash memory con-
troller. In IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (2017), pp. 51-62.

Kim, J., LEE, D., AND NOH, S. H. Towards SLO complying
SSDs through OPS isolation. In USENIX Conference on File and
Storage Technologies (2015), pp. 183-189.

KM, Y., ORAL, S., SHIPMAN, G. M., LEE, J., DILLOowW, D. A,
AND WANG, F. Harmonia: A globally coordinated garbage col-
lector for arrays of solid-state drives. In IEEE Symposium on
Mass Storage Systems and Technologies (2011), pp. 1-12.

LEE, J., KIM, Y., SHIPMAN, G. M., ORAL, S., WANG, F,,
AND KIM, J. A semi-preemptive garbage collector for solid state
drives. In IEEE International Symposium on Performance Anal-
ysis of Systems and Software (2011), pp. 12-21.

Lu, C., ALVAREZ, G. A., AND WILKES, J. Aqueduct: Online
data migration with performance guarantees. In USENIX Confer-
ence on File and Storage Technologies (2002), pp. 219-230.

LuMB, C. R., MERCHANT, A., AND ALVAREZ, G. A. Facade:
Virtual storage devices with performance guarantees. In USENIX
Conference on File and Storage Technologies (2003), pp. 131-
144.

MERCHANT, A., UYSAL, M., PADALA, P., ZHU, X., SING-
HAL, S., AND SHIN, K. Maestro: quality-of-service in large disk
arrays. In ACM International Conference on Autonomic Comput-
ing (2011), pp. 245-254.

688

2018 USENIX Annual Technical Conference

USENIX Association

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. A large-scale
study of flash memory failures in the field. In ACM SIGMETRICS
(2015), pp. 177-190.

NaM, E. H., Kim, B. S. J., EomMm, H., AND MIN, S. L.
Ozone (03): An out-of-order flash memory controller architec-
ture. IEEE Transactions on Computers 60, 5 (2011), 653-666.

PARK, S.-H., KiM, D.-G., BANG, K., LEE, H.-J., Yoo, S.,
AND CHUNG, E.-Y. An adaptive idle-time exploiting method for
low latency NAND flash-based storage devices. IEEE Transac-
tions on Computers 63,5 (2014), 1085-1096.

PRINCE, B. Vertical 3D memory technologies. John Wiley &
Sons, 2014.

QIN, Z., WANG, Y., Liu, D., AND SHAO, Z. Real-time flash
translation layer for NAND flash memory storage systems. In
IEEE Real-Time and Embedded Technology and Applications
Symposium (2012), pp. 35-44.

ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Transac-
tions on Computer Systems 10, 1 (1992), 26-52.

SCHROEDER, B., LAGISETTY, R., AND MERCHANT, A. Flash
reliability in production: The expected and the unexpected. In
USENIX Conference on File and Storage Technologies (2016),
pp- 67-80.

SHIN, W., KiM, M., Kim, K., AND YEOM, H. Y. Providing
QoS through host controlled flash SSD garbage collection and
multiple SSDs. In International Conference on Big Data and
Smart Computing (2015), pp. 111-117.

SONG, X., YANG, J., AND CHEN, H. Architecting flash-based
solid-state drive for high-performance 1/O virtualization. [EEE
Computer Architecture Letters 13,2 (2014), 61-64.

TSENG, H.-W., GRUPP, L., AND SWANSON, S. Understanding
the impact of power loss on flash memory. In Design Automation
Conference (2011), pp. 35-40.

YAN, S., LI, H., HA0, M., TONG, M. H., SUNDARARAMAN,
S., CHIEN, A. A., AND GUNAWI, H. S. Tiny-tail flash: Near-
perfect elimination of garbage collection tail latencies in NAND
SSDs. In USENIX Conference on File and Storage Technologies
(2017), pp. 15-28.

ZHANG, Q., L1, X., WANG, L., ZHANG, T., WANG, Y., AND
SHAO, Z. Optimizing deterministic garbage collection in NAND
flash storage systems. In IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (2015), pp. 14-23.

ZHENG, M., TUCEK, J., QIN, F., AND LILLIBRIDGE, M.
Understanding the robustness of SSDs under power fault. In
USENIX Conference on File and Storage Technologies (2013),
pp. 271-284.

USENIX Association

2018 USENIX Annual Technical Conference 689

