Chappie Swarm: Persona-Driven Web Corpus Generation

Nicholas Kaufman Michael Collins
Noblis Redjack
Adam Plattner Mark Sanders
Noblis NSP Noblis

Abstract

A common issue amongst security researchers is the lack
of publicly available network traffic traces. In this pa-
per we present Chappie Swarm, which seeks to emulate
human behavior in regard to internet browsing. The ex-
perimenter can unleash a number of automated chappies
which will assume pre-defined personas, and then ac-
tively go out and query websites while simultaneously
recording their browsing behavior, and saving the net-
work trace as a packet capture file. Unlike other traf-
fic generators, Chappie Swarm distinguishes itself fun-
damentally by utilizing this ’persona” approach, while
also not needing to be ’seeded” by a previously recorded
traffic capture.

1 Introduction

Chappie Swarm is a tool for creating accurate and current
websurfing corpora in order to support security experi-
ments. Cyber security experimentation requires access
to quality data sets which reflect both attacks and nor-
mal activity. To this end, security experimentation relies
heavily on corpora such as the 1999 Lincoln Labs data
set [19], and the KDD Cup dataset [[1]. While these sets
have many recognized weaknesses [22} 21, 5], they are
extensively used in the absence of alternatives.

Chappie Swarm is designed around the principle that
corpora must be created and disseminated quickly. We
contend that any web corpus is affected by problems of
external validity (ecological and population validity) [7]],
producing results that rapidly lose generality.

Researchers have repeatedly noted that network traffic
suffers from a significant “moving target” problem [11}
12]]. However, web technology arguably changes faster,
with support technologies such as OAuth(2006), Mo-
bile browsers (2008), AJAX (2005) and HTMLS5 (2014),
resulting in radically different sequences of HTTP re-
quests. This problem also affects aggregate queries; a

Evan Thaler

Kristof Ladny Jeffrey Wiley
Booz Allen Hamilton Noblis

Patrick Ball

Noblis Booz Allen Hamilton

single multimedia webpage (such as the homepage of
CNN) is created through dozens of queries to advertis-
ing sites, user tracking, authentication servers, and mul-
timedia caches. This rapid pace of change means that
the ecological validity of a corpus may be seriously chal-
lenged by the time the corresponding paper is published.

Challenges to population validity come because of
the changes between client/server relationships. Mod-
ern web traffic heavily relies on the client’s identity to
provide tailored responses. One example of this tailoring
includes geolocation dependent services, notably content
delivery networks [15] and HTMLS. The increased use
of embedded browsing in conjunction with the use of
HTTP as a “swiss army knife” protocol has also led to
increasingly diverse web clients, including mobile de-
vices, email clients and games. This diversity requires
that a corpus be collected from multiple global locations
and reflect a diversity of clients.

Our solution is to make the process of corpus gener-
ation systematic and reproducible, enabling researchers
to quickly create and distribute web corpora reflecting
modern Internet architectures. To do so, Chappie Swarm
executes surfing based around personas. A persona is a
Markov process representing common surfing behaviors
with preferences for particular websites (e.g., a persona
might be interested in news or auctions, while also oc-
casionally checking a sports website). These simulated
users then go out and browse the internet in real time.
An automated traffic capture is setup, so that a network
trace file is automatically generated at the end of each
browsing run.

Chappie Swarm enables researchers to easily generate
web traffic for any number of users, for any length of
time, ensuring that the traffic captured is current. This
data may then be published as a corpus, shared with any-
one, mitigating the risk of leaking personal information.
By scaling up or down the number of agents used, re-
searchers can build corpora addressing different validity
challenges.

The remainder of this paper is structured as follows.
§2] discusses the architecture of the system. §3|discusses
our evaluation approach, and in particular how our sys-
tem attempts to emulate normal users. §4]discusses pre-
vious work, while Concludes the work.

2 Chappie Swarm Architecture

In this section, we discuss the architecture and design
decisions in building Chappie Swarm. This section is di-
vided into two subsections. §2.1]discusses the core archi-
tecture for the system, including the components of the
architecture and how they are connected. discusses
the surfing logic used to emulate humans browsing the
web.

2.1 Core Chappie Architecture

chappie_web_surfer network architecture

phantomjs docker
containers NAT router
(emfatih/ br1 bridge (kmanna/ docker(bridge

phantomjs) (created for project) ~ docker-nat-router) (docker created)

o . N
(COR % ,_%,_, N — Internet
*., 10.21.1 N 17217.02

0.2.1.100 (likes sports)

0

| \ Wireshark or tcpdump

e and be used to capture

traffic both inside and
outside of NAT

10.2.1.102 (likes news)

Figure 1: Chappie Swarm Architecture.

Figure [shows the Chappie Swarm architecture. As this
figure shows, the system consists of 3 major components:

e chappies. A chappie is a containerized application
containing a virtual web browser and software for
executing a persona.

e bridges. Internal bridges within the Chappie Swarm
virtual network that direct traffic.

e data capture. A tcpdump application collecting
traffic at multiple points.

Each chappie is a containerized application launched
via Docker. When instantiated, each chappie connects to
a virtual network using a common virtual router. Using
containers, experimenters can widely distribute chappies
across the Internet.

The original experiments motivating Chappie
Swarm’s development were focused on the impact
of NATting on on-the-wire traffic analysis. On most
networks any individual host is behind at least one NAT

[2]]; if network data is collected near a border, it is
completely possible that the traffic is hidden in multiple
layers of NATting. In we will discuss the impact
of NATting in more depth, in this section we focus on
how NATting is implemented in the Chappie Swarm
architecture.

The virtual network consists of two bridges that grant
the experimenter dual vantage on the captured traffic.
One bridge captures inside the router, where the experi-
menter has access to the private information of the chap-
pies, such as IP addresses, port numbers, etc. The sec-
ond bridge captures from outside the router, enabling the
experimenter to simulate NATs. From this external van-
tage, IP addresses and ports are manipulated by the NAT.
During configuration, the experimenter has the option to
implement different types of NATSs, currently from four
variants as outlined in [13]] - Symmetric, Full Cone, Re-
stricted Cone, and Port Restricted Cone. In it’s current
implementation, the purpose of the bridges is to serve
as a vantage for traffic capture. Envisioned future usage
is to serve as a generic “middlebox.” This way, the ex-
perimenter will have the flexibility to study the influence
network devices have on traffic flow, capture and content.

When the application is started, tcpdump is utilized to
capture packets from both the internal perspective as well
as the external perspective. After the chappie surfing has
concluded, the network traces are automatically shunted
to a specified directory for later processing. As of now,
the labelling of the generated datasets is fairly minimal.
From the “pre NAT” capture, categorical attributes are
added based on the uniquely reported IP addresses, to
distinguish the traffic on an individualistic basis. Nothing
is added to the ”post NAT” capture, as that should remain
completely anonymized. In order for the chappies to in-
terface with the web, a headless browser is utilized; in
the current implementation, this browser is PhantomJ

2.2 Chappie Surfing Logic

In this section, we discuss the chappie surfing logic, the
process by which individual chappies choose webpages.
Our surfing logic is based around two core design prin-
ciples: the first is, wherever possible, simulating user be-
havior rather than the internet, the second is the use of
personas to guide web choice.

"http://www.phantomjs.org

http://www.phantomjs.org

chappie_web_surfer process
Random transition between "thinking" states, with bias towards one specific topic (i.e., "news")

“news"” "news" "sports” next topic?

select favorite search: “news” select favorite

Google W& Google

Default user
homepage
“Depth first” (0-max é

depth) selection of Random use of back
links represents button incorporated
clicks on each page

0

1...N more sites

TIME

I3

E

g

g

3
L4

o—o—o—0f

@ Customizable probability for time spent on each page and break time between sessions

Figure 2: Graphic illustrating the ’thought process” of
the chappies.

Chappies are designed to use web browsers rather than
directly execute requests. The current Chappie Swarm
implementation uses PhantomJS, a common headless
browser used for web scraping and website testing.
Phantom]S, among other features, enables us to automat-
ically execute scripts with multiple user-Agent strings.
Using Phantom]JS, we can simulate actual browsing by
feeding it a sequence of websites.

The sequence of websites fed to the browser is deter-
mined via the use of a persona. Personas are a Markov
model based approximation of a user’s decision process;
in comparison to the random surfing model [8], per-
sonas are used to enable chappies to demonstrate differ-
entiable personalities, more accurately imitating human
surfing. This emulation is done through the creation of
keyworded topic lists about various potential interests.

Table 1 shows the fields that comprise a persona. As
this table shows, personas have multiple attributes gov-
erning surfing behavior such as the probability of utiliza-
tion of the browser’s back button, how many hyperlinks a
chappie should follow from a particular web page, length
of time to take a hiatus from browsing, and others. Also
in this table are the persona’s major interests. Each per-
sona is seeded with a base interest, represented by top-
ics such as “video games”, “news”, “work”, etc. Each
topic is associated with a corpus of keywords consisting
of popular terms scraped from websites, as well as man-
ual additions and synonyms. Within each of these topics,
a favorites list is built which the chappies use while nav-
igating the web.

Figure 2] shows how a chappie surfs through a site. As
this figure shows, a chappie begins web browsing from
a designated homepage. After visiting each page, the
chappie will decide whether or not to change their topic
of interest, with a probability depending on their current
state. Figure [3] gives an overview of this process. If
a chappie decides to change their topic of interest, the
chappie will utilize their default search engine (another
configurable element) to search for a term chosen from

the associated corpus for this new topic. Otherwise, the
chappie will elect to either click a link from the current
web page, navigate directly to another page - simulating
the use of the address bar - or to search for a term found
in the associated corpus for their current topic.

Figure 3] shows how chappies change topics while
surfing. As this figure shows, when a chappie decides to
navigate away from its current page, if it elects to click
a link found on the current page, a simple text analy-
sis of each link is performed. Weights are then given to
each link that is available to the chappie, and the chappie
chooses a particular link according to some previously
established probability distribution, modified to reflect
these weighting changes. The chappie can shift between
major and minor topics, or opt to “take a break” from
surfing.

chappie_web_surfer topic transition process

Random transition between “thinking” states based on probabilities

'y !
W)&
w)
select main topic

enter state
during launch machine

10% go to break

70% stay main

Any minor
topic

Take a break

Figure 3: Graphic illustrating the transition diagram be-
tween topic states. Percentages listed may be interpreted
as example probabilities for transitioning between any
two given states.

The personas of each chappie, as well as the charac-
teristics governing browsing behavior (mentioned above)
are selected from a config file. In this way, the researcher
may easily alter parameters, probability distributions,
and add their own custom features. A typical setup is to
specify a particular probability array for a given param-
eter. For instance, one could launch the Chappie Swarm
application and specify that the experiment should con-
sist of three chappies, and that the persona for each chap-
pie should be sampled from the pre-configured persona
list under a uniform probability distribution, or any de-
sired custom probability distribution.

Chappie Persona Details

“Masor” {"Work”, ”Video Games”, "News”,

.J ”Celebrities”, ”Sports”, ”Cyber Se-
Topic .,

curity”}

”Minor” {"Major” Topic} \ {Chosen Major
Topic Topic}
Search {google.com, yahoo.com,
Pages bing.com, duckduckgo.com}
”Back .
Buiton” 3-8% of navigation (default)
Chc'k Em- 35% of navigation (default)
ulation
Search 35% of navigation (default)
Select Fa- | 25 270 of navigation (default)
vorite

Table 1: Table showing default customization of chap-
pies. Omitted topics include keyword corpora and home-
pages. For the listed sets, the default behavior is to
choose randomly utilizing a uniform distribution. Per-
centages listed are sample ranges which can be specified
during configuration.

3 Chappie Swarm Evaluation

In this section, we describe quantitative measures by
which we gauge the realism of the HTTP traffic gener-
ated by the Chappie Swarm. This section has three sub-
sections. In we discuss our work on trying to emu-
late accurate user behavior. In we compare virtual
traffic with real traffic. Finally, in we discuss use
cases for Chappie Swarm.

3.1 Emulating Human Behavior

Among other considerations, we concern ourselves with
a few key features.

1. Time between successive page calls
2. Reported User Agent string

3. Types of web pages being visited
4. Http status codes of visited pages

A major concern in evaluating how the chappies be-
have in terms of realistic web browsing is the time a
chappie spends on a particular web page. A common
behavior of headless browsers is to visit a large number
of pages in a short time, due to the way in which they
access DOM elements, and noting that their functional-
ity is often geared towards tasks such as web crawling.

Therefore, we implemented a simple throttling mecha-
nism, so that a chappie will spend a (configurable) min-
imum amount of time on any given web page. This en-
sures that we can emulate a human reading an article,
interacting with a website, etc. Further, the amount of
time spent on a particular page is not a set value, but ran-
domly sampled according to a (configurable) probability
distribution.

Another aspect of traffic generation that was of con-
cern to the authors was the reported user agent string.
This is easily configured, and the authors currently assign
a user-agent string to a chappie using a uniform prob-
ability distribution from a list of the ten most popular
user-agent strings according to useragentstring. com,
a repository of user agent strings for all web browsing
platforms.

One of the larger concerns of realism is the types of
web pages being selected by the chappies. For instance,
after performing a Google search for a topic, often the
top several results are advertisements. It’s a well studied
problem that the click rate of advertisements is exceed-
ingly low [[10] - in fact, bot-nets are sometimes built with
the primary functionality of boosting revenue through ad
clicks - and thus it does little to address the problem of
realism to incorporate a functionality such as searches if
the default behavior is to click links that most humans
would intentionally avoid. To this end, the chappies have
been designed to avoid all ad-links. Further, we have
implemented a more sophisticated system of deciding
which website to visit, given a list of web links extracted
from a specific page. Each “topic of interest” that a chap-
pie might adopt has associated with it a corpus of ’key
words.” The links on a given web page are parsed, and
weights for each of these links are adjusted based on the
degree of overlap with the words in the URL and the
words in the “key word” corpus.

3.2 Comparing Virtual Traffic with Actual
Traffic

In an effort to validate that the Chappie Swarm produces
realistic looking traffic, we compared the statistical foot-
print of the chappies with that of actual humans. To
this end, we employed two people to record their own
web traffic for fixed time intervals. All of these pack-
ets were run through a protocol de-multiplexor, Bro,
and compared. With the caveat that human behavior is
highly variable and dynamic, we note that timing be-
tween web pages loaded, status codes returned, and num-
ber of unique destination IP addresses visited are com-
parable. Figures] and [5] show comparisons of the two
former items from a particular trial.

350 Request timing: Humans Vs. Chappies

== chappie browsing
300l = =& human browlsmg |
Y
250 ! '
2 : d
el aam=m it
£ 200} 1 "
g 1
g : i
= 150} e
= '
s P ,
100+ 1
1
] L}
1
50 [
L
0 i b r
0 500 1000 1500 2000

ith request

Figure 4: Plot shows the difference in timing between
a human and a chappie when making browser requests.
In this instance, a human was given a ”script” to fol-
low, based on the chappie’s pre-recorded browsing. Tim-
ing comparison shows the ability of the human to nearly
recreate the “script”, and their attempts at recreation
without knowing the full details of the ”script.”

450 Status Codes for Human Browsing

200} —
350
300 —_——
250
200 —
150 L L
- - o d:\‘q,(
450 Status Coges for Chappiel Browsing
400 -
350+
300+ —
250+
200+
150 L L
'ﬁ+ S o 6:‘35

Figure 5: Plot shows the difference in status codes be-
tween a human and a chappie when making browser re-
quests. This is taken from the same “script” as Figure

3.3 Specific Use Cases

Here we discuss specific use cases for Chappie Swarm.
The first case involves identifying distinct web sessions,
the original motivation. The second case shows how
chappies can be used to address problems in population
validity due to geolocation.

3.3.1 Reconstructing Webpages Across a NAT

The original motivation for developing Chappie Swarm
was in order to study the impact that common traffic
management tools, particularly NATting, have on a net-
work monitor’s ability to reconstruct web sessions. This
work sought to extend [2]]. Webpages often consist of
dozens or hundreds of constituent requests, making it dif-
ficult to rely simply on timing or addresses to determine
where one web page ends and the next begins. NAT-
ting further complicates the problem by merging multi-
ple source addresses into a single address.

In order to test this, the Chappie Swarm application
was run with three chappies under each of the four NAT
protocols as detailed previously. Network traces were
captured both internally and externally, so that one could
have a notion of “ground truth” labelling, as well as a
NATted data set. This data set enables us to study multi-
ple techniques for session reconstruction.

3.3.2 Geographical Profiling

Another potential issue in generating web traffic is the ef-
fect of Content Distribution Networks, and the underly-
ing regionality which comes with such utilization. From
the standpoint of ecological validity, Chappie Swarm can
be utilized to analyze the differences in traffic patterns
across websites from different geographic locations. For
instance, if a researcher in Northern California were to
launch one hundred chappies to browse the web, and a re-
searcher in Florida were to launch one hundred chappies,
the resources loaded by websites supported by CDNs
will appear to come from very different locations. Uti-
lization of Chappie Swarm in conjunction with a service
such as Amazon Web Services (AWS) would allow a re-
searcher to have a better understanding of the variance
associated with a particular website.

4 Previous Work

Previous work in security experimentation has depended
heavily on corpus data generated by testbeds. The fun-
damental example of this work, is the original Lincoln
Labs LARIAT dataset [[19] and its descendant the 1999
KDD cup [1]]. As discussed in these data sets have
well-known weaknesses. Other experimenters have used
other web corpora, such as traces of user clicks [17].
Our primary concern in developing Chappie Swarm was
addressing the problem of currency — ensuring that we
had access to web traffic representative of the Internet as
needed. To that end, we envisioned and designed Chap-
pie Swarm as a process — something that we could rerun
as often as necessary.

Web security researchers have created a number of
crawling approaches for creating web corpora. Lee et
al.’s malicious web crawling research [18]], and Coull et
al’s work on web browsing [9] create corpora by au-
tomatically crawling the web. These approaches dif-
fer from Chappie Swarm’s by focusing on capturing the
websites as corpora, while the focus of Chappie Swarm
is on capturing the web traffic. Other capture techniques
involve crowdsourcing web crawling activity, such as
the browser plugin created for Lu er al.’s SURF sys-
tem [20], or the Mechanical Turk-based approach used
by Bursztein et al. [6]. In comparison to these ap-
proaches, Chappie Swarm is automated and designed to
capture the traffic and the webpages. In this, we have
taken cues from Korbar er al.’s agent based work [14],
as well as Silverman’s “realism” approach [24]] and
Blythe’s work in cognitive models [4]].

Outside of the security domain, the most directly rel-
evant work is focused on search engine optimization.
Standard works on search engine optimization focus on
alternative models of surfer behavior, notably the ran-
dom surfer model [3| [16] and PageRank [23]. These
models (particularly PageRank) influenced the chappie
design, but these approaches are less concerned with
user activity than we are with Chappie Swarm; much of
Chappie Swarm’s design is focused on emulating user
behavior such as delays between clicks and distractions
from searching, issues that are not directly relevant to the
search engine literature.

5 Conclusions

In this paper, we have described Chappie Swarm, a tool
for systematically creating HTTP traffic traces. We have
built this system in order to regularly create web traffic
traces that reflect the web as it exists currently, as the
constant change in web technology directly challenges
the validity of any web corpus. In doing so, we have de-
emphasized the role of simulation in favor of direct inter-
action with the Internet. We posit that the more technical
debt incurred from doing full packet captures is offset by
the improvement in external validity.

We highlight several use cases for the collection of
HTTP traffic using Chappie Swarm and further show that
these traffic traces are statistically similar to those gener-
ated by humans under certain conditions. Additionally,
we have discussed the large degree of customizability of
Chappie Swarm, and show that it can be incorporated in
many different network architectures. We believe that the
greatest problem Chappie Swarm solves is in the genera-
tion of realistic web traffic which can be shared amongst
researchers across different organizations and communi-
ties, without fear of compromising network security nor
personal privacy.

Chappie Swarm is well suited to solving the problem it
was originally designed for — testing the validity of web
session reconstruction over NATted traffic. Future de-
sign work focuses on emulating user behavior more ac-
curately and more precisely. To do so, we will add more
advanced modeling to categorize topics outside of ma-
jor and minor families, improving the mimicry of user
behavior, and improving the automation to enable any
researcher to reproduce a corpus.

The current persona model is very simple, and chap-
pies run into functionality issues for occasionally visited
websites. To ensure a seamless browsing process, we
intend to expand the chappie’s decision model to include
additional categories of sites, including blacklists of sites
that a user would never visit (e.g., they don’t speak the
language, radically different opinions). In addition, we
intend to extend and automate the topic lists; the current
lists are hand-curated. To do this, we intend to use Alexa
rankings to classify each website for one or more per-
sonas.

Other fidelity issues involve creating a better emula-
tion of user behaviors such as clicking and other website
interactions. To do so, we will need to move past the cur-
rent headless browser design and experiment with other
web testing and validation tools such as Seleniu

Similarly, we intend to look into improving the quality
of web sessions; ensuring that the sequence of pages vis-
ited by a chappie “makes sense” in that some semblance
of a story can be pieced together by looking at the subse-
quent links that a chappie visits. Initially, for small data
samples, this was done by sight.” As the development of
Chappie Swarm proceeded, however, the need for more
robust and quantitative measures became obvious. Such
work will involve extensive user testing.

Longer term goals include automating the process of
surfing and generation so that Chappie Swarm scripts can
be shared among research groups. In this way, the best
practices for generating a corpus can be shared. Ideally,
projects using Chappie Swarm to generate web corpora
will include as part of their release the collected data, and
the configurations used to generate that data.

References

[1] ARCHIVE, U. K. Kdd cup 1999 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[2] BELLOVIN, S. M. A technique for counting natted hosts. Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet mea-
surment (2002).

[3] BLuM, A., CHAN, T. H., AND RWEBANGIRA, M. R. A
random-surfer web-graph model. In Proceedings of the eigth
Workshop on Algorithm Engineering and Experiments and the
third Workshop on Analytic Algorithmics and Combinatorics
(2006).

Zhttp://www.seleniumhg.org

[4]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

BLYTHE, J. A dual-process cognitive model for testing resilient
control systems. International Symposium on Resilient Control
Systems (ISRCS), pp. 8-21.

BRUGGER, T. Kdd cup 99
(network intrusion) considered
http://www.kdnuggets.com/news/2007/n18/4i.html.

dataset
harmful.

BURSZTEIN, E., BETHARD, S., FABRY, C., MITCHELL, J. C.,
AND JURAFSKY, D. How good are humans at solving captchas?
a large scale evaluation. 2010 IEEE Symposium on Security and
Privacy (2010).

CAMPBELL, D., SHADISH, W., AND COOK, T. Experimental
and Quasi-Experimental Designs For Generalized Causal Infer-
ence. Wadsworth Publishing, 2001.

CHEBOLU, P., AND MELSTED, P. Pagerank and the random
surfer model. In Proceedings of the 2008 ACM Symposium on
Discrete Algorithms (2008).

CouLL, S. E., COLLINS, M. P.,, WRIGHT, C. V., MON-
ROSE, F., AND REITER, M. K. On web browsing privacy in
anonymized netflows. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium (2007).

FANG, Z., YUE, K., ZHANG, J., ZHANG, D., AND LIU, W.
Click-through rate estimation for rare events in online advertis-
ing. Mathematical Problems in Engineering 2014 (2014).

FLOYD, S., AND PAXSON, V. Difficulties in simulating the in-
ternet. IEEE/ACM Transactions on Networking 9 (2001).

GATES, C., AND TAYLOR, C. Challenging the anomalydetection
paradigm: A provocative discussion. In Proceedings of the 2006
NSPW Workshop (2006).

HUSTON, G. Anatomy: A look inside network address transla-
tors. https://web.archive.org/web/20070220131824/
http://www.cisco.com/web/about/ac123/ac147/
archived_issues/ipj_7-3/anatomy.html.

KORBAR, B., KOPPEL, R., KOTHARD, V., AND SMITH, S.
Validating an agent-based model of human password behavior.
AAAI Workshops.

KRISHNAMURTHY, B., WILLS, C., AND ZHANG, Y. On the use
and performance of content distribution networks. In Proceedings
of the 1st ACM SIGCOMM Workshop on Internet Measurement
(2001).

KUMAR, R., RAGHAVAN, P., RAJAGOPALAN, S., SIVAKUMAR,
D., TOMKINS, A., AND UPFAL, E. Stochastic models for the
web graph. In Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, FOCS ’00.

LEE, L., JUAN, Y., LEE, K., TSENG, W., CHEN, H., AND
TSENG, Y. Context-aware web security threat prevention. In
Proceedings of the 2012 CCS conference (2012).

L1, Z., ZHANG, K., XIE, Y., YU, F., AND WANG, X. Kl’lOWil’lg
your enemy: understanding and detecting malicious web adver-
tising. In Proceedings of the 2012 CCS conference (2012).

LIPPMANN, R., HAINES, J. W., FRIED, D. J., KORBA, J., AND
Das, K. The 1999 darpa off-line intrusion detection evaluation.
Computer Networking 34, 4 (Oct. 2000).

Lu, L., PERDISCI, R., AND LEE, W. Surf: detecting and mea-
suring search poisoning. In Proceedings of the 2011 CCS confer-
ence (2011).

MAHONEY, M. V., AND CHAN, P. K. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly de-
tection. In In Proceedings of the Sixth International Symposium
on Recent Advances in Intrusion Detection (2003), Springer-
Verlag, pp. 220-237.

[22]

[23]

[24]

MCHUGH, J. Testing intrusion detection systems: A critique of
the 1998 and 1999 darpa intrusion detection system evaluations
as performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur.
3,4 (2000).

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The
pagerank citation ranking: Bringing order to the web. Tech. Rep.
1999-66, November.

SILVERMAN, B. G. More realistic human behavior models for
agents in virtual worlds: Emotion, stress, and value ontologies.
Tech. rep., 2001.

https://web.archive.org/web/20070220131824/http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html
https://web.archive.org/web/20070220131824/http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html
https://web.archive.org/web/20070220131824/http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html

	Introduction
	Chappie Swarm Architecture
	Core Chappie Architecture
	Chappie Surfing Logic

	Chappie Swarm Evaluation
	Emulating Human Behavior
	Comparing Virtual Traffic with Actual Traffic
	Specific Use Cases
	Reconstructing Webpages Across a NAT
	Geographical Profiling

	Previous Work
	Conclusions

