
Infrastructure for Studying Infrastructure

Christopher Landauer
Topcy House Consulting

Abstract

Self-adaptation in embedded self-organizing real-time
systems pose stringent expectations on the performance
of their system architecture. The flexibility required for
self-adaptation argues for multiplicity or variability of
processes, whereas the embedded real-time aspects argue
for very fast and low power processes. These two expec-
tations are in direct opposition to each other, and good
engineering practice implies careful study of the implica-
tions of the trade-offs. In this paper, we show how to use
our Wrapping approach to integration infrastructure as a
base to study proposed infrastructure choices for these
applications, and argue that the Wrappings approach is
ideally suited to this endeavor, since it makes noa pri-
ori assumptions about the infrastructure (or about itself,
as we shall explain), and therefore allows any such ques-
tions to be studied. To do so, we provide enough details
about the Wrapping approach to support our claims, and
show how it would be applied to some popular infras-
tructures.

1 Introduction

Implementing self-adaptation in embedded self-
organizing real-time systems presents many difficulties.
For embedded systems, there are complex and often
poorly understood interfaces to the operational environ-
ment, to the hardware platform properties, and even to
the styles of expected use of the system.

For self-organizing systems, there are the design prob-
lems of mapping from provided system knowledge to
internal system information, and from provided system
purposes to internal system goals, and then there is the
whole issue of emergent properties. We want to design
the system to avoid most of the issues, and encourage
others. Even when we know which is which, we still
have the problem of devising methods for recognizing
and exploiting emergence in systems.

For real-time systems, there are perennial problems of
resource constraints and the appropriate use of approxi-
mations in both computation and operation as a way of
saving time.

We do not presume that these are the only hard prob-
lems in real-time systems, but each of these issues is dif-
ficult enough, and it is very difficult to separate them in
a given system, to study the effects of possible alterna-
tive approaches. For more information about these and
related problems, see [5] [28].

A further exacerbation of the difficulty is caused by
the realization that any such system will have an underly-
ing infrastructure that organizes the processes within the
system and manages communication among them and
the outside environment, and that it is very difficult to
demonstrate that the infrastructure supports the neces-
sary processes and provides the features we expect.

We therefore believe that we need a mechanism to
study these system infrastructures, to help us understand
how their various components and structures relate to the
properties above.

But how do we study infrastructure? We can certainly
make choices and implement a few of them, but we want
to reach a deeper level of understanding, so that results
may be shared. When we set out to develop a system
with which to study infrastructure, we realized that any
fundamental choice we make about the infrastructure is
one that we cannot study within it. We therefore de-
vised a knowledge-based approach that makes no priv-
ileged choices, that is, every choice we made can be su-
perseded; every knowledge base and every process the
approach uses can be replaced.

In Section 2, we introduce our Wrappings approach
to infrastructure and show how it satisfies our first claim
above (“no privileged choices”).

In Section 3, we describe approaches that seem to be
similar to Wrappings, though we contend that none goes
as far as we do in supporting flexibility with Computa-
tional Reflection.

1



In Section 4, we return to considerations of embed-
ded systems to show how some popular infrastructure
choices can be studied with Wrappings.

Finally, in Section 5, we present our conclusions and
describe some prospects for this approach.

2 Wrapping Integration Infrastructure

We provide a short description of Wrappings in this
Section, since there are many other more detailed de-
scriptions elsewhere [21] [19], and especially the tuto-
rials [25] [26]. The Wrapping integration infrastruc-
ture is our approach to run-time flexibility, with its
run-time context-aware decision processes and compu-
tational resources. The basic idea is that Wrappings
are Knowledge-Based interfaces to the uses of compu-
tational resources in context, and they are interpreted by
processes that are themselves resources.

Systems built with Wrappings are flexible in their in-
terconnections [20], since different contexts can produce
different connection networks (both components and in-
teractions), with different sets of resources selected and
applied, and these decisions can all be made at run-time
[24].

This Section is a very short introduction to the capa-
bilities of Wrapping-based systems. Much more detail is
available in the references, especially the tutorials.

2.1 Problem Posing Interpretation

The “Problem Posing” interpretation of programs [21]
is based on an important change of attitude in system
design and implementation. It extends the “what from
how” separation of interface from implementation to a
“why from what” separation of interface from intended
purpose.

It is a declarative interpretation that can be applied to
any programming or design language, and we believe
that it affords a clearer way to interpret the expressions
of all programs. The basic idea is to consider the code
that usually gets written as defining a “resource” that
provides some kind of information service in response
to an information request called a “posed problem”, and
then keep the problems available in the code along with
the solutions. This separation of clients from servers has
become interesting and useful in larger units (clients and
servers are typically entire programs), but we believe that
it is important also for smaller units, as far down as one
wants to gain the associated flexibilities.

Thus, programs interpreted in this style do not “call
functions”, “issue commands”, or “send messages”;
they “pose problems” (these are information service re-
quests). Program fragments are not written as “func-
tions”, “modules”, or “methods” that do things; they are

written as “resources” that can be “applied” to problems
(these are information service providers).

Because we separate the problems from the applica-
ble resources, we can use more flexible mechanisms for
connecting them than simply using the same name.

2.2 Wrapping Overview

Many styles of mapping from problems to resources ex-
ist, often using a mechanism called implicit invocation
[11]. Our reason for not using that process is exactly the
implicity of the mapping process. We want to be able to
replace the mapping process at any time, to intercept the
invocation with user-defined processes.

We have chosen in Wrappings to use a knowledge base
that defines maps from problems in context to resource
applications, and shown that this choice leads to some
interesting flexibilities, when combined with the “meta-
reasoning” approach of Wrappings [2] [3] [4] including
such properties as software reuse without source code
modification, delaying language semantics to run-time,
and system upgrades by incremental migration instead
of version based replacement.

The Wrapping integration infrastructure is defined by
its two complementary aspects, the Wrapping Knowl-
edge Bases and the Problem Managers.

The Wrapping Knowledge Bases (WKBs) contain the
Wrappings that map problems to resources in context.
They define the entire set of problems that the sys-
tem knows how to treat (there are usually also default
problems that catch the ones otherwise not recognized).
The mappings are problem-, problem parameter-, and
context-dependent.

The Problem Managers (PMs) are the programs that
read WKBs and select and apply resources to problems.
We get Computational Reflection because they are also
resources, and are Wrapped in exactly the same way
as other resources, and are therefore available for the
same flexible integration as any resources. These sys-
tems therefore have no privileged resource; anything can
be replaced. Default PMs are provided with any Wrap-
ping implementation, but the defaults can be superseded
in the same way as any other resource. These are the
processes that replace the implicit invocation process, al-
lowing arbitrary processes to be inserted in the middle
of the resource invocation process. This choice leads to
very flexible systems.

Five essential properties underlie the simplicity and
power of Wrappings. They are related as shown in Fig-
ure 1.

1. ALL parts of a system, at all levels of detail, arere-
sourcesthat provide some kind ofinformation ser-
vice or computation service. Everything that does
anything is a resource.

2



problems

map
affects

context

PMs

read

WKB

resources

Figure 1: Wrapping Aspects

2. ALL activities in the system areproblem study, that
is, all activitiesapplya resource to aposed problem
in a problem context). Posedproblemsare compu-
tation or information service requests.

3. ALL maintenance of relevant system state is done
with context. The invocation environment provides
the initial context, and system operation updates the
dynamic context from internal and external sources
(as part of various resource applications).

4. Wrapping Knowledge Bases(or WKBs) con-
tain Wrappings, which are explicit machine-
interpretable descriptions of all of the ways re-
sources can be applied to problems in contexts that
are relevant to the system. ALL information con-
necting posed problems to applicable resources is
maintained in WKBs, which define the mapping in
a context- and problem-parameter-dependent way.
The Wrappings are generally defined by developers
and provided with the resources. The Wrappings
provide what we have called theIntelligent User
Support(IUS) functions [23]:

• Discovery (which new resources can be in-
serted into the system for this problem),

• Selection(which resources to apply to a prob-
lem),

• Assembly(how to let them work together),

• Integration(when and why they should work
together),

• Adaptation(how to adjust them to work on the
problem),

• Explanation(why certain resources were or
will be used), and

• Evaluation(what is the impact or effect of this
use of this resource).

Wrappings therefore contain much more than
“how” to use a resource, as many computing li-
braries do. They also provide information to help

decide “when” it is appropriate, “why” it might be
the right one for the problem, and “whether” it can
be used in this current problem and context.

5. Problem Managers (PMs), including the Study
Managers (SMs)and theCoordination Managers
(CMs), are algorithms that interpret the Wrapping
descriptions to collect and select resources and ap-
ply them to problems. ALL interpretation and per-
formance activities are managed by PMs, which
are themselves also resources, and are therefore
also Wrapped and selectable, just like any other re-
source.

Thus, a system built with Wrappings uses what we have
calledKnowledge-Based Polymorphismto connect prob-
lems in context to appropriate resources. A Wrapping
is not simply a coded interface “to” a resource; it is a
conceptual interface to the “use” of a resource, for a par-
ticular problem in a particular context. This information
is used to generate the appropriate invocation interfaces
on the fly. We Wrap “uses” of resources instead of re-
sources in and of themselves, since many analysis tools
have grown by accretion over the years, and common
ways to use them have developed their own style.

This non-correspondence between problems and re-
sources is one of the important normalizing features of
the Wrapping approach, since it allows the uses of re-
sources to be much more simply described than trying to
describe the entire resource at once.

This allows us, for example, to map a series of posed
problems representing a prospective analysis into a form
suitable for execution on some computer in the actual
system, and into a form suitable for use in a simulation.
The different contexts mean we can take the same code
(expressed as “problem”s in a nested structure) and map
to different resources.

2.3 Wrapping Processes

One of the keys to the flexibility of Wrappings is making
the processes as important and as explicit as the descrip-
tions. The basic notion is the interaction of one very sim-
ple loop, called the “Coordination Manager”, and a very
simple planner, called the “Study Manager”.

The default Coordination Manager (CM) is responsi-
ble for keeping the system going. It has only three re-
peated steps, after an initial FC = Find Context step:

• PP = Pose Problem,

• SP = Study Problem,

• AR = Assimilate Results

To “Find Context” means to establish a context for
problem study, possibly by requesting a selection from

3



a user, but more often getting it explicitly or implicitly
from the system invocation. It is our placeholder for con-
versions from that part of the system’s invocation envi-
ronment that is necessary for the system to represent to
whatever internal context structures are used by the sys-
tem. To “Pose Problem” means to get a problem to study
from the problem poser (a user or the system), which
includes a problem name and some problem data, and
to convert it into whatever kind of problem structure is
used by the system (we expect this is mainly by pars-
ing of some kind). To “Study Problem” means to use an
SM and the Wrappings to study the given problem in the
given context, and to “Assimilate Results” means to use
the result to affect the current context, which may mean
to tell the poser what happened. Each step is a prob-
lem posed to the system by the CM, which then uses the
default SM to manage the system’s response to the prob-
lem. The first problem, “Find Context”, is posed by the
CM in the initial context of “no context yet”, or in some
default context determined by the invocation style of the
program.

The main purpose of the default CM is cycling through
the other three problems, which are posed by the CM in
the context found by the first step. This way of providing
context and tasking for the SM is familiar from many in-
teractive programming environments: the “Find context”
part is usually left implicit, and the rest is exactly analo-
gous to LISP’s “read-eval-print” loop, though with very
different processing at each step, mediated by one of the
SMs. In this sense, this CM is a kind of “heartbeat” that
keeps the system moving.

If the Coordination Manager is the basic cyclic pro-
gram heartbeat, then the Study Manager is a planner that
organizes the resource applications. The CM and SM in-
teract as shown schematically in Figure 2.

We have divided the “Study Problem” process into
three main steps: “Interpret Problem”, which means to
find a resource to apply to the problem; “Apply Re-
source”, which means to apply the resource to the prob-
lem in the current context; and “Assess Results”, which
means to evaluate the result of applying the resource,
and possibly posing new problems. We further subdivide
problem interpretation into five steps, which organize it
into a sequence of basic steps that we believe represent a
fundamental part of problem study and solution. These
are implemented in the default Study Manager (SM):

• INT = Interpret Problem:

– MAT = Match Resources,

– RES = Resolve Resources,

– SEL = Select Resource,

– ADA = Adapt Resource,

– ADV = Advise Poser,

Match Resources

Study Problem

Present Results

Resolve Resources

Select Resource

Adapt Resource

Advise Poser

Apply Resource

Assess Results

SM

Pose Problem

Find Context

the resource to do
whatever it does

This step invokes

CM

Figure 2: CM and SM Steps

• APP = Apply Resource, and

• ASR = Assess Results.

To “Match Resources” is to find a set of resources that
might apply to the current problem in the current context.
It is intended to allow a superficial first pass through a
possibly large collection of Wrapping Knowledge Bases.
To “Resolve Resources” is to eliminate those that do not
apply. It is intended to allow negotiations between the
posed problem and each Wrapping of the resource to de-
termine whether or not it can be applied, and make some
initial bindings of formal parameters of resources that
still apply. To “Select Resource” is simply to make a
choice of which of the remaining candidate resources (if
any) to use. To “Adapt Resource” is to set it up for the
current problem and problem context, including finish-
ing all required bindings. To “Advise Poser” is to tell the
problem poser (who could be a user or another part of the
system) what is about to happen, i.e., what resource was
chosen and how it was set up to be applied. To “Apply
Resource” is to use the resource for its information ser-
vice, which either does something, presents something,
or makes some information or service available. To “As-
sess Results” is to determine whether the application suc-
ceeded or failed, and to help decide what to do next.

Finally, we insist that every step in the above se-
quences is actually a posed problem, and is treated in
exactly the same way as any other, which makes these
sequences “meta”-recursive [1]. This makes the system
completely Computationally Reflective. That means that
if we have any knowledge at all that a different planner
may be more appropriate for the context and application

4



at hand, we can use it (after defining the appropriate con-
text conditions), either to replace the default SM when
it is applicable, or to replace individual steps of the SM,
according to that context (which can be selected at run
time).

This meta-recursive choice shows how Wrappings
satisfies our claim above that there is “no privileged
choice”; any part of the system may be replaced or su-
perseded.

Of course, we also have to have something to re-
place or supersede. We have therefore provided de-
fault resources for each of the CM and SM steps, to be
used when no other is selected to supersede it (as the
above SM is the default resource for the problem “Study
Problem”). A simple complication occurs with the de-
fault among many possible resources for the “Select Re-
source” problem: we want to allow other resources to be
used, so we insist that the default resource (which oth-
erwise might just pick the first resource on the list) not
pick itself if there is another choice when it is addressing
the “Select Resource” problem.

We have used these algorithms many times to explain
and implement autonomous and reflective agents and
systems [22] [23], and shown that they provide the ap-
propriate level of manageable flexibility and auditable in-
tegration. The advantage in flexibility this approach pro-
vides over other activity loops that have been proposed is
that the SM and CM steps are “meta”-steps, with posed
problems for the activities, allowing one further level of
abstraction and indirection when it is useful. There are
a number of other activity loops that we have seen de-
scribed in various places [3], but we think our CM / SM
meta-recursive interaction subsumes all of them. The
meta-interpretation style [1] of Wrappings can of course
be applied to any of them to make them much more flex-
ible.

We have implemented several different kinds of CMs
in addition to the simple default CM defined above.
There are CMs that short cut the reflection by calling the
default step resources directly, and fully recursive ver-
sions that have extra levels of problem posing. Some of
them are described in other papers in the references.

We have also used different SMs, beyond the default
one that tries only one resource: one SM tries all ap-
plicable resources and returns with the first success, an-
other tries them all and evaluates them to return the best
success, and one collects all successes and summarizes.
There are also different kinds of SM steps. The Match
and Resolve resources that read XML WKBs are differ-
ent from the ones that read text only WKBs. A differ-
ent Match or Resolve might invoke a more sophisticated
planner if there are no matches. A different Select might
choose all compatible resources, then negotiate among
them. Different versions of apply, beyond the default

function call, might send a request message, or invoke an
interpreter or other process. Another one might simply
add the resource to a configuration, instead of invoking
it.

Finally, for studying the timing characteristics of an
infrastructure, we want to use a simulation style of analy-
sis, but we want to use the same Wrapping infrastructure.
In this case, we want to use a CM and SM that includes a
simulation engine. This can be done easily, with exactly
the same default CM and SM, with different CM and SM
steps (this is one of the results of our emphasis on Com-
putational Reflection). Essentially, the new Find Context
resource initializes the future events set using a provided
scenario. The new Pose Problem resource determines
the next relevant event as a posed problem, using what-
ever dynamic knowledge there is about the system. The
new Study Problem resource runs that event element as a
posed problem, possibly scheduling new event elements.
Running the event element includes keeping track of time
requirements. Then the new Assimilate Results resource
displays the recent movements. Then running the CM is
running the simulation.

We have also developed a few mitigations for run-time
decision time issues. A system that does not change
its resources quickly can save processing time by us-
ing what are called memo functions (as defined for the
Haskell Memo library and other places [15]), which are
essentially collections of already computed values of a
function. This memory can be extremely useful when
the computation is time consuming. In our case, the re-
sources used for the “Match Resources” problem could
keep a record (which we presume would be a reverse in-
dex mapping problems to Wrappings). Even more use-
ful might be a memo function for the “Study Problem”
resources, which would keep the entire problem to re-
source in context values, and only compute them once.
For our embedded system applications, however, we ex-
pect the context to be changing more rapidly, so this
memo function may not be as useful.

In this case, we recommend using partial evaluation
[6] [21] [8] to eliminate the SM altogether for some prob-
lems. If the set of resource Wrappings implies that there
is only one resource that can apply to a problem, then
we can sidestep the SM processing almost entirely, and
replace the problem posing step with a test of the appli-
cability conditions and an invocation of the resource.

2.4 Wrapping Knowledge Bases

The Wrappings in the WKBs are used by PMs to map
problems to resources. The first implementations used a
very simple keyword value format, intended for use by
the default CM and SM.

Now, however, we usually write our Wrappings in

5



XML for generality and simplicity, since XML parsers
exist for many implementation languages. It should also
be remembered that the format of the WKBs can differ
for different SMs and other PMs, so it need not be the
same throughout a system. Wrapping applications can
use different knowledge representations (any of the pop-
ular Knowledge Representation Languages can be used,
but we usually avoid them because they place too much
power in processes not subject to change, and therefore
not subject to study). The only real constraint is to sup-
port the CM/SM or whatever PMs are being used.

Also, for some applications, qualitative information
and qualitative distinctions are important, considerations
such as best practices, preference indications, and per-
formance expectations. For example, two optimization
methods might be distinguished by such information as
“slow optimization method that requires a mathematician
to interpret” versus “fast, inexact so only use it as a pre-
liminary indicator”.

With this in mind, we present a sample Wrapping
Knowledge Base format used in a recent application [3],
which was implemented in a keyword value style::

RS resource name as a sequence of symbols.
PB problem name as a sequence of symbols, with list

of problem parameter names.
NF problem parameter conditions: Each of these is

a boolean parameter conditions, assumed to apply
conjunctively. A condition can test for existence or
not, or for specific value range.

XC context conditions: Each of these is a boolean pa-
rameter condition, assumed to apply conjunctively.
A condition can test for an attribute’s existence or
not, or for specific value range.

PM map from problem parameters to resource param-
eters, assumed to be in resource parameter order.
Fancier versions might allow arithmetic expressions
in the map.

XH context condition changes: Each of these is a con-
text variable assignment. Fancier versions might al-
low arithmetic expressions in the assignment.

SY symbol (symbolic name of resource in object file).
FL source file (path name of defining object file).
ND (this is an end marker, with no associated text).

Most of these entries are optional, and several may occur
more than once. There must be exactly one RS, PB, and
ND entry to define the map, exactly one SY and FL entry
to define the compiled resource code (in our unix and
linux implementations), and there may be zero or more
of any of the others.

The WKB entries support information needed by the
default SM steps. Match expects to find resources that
claim to address the posed problem in the current con-
text, by filtering on the parameter and context condi-

tions. Resolve expects to find conditions that guaran-
tee that a resource can address the posed problem in the
current context, also by filtering on the parameter and
context conditions (we usually expect the match condi-
tions to be more superficial, as a preliminary filter, and
the resolve conditions to be a negotiation between the
specific Wrapping and the problem in context. Select ex-
pects to find resource preference information, qualitative
or otherwise. Adapt expects to find specialized meth-
ods for adapting the selected resource, which can range
from nothing to complex resource setup programs. Ad-
vise expects to find methods for presenting these deci-
sions to the problem poser. Apply expects to find meth-
ods for applying a selected and adapted resource, from
simple resource function invocation to the invocation of
an interpreter for a domain-specific notation or other
source code. Assess expects to find specialized methods
for assessing the results (these are resource dependent).
Match, Resolve, and Apply are the only necessary ones
in the simplest cases. The others are optional, and sensi-
ble defaults exist, as described above.

2.5 Wrapping Summary

Wrapping-based systems support run-time decisions
about which resources to apply in the current context,
both at the application level (the resources that perform
the task at hand) and at the meta-level (the resources that
are used to select and organize the application level re-
sources). This flexibility does come with a cost, but
there are also mechanisms based on partial evaluation [6]
[21] [8] for removing any decisions that will be made the
same way every time, thus leaving the costs where the
variabilities need to be.

The Wrapping approach makes infrastructure experi-
mentation simpler and more effective because of its sep-
aration of problems and resource uses from resources.
Such a system can have “macro-resources” that are com-
binations of resources applied together, and also “micro-
resources” that are particular usage styles of resources
packaged and treated separately for different contexts.
The Wrapping infrastructure does not restrict mixing and
matching these styles. It is also more or less completely
independent of the programming language used.

In summary, there are several advantages of using
Wrappings that are also conducive to good system de-
sign practice:

• using Wrappings allows (requires) careful defini-
tion of the modeling spaces, especially the problem
spaces that drive the whole process (a problem can
be considered to be a generic activity within a model
or modeling space);

• using Wrappings encourages (requires) good ab-

6



stractions to facilitate experimentation with various
strategies, to decide which ones can be done in real-
time in the application at hand, and which ones can
only be done in simulation;

• using Wrappings allows (requires) generic inte-
gration strategies that are explicit and therefore
sharable and reusable.

• using Wrappings allows (requires) careful defini-
tion and decomposition of the expectations for the
system, since the system design is done entirely in
terms of posed problems and responsibilities, in-
stead of components and requirements,

We believe that this up front modeling, though often
quite difficult, is essential for effective real-time or em-
bedded system design, whether or not our Wrappings ap-
proach is used.

3 Similar Approaches

There are a number of approaches similar in spirit to
Wrappings, since it has been widely recognized for
some time that our modern computing system devel-
opment processes are seriously deficient for the kinds
and complexities of systems that we are now building.
The “divide-and-conquer” / reductionist paradigm has
worked extremely well for hundreds or even thousands of
years, and we are only now attempting to address prob-
lems that are too complex or too large for it to work well
enough soon enough. These papers are more about simi-
lar goals than similar approaches to addressing them, but
they all share a number of features with Wrappings.

There isn’t very much common terminology, though
the different approaches usually take note of robustness,
emergence (usually as an unpleasant phenomenon), un-
intended side effects, and a class of properties loosely
called self-x, which varyingly includes self-adapting [31]
[27] [32] [37] [36], self-configuring, self-evolving [30],
self-healing [7], self-improving, self-managing [12]
[16], self-monitoring, self-organizing, self-protection,
and many more. Many of these discussions recognize
that the goal of robustness in any systems is in direct
contradiction to the goal of efficiency, since a robust
system needs to retain functionality that is only rarely
used, whereas an efficient system wants to retain only
that functionality that is being used.

Every one of these papers illustrates, but does not al-
ways emphasize, Computational Reflection as a funda-
mental need for self-x systems. The systems in question
need internal instrumentation to determine what they are
actually doing, so they can adjust it to fit their current
circumstances. The information so gathered is a kind of
model of the system, and we have advocated that these

models, as well as models of the behavior of the exter-
nal environment and all interactions with it, all be ex-
plicit and available to the system for analysis. The strong
emphasis on these two properties distinguishes our ap-
proach from the others.

Organic Computing [2] was a Priority Program of the
German Research Foundation, primarily led by several
German Universities in partnership with several manu-
facturing companies. The main goal is to understand
and manage the unavoidable emergence that occurs in
sufficiently complex systems. The idea is that spon-
taneous local interaction causes self-organization, lead-
ing to emergent behavior, and the goal is to learn how
to manage the emergence that cannot be prevented, and
possibly exploit some kinds of emergence if they are
helpful. Small scale experiments have shown that flex-
ible, adaptive and robust services can be produced and
that the usual problems with design, management, and
acceptance can be addressed. As one example, the Or-
ganic Traffic Control Collective at the University of Karl-
sruhe describes its aims as follows:

Organic Traffic Control Collaborative (OTC2)
aims at the realisation of an organic traffic con-
trol System capable of controlling and optimis-
ing traffic signals in urban road networks.

The combination of decentralised control pur-
suing fine-grained goals with higher level ob-
servation and control having a more abstract
point of view is expected to be applicable to a
broad range of problems worked on in the Or-
ganic Computing community.

Another research movement, called Self-Adaptive
Software [17] [18], was originally a DARPA/ITO
project, with the following description:

Self Adaptive Software evaluates its own be-
havior and changes behavior when the evalua-
tion indicates that it is not accomplishing what
the software is intended to do, or when better
functionality or performance is possible.

Autonomic Computing is a large program initiated by
IBM in the United States, and picked up by many other
research organizations here and abroad [9] [10], that in-
tends to produce the analog of the autonomic nervous
system (which exists in most vertebrates, including all
mammals, reptiles, amphibians, and at least some fish;
there is some disagreement about whether it exists in the
simplest fish). This work seemingly concentrates on low-
level health maintenance capabilities, to construct com-
puter systems capable of some local self-management.
They also emphasize the instrumentation required for
closed control loops to be effective.

7



Finally, we call our approach self-modeling software
[22] [23] [24], since it is explicitly about Computational
Reflection and systems defined by models of themselves.

4 Embedded Self-Organizing Systems

Of course, not every infrastructure can be changed.
Many are constrained by a particular choice of platform,
and others are not under the control of the software devel-
opers. When it is possible, however, we recommend per-
forming some experiments to determine the best infras-
tructure for the problem at hand, and using Wrappings to
do that. They developers can then verify (or refute) their
infrastructure (and other) design choices. In this Section,
we describe five self-adaptation papers, and show how
their infrastructure experiments would be facilitated by
using Wrappings. We chose these papers to illustrate the
potential range of this application of Wrappings, not to
represent the range of applications of self-modeling.

Transformer [13] is an architecture-based adaptation
framework that uses encapsulated adaption strategies
calledcomposable adaptation plannersto address three
challenges: composition of adaptation modules, meta-
adaptation, and conflict detection and resolution. They
use an infrastructure of six cooperating modules, coop-
erating via an unspecified message passing mechanism.
A Wrapping infrastructure for this project would allow
multiple alternative choices for each of their six adap-
tation management modules, and experimentation and
comparison of those alternatives.

A risk-aware efficiency improvement advisor [14] ob-
serves actual system behavior and attempts to make sug-
gestions for improved efficiency. In this application,
there is a multi-agent system that is assigned a set of
timed tasks, and the question is which task to assign to
which agent. The analysis uses data mining of event pat-
terns by one designate agent that is not to be assigned
any other task, and requires collection of each agent
history by the analyzer. A Wrapping infrastructure for
this project would allow alternative classes of assignment
problems, alternative strategies for analysis (centralized,
distributed, cooperative, competitive), and even methods
for dynamic reconfiguration as problems change.

In [29], a system consists of a number of independent
control loops that perform local tasks that contribute to
a specified goal, and they describe mechanisms for map-
ping a provided goal model into a collection of control
loops, including the possibility of changing them at run-
time. Their notion of control loops is essentially the same
as in [3], which in our interpretation are the same as
PMs. A Wrapping infrastructure for this project would
allow alternative classes of goal models, conflict resolu-
tion strategies, and control loop modification strategies
to be compared and evaluated.

In [34], the issue is interaction among separately self-
adapting embedded systems, in which none has access
to the entire system state, so there is an issue of paral-
lel incompatible adaptations, and for physical systems,
an issue of uncontrolled dynamics. They use a second-
order observer controller architecture, with different lay-
ers having different scopes of applicability. A Wrapping
infrastructure for this project would allow alternative ar-
chitectures, and alternative choices for the higher-level
control methods. They could also tradeoff the control
performance with its complexity.

The issues in [35] are exactly about integration of self-
x properties in a single middleware module called anOr-
ganic Manager. Here again is an observer controller ar-
chitecture, with the manager controlling a set of sepa-
rate nodes, each running middleware to allow the nec-
essary control. The Organic Manager itself runs a par-
ticular control loop, which makes it essentially a PM as
in [3]. A Wrapping infrastructure for this project would
allow alternative sets of tasks for the control loop, such
as planners, analyzers, monitors, and conflict resolution
strategies, to be compared and evaluated.

In all cases, the use of a Wrapping infrastructure fa-
cilitates experiments and evaluation, as of course most
system simulations could. We claim that using a Wrap-
pings infrastructure would make the entire process more
effective, because many more choices can be examined
and compared explicitly, and because the inherent Com-
putational Reflection allows the system to gain much
more knowledge about how its components are interact-
ing, and react to that knowledge more flexibly. We are
not trying to say that all or even any of these applica-
tions would be more complete using Wrappings, but we
do think that their conclusions could be better supported
by studying the infrastructure alternatives that were not
chosen.

Finally, we emphasize that we are not advocating that
Wrappings be used in all target implementations, since it
can impose a serious computational overhead, only that
it be used to determine an adequate infrastructure for a
target implementation. On the other hand, we have ac-
tually used Wrappings for the target implementation in
CARS [3] [4] [19].

5 Conclusions and Prospects

We have described a modeling framework that we be-
lieve is ideal for modeling the infrastructure of a self-
adaptive system, since it makes noa priori assumptions
about that infrastructure, thereby allowing the develop-
ers freedom of design space exploration. It also pro-
vides a way to analyze the interaction and timing behav-
ior of the infrastructure, and thereby to compare different
choices against different criteria before the final choices

8



have to be made. The explicit integration support proper-
ties of Wrappings allow the domain resources to be kept
strictly separate from the infrastructure resources until
the infrastructure is completely determined, thus greatly
reducing domain resource rework.

With the instrumentation available in Wrappings
based systems, we expect that other infrastructure studies
and framework providers can perform the experiments
that verify (or help improve) their choices.

Future work in this area will lie in providing more PM
resources specifically intended for this and other aspects
of self-adaptation, including the experimental framework
and simulation mechanisms, the integration of physics
modules, and the incorporation of more interfaces to ex-
ternal modeling notations and their processors, such as
AADL, DEVS, Modelica, and SysML.

References

[1] Harold Abelson, Gerald Sussman, with Julie Suss-
man,The Structure and Interpretation of Computer
Programs, Bradford Books, now MIT (1985)

[2] Dr. Kirstie L. Bellman, Dr. Christopher Landauer,
Dr. Phyllis R. Nelson, “System Engineering for Or-
ganic Computing”, Chapter 3, pp.25-80 in Rolf P.
Würtz (ed.), Organic Computing, Understanding
Complex Systems Series, Springer (2008)

[3] Dr. Kirstie L. Bellman, Dr. Christopher Landauer,
Dr. Phyllis R. Nelson, “Managing Variable and Co-
operative Time Behavior”,Proc. SORT 2010: The
First IEEE Wksh. on Self-Organizing Real-Time
Systems, 05 May 2010, part ofISORC 2010, 05-06
May 2010, Carmona, Spain (2010)

[4] Dr. Kirstie L. Bellman, Dr. Phyllis R. Nelson,
“Developing Mechanisms for Determining̈Good
Enougḧın SORT Systems”,Proc. SORT 2011: The
Second IEEE Wksh. on Self-Organizing Real-Time
Systems, 31 March 2011, part ofISORC 2011, 28-
31 March 2011, Newport Beach, California (2011)

[5] Betty H. C. Cheng, Roǵerio de Lemos, Holger
Giese, Paola Inverardi, Jeff Magee (eds.), “Soft-
ware Engineering for Self-Adaptive Systems: A
Research Roadmap”, Dagstuhl Seminar 08031, 13-
18 January 2008;Software Engineering for Self-
Adaptive Systems, SLNCS 5525, Springer (2009)

[6] C. Consel, O. Danvy, “Tutorial Notes on Partial
Evaluation”,Proc. 20th PoPL: The 1993 ACM Sym-
posium on Principles of Programming Languages,
Charleston, SC (January 1993)

[7] Eric Dashofy, Andre van der Hoek, Richard Tay-
lor, “Towards architecture-based self-healing sys-
tems”, pp.21-26 inProc. First Wksh. Self-Healing
Systems, 18-19 November, Charleston, S.C. (2002)

[8] Marcus Denker, Orla Greevy, Michele Lanza,
“Higher Abstractions for Dynamic Analysis”,
pp.32-38 inProc. PCODA’2006: the 2nd Intern.
Wksh. on Program Comprehension through Dy-
namic Analysis, Technical report 2006-11 (2006)

[9] Jim Dowling and Vinny Cahill, “The K-component
architecture meta-model for self-adaptive soft-
ware”, pp.81-88 in Akinori Yonezawa, Satoshi
Matsuoka (eds.),Proc. Reflection’2001: Intern.
Conf. Metalevel Architectures and Separation of
Crosscutting Concerns, 25-28 September, Kyoto,
Japan, LNCS 2192, Springer (2001)

[10] Jim Dowling, Eoin Curran, Raymond Cunningham,
Vinny Cahill, “Building Autonomic Systems using
Collaborative Reinforcement Learning”, Special
Issue Autonomic Computing, Knowledge Engr.
Rev. J., Vol.21, No.3, Cambridge U. Press (2006)

[11] D. Garlan, S. Jha, D. Notkin, J. Dingel, “Reasoning
About Implicit Invocation”, pp.209-221 inProc.
SIGSOFT’98/FSE-6: The 6th ACM SIGSOFT In-
tern. Symposium on Foundations of Software Engi-
neering, 03-05 November 1998, Lake Buena Vista,
Florida (1998); alsoSIGSOFT Software Engineer-
ing Notes, vol.23, no.6, pp.209-221, ACM (1998)

[12] Robert P. Goldman, David J. Musliner, Kurt D.
Krebsbach, “Managing Online Self-Adaptation in
Real-Time Environments”, in [33]

[13] Ning Gui, Vincenzo De Florio, “Towards Meta-
Adaptation Support with Reusable and Compos-
able Adaptation Components”, p.49-58 inProc.
SASO 2012: The 6th IEEE Intern. Conf. Self-
Adaptive and Self-Organizing Systems, 10-14 Oc-
tober 2012, Lyon, France (2012)

[14] Jonathan Hudson, Jo:rg Denzinger, Holger
Kasinger, Bernhard Bauer, “Dependable Risk-
Aware Efficiency Improvement for Self-Organizing
Emergent Systems”, p.11-20 inProc. SASO 2011:
The 5th IEEE Intern. Conf. Self-Adaptive and
Self-Organizing Systems, 03-07 October 2011, Ann
Arbor, Michigan (2011)

[15] R. John M. Hughes, “Lazy Memo Functions”,
p.129-146 in Proc. Conf. Functional Program-
ming Languages and Computer Architecture, 16-
19 September 1985, Nancy, France (1985); LNCS
201, Springer Verlag (1985)

[16] Jeff Kramer and Jeff Magee, “Self-Managed Sys-
tems: an Architectural Challenge”, pp.259-268 in
Proc. FOSE’07: Wksh. on the Future of Software
Engineering, part of Intern. Conf. Software Engi-
neering, 20-26 May 2007, Minneapolis (2007)

[17] R. Laddaga, H. Shrobe (eds.), “Self-Adaptive Soft-
ware”, LNCS 2614, Springer Verlag (2002)

[18] R. Laddaga, H. Shrobe (eds.),Proc. Third Intern.
Wksh. on Self-Adaptive Software, 09-11 June, Ar-

9



lington, VA (2003)
[19] Christopher Landauer, “Abstract Infrastructure for

Real Systems: Reflection and Autonomy in Real
Time”, Proc. SORT 2011: The Second IEEE Wksh.
on Self-Organizing Real-Time Systems, 31 March
2011, part ofISORC 2011, 28-31 March 2011,
Newport Beach, California (2011)

[20] Christopher Landauer, Kirstie L. Bellman,
“Lessons Learned with Wrapping Systems”,
pp.132-142 inProc. ICECCS’99: The 5th Intern.
Conf. Engr. Complex Computing Syst., 18-22
October 1999, Las Vegas, Nevada (1999)

[21] Christopher Landauer, Kirstie L. Bellman,
“Generic Programming, Partial Evaluation, and a
New Programming Paradigm”, Chapter 8, pp.108-
154 in Gene McGuire (ed.),Software Process
Improvement, Idea Group Publishing (1999)

[22] Christopher Landauer, Kirstie L. Bellman, “Self-
Modeling Systems”, pp.238-256 in [17]

[23] Christopher Landauer, Kirstie L. Bellman, “Man-
aging Self-Modeling Systems”, in [18]

[24] Christopher Landauer, Kirstie L. Bellman, “Self
Managed Adaptability with Wrappings”,Proc.
Evolve2005: Wksh. on Software Evolvability26
September 2005, part ofICSM 2005, 25-30
September 2005, Budapest, Hungary (2005)

[25] Dr. Christopher Landauer, Dr. Kirstie L. Bellman,
Dr. Phyllis R. Nelson, “Wrapping Tutorial: How to
Build Self-Modeling Systems”,Proc. SASO 2012:
The 6th IEEE Intern. Conf. Self-Adaptive and Self-
Organizing Systems, 10-14 October 2012, Lyon,
France (2012)

[26] Dr. Christopher Landauer, Dr. Kirstie L. Bellman,
Dr. Phyllis R. Nelson, “Wrapping Tutorial: How
to Build Self-Modeling Systems”,Proc. CogSIMA
2013: 2013 IEEE Intern. Inter-Disciplinary Conf.
Cognitive Methods for Situation Awareness and
Decision Support, 25-28 February 2013, San
Diego, California (2013)

[27] Ákos Lèdeczi, Ǵabor Karsai, and Ted Bapty,
“Synthesis of Self-Adaptive Software”, inProc.
Aerospace Conf., Big Sky, MT, March 2000 (2000)

[28] Roǵerio de Lemos, Holger Giese, Hausi A. Müller,
Mary Shaw, “Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap”,
Software Engineering for Self-Adaptive Systems,
Dagstuhl Seminar 10431, 24-29 October 2010
(Draft Version of 09 November 2011)

[29] Hiroyuki Nakagawa, Akihiko Ohsuga, Shinichi
Honiden, “Towards Dynamic Evolution of Self-
adaptive Systems Based on Dynamic Updating of
Control Loops”, p.59-68 inProc. SASO 2012: The
6th IEEE Intern. Conf. Self-Adaptive and Self-
Organizing Systems, 10-14 October 2012, Lyon,

France (2012)
[30] Peyman Oreizy, Nenad Medvidovic, Richard N.

Taylor, “Architecture-based runtime software evo-
lution”, pp.177-186 inProc. Intern. Conf. Software
Engineering, 19-25 April, Kyoto, Japan (1998)

[31] Peyman Oreizy, Michael M. Gorlick, Richard N.
Taylor, Dennis Heimbigner, Gregory Johnson, Ne-
nad Medvidovic, Alex Quilici, David S. Rosen-
blum, Alexander L. Wolf, “An architecture-based
approach to self-adaptive software”,IEEE Intelli-
gent Systems and Applications(1999)

[32] Paul Robertson, Robert Laddaga, “The GRAVA
Self-Adaptive Architecture: History; Design; Ap-
plications; and Challenges”, pp.298-303 inProc.
ICDCS’04: Intern. Conf. Distributed Computing
Systems, 23-24 March, Tokyo, Japan (2004)

[33] Paul Robertson, Howie Shrobe, Robert Laddaga
(eds.),Self-Adaptive Software, Proc. First Intern.
Wksh. on Self-Adaptive Software, 17-19 April
2000, Oxford U., England, LNCS 1936, Springer
Verlag (2001)

[34] Nils Rosemann, Werner Brockmann and Christian
Lintze, “Controlling the learning dynamics of in-
teracting self-adapting systems”, p.1-10 inProc.
SASO 2011: The 5th IEEE Intern. Conf. Self-
Adaptive and Self-Organizing Systems, 03-07 Oc-
tober 2011, Ann Arbor, Michigan (2011)

[35] Julia Schmitt, Michael Roth, Rolf Kiefhaber, Flo-
rian Kluge, Theo Ungerer, “Using an Automated
Planner to Control an Organic Middleware”, p.71-
78 inProc. SASO 2011: The 5th IEEE Intern. Conf.
Self-Adaptive and Self-Organizing Systems, 03-07
October 2011, Ann Arbor, Michigan (2011)

[36] Danny Weyns, Sam Malek, Jesper Andersson,
“FORMS: a FOrmal Reference Model for Self-
adaptation”, pp.205-214 inProc. ICAC’10: The 7th
Intern. Conf. Autonomic Computing, 07-10 June
2010, Washington, D.C. (2010)

[37] Ji Zhang, Betty H. C. Cheng, “Towards Re-
engineering Legacy Systems for Assured Dynamic
Adaptation ”, pp.10 inProc. MSE’07: Intern. Conf.
Modeling in Software Engineering (ICSE’07), 20-
26 May, Minneapolis, Minnesota (2007)

10


