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Abstract

In this paper we propose improvements on the Helios
voting protocol such that the audit data published by the
authority provides everlasting privacy, as opposed to the
computational privacy provided currently. We achieve
this with minor adjustments to the current implementa-
tion. For the homomorphic Helios variant we use Peder-
sen commitments to encode the vote, together with ho-
momorphic encryption over a separate, private channel
between the user and Helios server to send the decommit-
ment values. For the mix-net variant we apply a recent
result which shows that mixing with everlasting privacy
is possible.

Observe that we do not claim everlasting privacy
towards the server, which, if dishonest, could try to
break the homomorphic encryption scheme used in
the private channel. Thus towards the authority the
voter’s level of privacy is identical to what Helios
currently offers. However, our protocol is much harder
to attack by an outsider: apart from having to break the
computational assumption, an adversary must intercept
the communication between the voter and the server to
violate ballot privacy of that voter. The feasibility of
such an attack depends on the way both parties choose to
implement this channel. Both contributions are generic
in the sense that they can be applied to other voting
protocols that use homomorphic tallying or mixnets.

1 Introduction

1.1 Motivation
Voting protocols seem to come in two settings: either
the protocol achieves computational privacy of the bal-
lot and unconditional correctness of the vote count, or
the reverse: everlasting privacy and computational cor-
rectness. Just as with bit commitments, achieving both
everlasting privacy and unconditional correctness seems
to be impossible, but this question is not fully settled yet
(see [7]).

The overwhelming majority of voting protocols is
based on homomorphic encryption and/or on encryption
mixes, so all these protocols have in common that they
provide only computational privacy. This is somewhat
surprising. Already two decades ago Chaum argued, in
the context of credential mechanism [28], that privacy
should be everlasting, since individuals cannot be ex-
pected to assess the strength of cryptographic mecha-
nisms.

In addition, since storage is becoming cheaper every
day, we must assume that the data on the bulletin board
will be stored forever. This means that the moment the
cryptographic assumption on which the privacy of the
ballots was based is broken, it will be possible to de-
crypt all published information. In other words, with
computational privacy we can almost be sure that 30 or
300 years from now we can know who voted for whom.
This could raise the possibility for some nasty scenar-
ios, for instance a dictator who has come to power goes
after people who have voted against him (or his father)
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several decades ago. Voter privacy is also of interest for
elections which are not on state level. If a university or
company elects a new director it would be unpleasant for
each candidate, also several years after the election, to
detect which co-worker voted against him or her.

In other words, many newly proposed voting proto-
cols suddenly have a new, potentially dangerous, prop-
erty that classical protocols never had. Therefore we be-
lieve that the quest for finding suitable protocols with ev-
erlasting privacy is of utmost importance.

1.2 Helios

Helios [20] is a web application for internet voting which
is online accessible, easy to use, and free of charge. The
system is fully open and provides end-to-end verifiabil-
ity, meaning that the voters can check all steps from the
vote casting process to the computation of the election
result. In addition, in 2009 the system was extended to
enable election creation and voting even via a Twitter ac-
count. This makes Helios a convenient tool to support
representatives elections for companies, online groups,
local clubs and many more.

After its introduction in 2008 [1], Helios was used
on several election levels. In 2009, for instance, the
Princeton Undergraduate Student Government election
[21] and the election of the President of the Université
Catholique de Louvain [3] was realized with Helios. In
addition, the Brazilian Society of Computing used this
voting system last year to elect their Board of Directors.

The Helios voting system is end-to-end verifiable by
providing individual and universal verifiability. Thus,
each voter can check whether the election outcome was
calculated correctly. Further, all voter options are en-
crypted locally on the voter’s computer before they are
sent to the Helios server. To ensure that only anonymized
votes or the election outcome is decrypted, the private
key is generated in threshold fashion and distributed
among several key trustees. This provides a high level
of voter privacy.

However, a serious drawback of Helios is that each
voter is linked to a vote which is published in encrypted
form, thus offering computational privacy only. There-
fore, as soon as the underlying cryptosystem gets bro-
ken, everyone can decrypt the information written on the
Helios bulletin board and reveal the votes cast by each
voter.

In this paper we show how to obtain everlasting pri-
vacy towards the public, while minimizing changes to
the current Helios implementation.

1.3 A brief and intuitive explanation
Pedersen commitments1 are expressions of the form
u(t, s) = αsβt ∈ G that can be used as a commit-
ment scheme which provides everlasting privacy. Peder-
sen commitments are computationally binding, provided
that the party who commits cannot break the discrete
log in the group G. It is trivial to see that Pedersen
commitments are homomorphic: u(t1, s1)u(t2, s2) =
αs1βt1αs2βt2 = αs1+s2βt1+t2 = u(t1 + t2, s1 + s2).
This property is what makes them so useful for voting.

A problem, however, is that, unlike conventional en-
cryption, a commitment u can encode2 any value, so
without knowing s it is impossible to decode to t. We
solve this problem by encrypting s and t separately using
a conventional homomorphic encryption scheme, like
Paillier: v = P (s) and w = P (t). This encryption is
not published on the Helios bulletin board, but sent to
the server through a private channel. In other words, we
use a second channel through which we send the auxil-
iary information s and vote t.

We present two variations of this idea. The first varia-
tion can be thought of an extension of [12] (which is the
current implementation of homomorphic tallying in He-
lios using exponential ElGamal) and a simplification of
[11] (which uses Pedersen commitments and secret shar-
ing among multiple authorities). A vote for candidate i is
represented as a vector 〈t1, ..., tl〉 which is 0 everywhere,
except in the ith position, where it equals 1. Each entry
of this vector is encoded using Pedersen commitments,
and sent to the bulletin board.

In order to count the total for candidate i, the server
computes u∗i =

∏
j ui(j), where the j in parenthesis

denotes an index ranging over all the voters who sub-
mitted a valid vote to the server. Because of the ho-
momorphic property, we have that u∗i = αs∗i βt∗i where
s∗i =

∑
j si(j) and t∗i =

∑
j ti(j), and where the sum

again ranges over all the j.
Now in order to publish t∗i , that is, the total of votes

for candidate i, and show its correctness, the server must
know s∗i and t∗i . This is possible because it received
from each user the value si and ti homomorphically en-
crypted, sent through a private channel. By computing
v∗i =

∏
j vi(j) =

∏
j P (si(j)) = P (s∗i ) as well as

w∗i =
∏

j wi(j) =
∏

j P (ti(j)) = P (t∗i ) and then de-
crypting it, the server finds s∗i and correspondingly t∗i .
This procedure is applied to each candidate, so this is
how the tally is determined.

The decommitment values s∗i and votes t∗i are de-
crypted in threshold fashion. This requires that the pri-
vate key consists of several key portions which are shared

1Though usually attributed to Pedersen, expressions of this form
were actually first presented in [8] (see page 98).

2Since we use bit commitments to blind the message, we use the
term encode instead of the verb encrypt.
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among several key trustees. As a result, a predefined
number of authorities has to participate to decrypt the
decommitment values what provides a high level of com-
putational privacy.

Opening the computed commitment u∗i = αs∗i βt∗i by
publishing the values t∗i and s∗i , is sufficient to show cor-
rectness and provide universal verifiability to the public,
provided that the server cannot compute the discrete log
of α with respect to β before this publication takes place.

In the second variation we use te same idea, of encod-
ing a secret (any secret, not necessarily votes represented
as 0 or 1) in a Pedersen commitment and send the de-
commitment value over a private channel using homo-
morphic encryption, can be used to implement a mix-net
with everlasting privacy. Though conceptually simple,
the details of this get somewhat elaborate; they are de-
scribed in [14]. So the second variations we present is to
substitute the computational mixing that Helios incorpo-
rates by this new everlasting mixing protocol.

1.4 Contribution of this paper
Summarized the protocol we propose has the following
properties

Individual Verifiability Each voter can verify that the
vote was cast as intended and recorded as cast.

Universal Verifiability Any observer can verify that the
votes published on the Helios bulletin board were
tallied as recorded.

Correctness Unauthorized modifications to the tally
will be detected with overwhelming probability
even if all authorities conspire.

Everlasting Privacy towards the public All the infor-
mation published on the bulletin board does not re-
veal any information about the vote cast.

It should be emphasized that we are NOT claiming ever-
lasting privacy towards the Helios server. This authority
gets to see the Paillier-encryptions of the ti(j), so once
it can break Paillier, it can determine each vote. And
if it convinces all the key trustees to conspire, the He-
lios server does not even have to wait for Paillier to be
broken; if all these entities conspire all votes can be de-
crypted. This is equivalent to what Helios provides.

The proposed protocol is only an improvement with
respect to the data published on the bulletin board. Un-
der the assumption that the authority and trustees are
honest, attacking this new version requires an adversary
both to intercept the communication between voter and
server and break a cryptographic assumption. Not im-
possible, depending on the way this private channel is
implemented, but certainly requiring much more effort
compared to the current Helios implementation.

1.5 Comparison to other work/ Related
Work

To the best of our knowledge, the first voting protocol
that provides everlasting privacy was presented by Bos
[6], [5]. His voting protocol only allows Yes/No (en-
coded as 1 and 0, respectively) and votes are encoded as
simple Pedersen commitments, i.e. l = 1. The votes and
decommitment values are added using Dining Cryptog-
rapher nets modulo suitably chosen moduli. The Dining
Cryptographer nets used assume that all voters are online
simultaneously, which for a large-scale election is not re-
alistic.

A few years later Cramer, Franklin, Schoenmakers and
Yung (CFSY) presented another protocol with everlast-
ing privacy [11]. Their basic version also uses l = 1 but
it encodes a masked vote of two options as {−1, 1}. It
uses Pedersen secret sharing [26] to split the masked vote
among the authorities, who add the votes and decrypt the
result in a distributed fashion.

For almost a decade, no progress was made on vot-
ing protocols with everlasting privacy. Then suddenly
three different approaches appeared almost simultane-
ously and independently.

In [33], an off-line version of the Dining Cryptogra-
phers protocol is presented, in an attempt to resolve the
main disadvantage of the Bos protocol. Unfortunately, to
catch a disrupter large amounts of bit commitments with
linear properties are needed. But though the protocol
presented there appears sound, its application to voting is
still fraught with seemingly unsurmountable problems.

Simultaneously, Chaum invented PunchScan [29, 22].
An important theoretical implication of PunchScan is
that it showed how to build an election protocol based
on bit commitment. However, the original papers used
conventional symmetric encryption as a commitment
scheme, yielding computational privacy only. Its succes-
sor, Scantegrity [9] is also based on bit commitments.

In [32], a merge between Prêt-à-Voter and PunchScan
is proposed, using the former’s ballot layout, and the lat-
ter’s bit commitment scheme plus auditing process. If
used in combination with an uncondionally hiding bit
commitment scheme, an extremely simple voting proto-
col with everlasting privacy is obtained.

Moran and Naor have published two different proto-
cols on voting with everlasting privacy. The protocol pre-
sented in [23] uses a voting machine, and is based on a
generic commitment scheme. An optimized version uses
Pedersen Commitments. The protocol presented in the
second paper [24, 25] is strongly based on PunchScan,
but has a very interesting extra twist. The voter must vote
by splitting her choice over two ballot halves, which are
sent to two different authorities. These two authorities
can compute the tally, but they cannot reconstruct an in-
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dividual vote without conspiring. So there is no single
point of failure with respect to privacy.

In [14] a universal verifiable mix-net is introduced
whose input is a set of tuples. Each pair consists of a se-
cret, encoded using Pedersen Commitments, and the cor-
responding decommitment value are encrypted applying
standard homomorphic public-key cryptography. Using
several mix-nets in parallel secret sharing can be imple-
mented too. This is the first approach providing a mixing
process for votes encoded in an information-theoretically
secure way. Further, no data published during the verifi-
cation process reveals information which would enable a
computationally unbounded attacker to decrypt the vote
or to map an encrypted value to a decrypted vote.

1.6 Paper outline
The structure of the paper is as follows: After a descrip-
tion of the current Helios voting system in Section 2, we
present in Section 3 the improved protocol for homomor-
phic tallying. In Section 4 we give formal statements
of the gained properties and conclude with discussion in
Section 5.

2 The Helios voting system

Helios is a publicly accessible and publicly verifiable
web-based voting system. Everyone can visit the web
site to register and run an election, which is publicly au-
ditable.

Phase 1: System initialization

1. The user creates an election by setting the election
name as well as the date and time when the vote
casting process begins and ends. Subsequently, she
becomes administrator and can set up the election
parameters. Helios v4 is going to support several
voting methods (e.g. plurality voting and ranking),
besides offering two tallying mechanisms: homo-
morphic tallying or mix-nets.

2. The administrator creates a list of eligible voters
with their corresponding email addresses.

3. The voting software automatically generates the
election templates like the ballot paper and the pri-
vate and public key needed to encrypt and decrypt
the votes cast.

Phase 2: The voter’s perspective

1. When the vote casting process begins, each voter
receives an email containing her username, her

election-specific password, the hashed election pa-
rameters, and a URL that directs to the voting booth
application.

2. Following the link, a single-page web application,
implemented in JavaScript, is started which down-
loads the election parameters and templates. The
information downloaded is sufficient to update the
HTML according to the voting decision and to per-
form the encryption and auditing process of the bal-
lot (the voter can go offline). The voter can check
whether the downloaded parameters are consistent
with the hash sent by email.

3. She fills out the electronic ballot and the JavaScript
application encrypts her selection and publishes the
hash of the generated ciphertext.

4. The voter now has the option to to audit the en-
crypted information. In this case the application re-
veals the randomness used to encrypt her voting de-
cision. Having this information, the voter can recal-
culate the published hash, either by own code or by
software provided by a trustworthy third party. Af-
ter that, the application deletes the voting decision
and the voter has to fill out a new electronic bal-
lot, which is encrypted using a fresh random value.
Note that so far no authentication has taken place,
so also people who are not eligible to vote or al-
ready cast their vote are able to challenge the sys-
tem. The voter can repeat this auditing process until
she is convinced that the voting decisions got cor-
rectly encrypted and decides to cast the ciphertext
containing her vote.

5. Subsequently, the application first clears the plain-
text and randomness from its scope and then asks
the voter to authenticate with the login and pass-
word received by mail. Note that the computer has
to be online for this step so the information can be
sent to the Helios server. The server replies with a
success message in case the received login and pass-
word are correct and publishes the encrypted voting
decision on the Helios bulletin board.

6. After that, the JavaScript application clears its scope
and sends a success message to the voter.

7. (Individual verifiability) The voter can visit the
bulletin boards and check whether her vote is in-
cluded in the tally. Furthermore, she can compare
the hash with the information on her receipt and ver-
ify that the vote has been recorded unmodified.
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Phase 3: Tallying and publishing the votes

Depending on the parameters, the encrypted votes are
either made anonymous by shuffling and re-encrypting
followed by decrypting and tallying, or the election out-
come is generated by homomorphic tallying and de-
crypted afterwards. Note that, although the administrator
initiates each process, the computations are performed
on the Helios server, and sensitive information (like the
private key or the permutations used of the mix-net) are
never revealed.

Phase 4: Verification of the tally – universal verifia-
bility

The administrator triggers the server to publish a proof
for correct decryption. If mix-nets are used, it is also
publicly shown that the votes have been shuffled and re-
encrypted correctly.

3 Description of the new protocol

3.1 Cryptographic tools

Pedersen commitments and Paillier encryption

In order to obtain everlasting privacy in combination with
homomorphic properties we will encode values using
Pedersen commitments. E.g. the ciphertext u = αsβt

encodes the value t by “blinding” it with a random num-
ber αs. To provide decoding, the decommitment value
or key s and the value t will be encrypted with Paillier:
v = γsrN , w = γtr′N and transferred over a private
channel.

So the encoding of t takes three random values and
has three components: Enc(t, s, r, r′) = 〈u, v, w〉 =
〈αsβt, γsrN , γtr′N 〉. The first (Pedersen) component
offers everlasting privacy but is impossible to open with-
out any help. The second (Paillier) component contains
the auxiliary information (s) and the third the value (t)
needed to open the first. These components offers only
computational privacy and must be sent over a private
channel.

For the whole process to work we need a homomor-
phic property, so we must carefully choose the groups in
which we are working. To this end we use the construc-
tion proposed by Moran and Naor [25]. For the second
component we use standard Paillier encryption using an
integer N = p1p2 as public key. The primes p1 and p2
are the private key; they must be safe primes. For the
first component we use the order N subgroup of Z∗4N+1,
where 4N + 1 must be prime too.

We therefore obtain the homomorphic property
Enc(t1, s1, r1, r

′
1) ∗ Enc(t2, s2, r2, r′2) = Enc(t1 + t2,

s1 + s2, r1 · r2, r′1 · r′2), where ∗ stands for pairwise mul-
tiplication in Z∗4N+1 and Z∗N2 in the first resp. second
component, + stands for addition in ZN , and · for multi-
plication in Z∗N2 .

To generate the key pair consisting of the public and
private key in threshold fashion (without a trusted dealer)
techniques like those implemented in [13, 17] can be ap-
plied. How the shares are used to decrypt the Paillier
ciphertext in threshold fashion is shown in [16].

Random Beacon

We use a random beacon for generating the generators α
and β and for the coins flipped during verification. The
Helios server oversees and publishes these generated ran-
dom values so everyone can verify the proofs. Having a
trusted random beacon is reasonable assumption, see for
instance [25].

Proof of correct encoding

Note that it is crucial that the value s and t used in the
first (Pedersen) component and in the second (Paillier)
component are the same. Therefore the person who en-
codes the value t must prove this fact, besides showing
knowledge of t, the random decommitment value s and
the randomness r and r′ used to generate u, v and w re-
spectively. This can be accomplished by using a standard
cut-and-choose verification protocol like in [25].

1. The prover privately chooses random values s′, t′ ∈
ZN and r′′, r′′′ ∈ ZN2 , generates a second pair
u′ = αs+s′βt+t′ , v′ = γs+s′rNr′′N and w′ =
γt+t′r′Nr′′′N and sends the triple 〈u′, v′, w′〉 to the
verifier.

2. The verifier challenges 0 or 1.

3. If 0, then the prover reveals s′, t′, r′′ and r′′′ . Now
the verifier checks whether u′ ?

= u αs′βt′ , v′ ?
= v

γs
′
r′′N and w′ ?

= w γt
′
r′′′N .

4. If 1, then the prover reveals s+ s′, t+ t′ and r · r′.
Now the verifier checks whether u′ ?

= αs+s′βt+t′ ,
v′

?
= γs+s′(r · r′′)N and w′ ?

= γt+t′(r′ · r′′′)N .

If two different values s or t were used in constructing
u, v and w, then this will be detected with probability 1

2
unless the prover can solve the discrete log problem. This
process is repeated several times until the probability of
not being detected is below a certain value.

Note that during the election for each vote just a com-
mitment is published while the corresponding s and t
to open it are send towards a private channel. Thus
this proof also prevents attacks where a malicious voter
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copies a vote from the bulletin board and tries to cast it
in a modified form (like explained in [10]).

In this proof, the prover is the browser software, and
the verifier is the Helios server.

Encoding of the votes

We represent the vote for candidate i as a vector
〈t1, ..., tl〉 which is 0 everywhere, except in the ith po-
sition, where it equals 1. Each entry is encoded indi-
vidually using the encoding scheme presented above, i.e.
〈ui, vi, wi〉 = u(j).

To avoid cheating it must be verified that the encoded
vector indeed represents a vote. For this two things need
to be verified.

1. It must be shown that each ti is either 0 or 1. This
can be proven using a straightforward modification
of the protocol presented in figure 1 of [11], which
proves that a Pedersen commitment is either −1 or
1. For details on the modified protocol, please con-
sult Figure 4 in the Appendix.

2. It must be shown that only one ti equals 1. This can
be done by giving a proof that

∑l
i=1 ti = 1, which

is achieved by showing knowledge of the discrete
log of

∏l
i=1 uiβ

−1 with respect to α using a stan-
dard Schnorr protocol.

Both proofs are published on the bulletin board and can
be verified by any third party. Note that although some
of the proofs described are interactive, a non-interactive
version can easily be obtained using the Fiat-Shamir
technique [15].

3.2 Protocol based on homomorphic tally-
ing

Parentheses are used to refer to values belonging to a par-
ticular voter.

Phase 1: System initialization

1. During the election setup, the Helios server com-
putes the system’s parameters G,α, β by using a
trusted random beacon. Further, like in the tradi-
tional Helios approach, in threshold fashion a secret
key sk is generated and the corresponding public
key pk is published.

Phase 2: The voter’s perspective

1. Voter j chooses a candidate, and enters her choice
in the JavaScript application. Her browser gener-
ates random decommitment values s1, . . . , sl, ran-

dom strings r1, . . . , rl and r′1, . . . , r
′
l and com-

putes 〈Enc(t1, s1, r1, r′1), . . . ,Enc(tl, sl, rl, r′l)〉 =
〈u(j), v(j), w(j)〉.

2. The voter can challenge the system by auditing the
encoded vote. The browser reveals the used random
decommitment values and the voter can verify the
correct encoding either by recalculating or by using
software provided by a trusted third party. An au-
dited ballot cannot be cast, so she is asked to fill out
a fresh ballot.

3. If the voter decides to cast the encoded vote, the
browser sends the encrypted decommitment values
v, the login, the password and the ciphertexts u
through a private channel to the Helios server. The
nature of this private channel will be discussed later
in Section 5.1.

Along with it the browser sends a proof that this
is a valid vote as explained in 3.1. This proof is
published together with u on the bulletin board.

Also, the browser must privately prove that the en-
crypted s and t it sends privately is consistent with
the decommitment value used to encoded the voting
decision. This can be accomplished by using the ZK
Proof of correct encoding described in Section 3.1.

4. (Individual verifiability) After the election is over,
the voter goes to the Helios bulletin board, types her
name or voter id, and verifies that u(j) is included
in the list of votes cast.

A schematic overview of this process is given in Fig-
ure 1.

Phase 3: Tallying and publishing the votes

Let there be l candidates and V voters, and let i ∈
{1 . . . l} range over all candidates and j ∈ {1 . . . V }
range over all voters. Then for each candidate i the fol-
lowing steps are performed:

1. The server computes v∗i =
∏

j vi(j) and w∗i =∏
j wi(j), decrypts s∗i =

∑
j si(j) and t∗i =∑

j ti(j) with the help of the key trustees and pub-
lishes the result on the Helios bulletin board.

2. The server computes u∗i =
∏

j ui(j)(mod q) and
publishes it.

3. Paillier is semantically secure.

A schematic overview of this process is given in Figure
2.
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Figure 1: Voter Perspective of the Vote Casting Process

Phase 4: Verification of the tally – universal verifia-
bility

For each vote cast, the ID of the voter and the value
uj = 〈u1(j), . . . , ul(j)〉 must appear on the Helios bul-
letin board. After the election, any person or entity with
sufficient resources can check the correctness of the tally,
as follows:

1. For each i compute u†i :=
∏

j ui(j) and check

whether u†i
?
= u∗i

2. Check whether u†i
?
= αs∗i βt∗i .

4 Assumptions and Properties of the Pro-
tocol

Our scheme relies on the following assumptions:

1. The election officials running the Helios server can-
not break the discrete log problem for the parame-
ters chosen before the elections ends;

2. There exists a private channel between the user’s
browser and the server;

3. No information about the vote, other than the en-
coding of the vote sent to the server and the receipt
to be given to the user, leaves the user’s browser;

Based on these assumptions our scheme offers the same
properties of Helios, but with everlasting privacy towards
the public:

Correctness The correctness of the vote count is guar-
anteed, unless the authorities can break the discrete
log problem in G before the election ends. This
statement is true even if the server and key trustees
conspire. This is a consequence of the fact that Ped-
ersen commitment are used to encode votes.

Individual Verifiability In the first place, each voter
can verify the ballot construction because of step
2.2, which allows her to challenge the browser ap-
plication to verify the encoding. If each voter veri-
fies one encoding, then a cheating server has proba-
bility of 1/2 of being caught for each wrongly con-
structed ballot. In addition, each voter is able to
verify that her vote appears on the Helios bulletin
board. As presented in Phase 2.4, the voter sends a
vector u(j) to the server which publishes its values
on the bulletin board, together with a cryptographic
hash used for comparison. Immediately after the
server publishes these values, the voter can verify if
her vector u(j) is the same on the bulletin board by
comparing the hashes.

Universal Verifiability Any observer can verify that the
tally was calculated correctly. This follows immedi-
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Figure 2: A schematic overview of the tallying of the results by the server. Here D(·) stands for Paillier decryption
(with help from the trustees).

ately from the correctness and from the checks de-
scribed in Steps 4.1 and 4.2. Once the correctness of
u∗i has been verified, and it has been confirmed that
s∗i is the decommitment value of the encoded value
t∗i , the election result t∗i must be correct (under the
DL assumption).

Everlasting Privacy towards the public The protocol
provides everlasting privacy towards the public.
Pedersen commitments are perfectly hiding. So an
encoded vote published on the bulletin board can be
any voting decision with equal probability. Further,
all proofs presented to the voter in order to verify
the correctness are witness hiding so do not reveal
any information about the used decommitment val-
ues. Therefore in order to reveal the voting decision
cast by a voter an attacker needs additional infor-
mation besides the data published by the electronic
voting system.

5 Discussion

5.1 Private channel between the voter and
the authority

In the current implementation of Helios, all that a future
adversary has to do is to sit and wait until the underly-
ing homomorphic encryption scheme used has been bro-
ken, then obtain a copy of the bulletin board from some
web archive and perform the computations to decrypt
the votes. That is, currently attacks on Helios can be
mounted retro-actively to recover all the votes.

In contrast, in the protocol proposed here, just obtain-
ing a copy of the bulletin board is not enough to recon-
struct the ballots cast. For each vote it wants to recover,
the adversary has to intercept the communication be-
tween the voter and server at the time this takes place, re-
quiring a much larger effort on behalf of the adversary. In
addition, the cryptographic algorithm used to protect the
communication between the voter and the server needs
to be broken. But unlike in the original Helios scheme,
the voter and the server are no longer restricted to using
homomorphic encryption; they can superencrypt these
messages using any algorithm available to them. In par-
ticular, to get everlasting privacy they can use a one-time
pad, though this implies that the parties need to exchange
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a key through a secure channel. In some settings this
is perfectly doable; for instance, a random key can be
printed as a two-dimensional barcode on a piece of paper
which can be handed to the voter personally, or sent by
registered mail.

Of course, if implementing a private channel is not
considered necessary, not practical or too expensive, then
the parties can use any public key algorithm such as
McEliece. In this case the system does not offer uncon-
ditional privacy, but now this is a pragmatic choice made
by the two parties, depending on the circumstances. The
current Helios implementation does not offer such flexi-
bility; its privacy is inherently limited by the homomor-
phic encryption algorithm used.

5.2 Solution with more than one authority

Though it is possible to generalize this scheme to multi-
ple authorities, where votes are split and send to several
authorities the advantage is not that clear. One would ob-
tain several authorities and several key trustees (as in the
single authority scheme), with subtle variations of com-
putational and unconditional privacy. However, if this is
really a concern one may be better off implementing the
CFSY protocol which is based on Pedersen secret shar-
ing [27, 18, 19].

Multiple authorities may seem desirable from a cryp-
tographic point of view but they are not from a practical
point of view. In many of the organization where Helios
was applied, having one well-configured server running
reliably is hard enough. Having several is difficult, and
is often perceived as a serious possibility of failure.

For this reason, and because in many election where
Helios is used voters are not so much worried about their
vote being leaked through election authorities, we only
present the single authority solution.

5.3 Protocol based on mix-nets

Encoding of the votes

Using the mix-net approach no special format of the ci-
phertext is needed because the original Helios ballot en-
coding can be adapted. In the following, t refers to voting
decision and we do not address how this value is gener-
ated. Encoding the voter’s choice we obtain h = αsβt.

Phase 1: System initialization

1. During the election setup, the Helios server com-
putes the system’s parameters G,α and β by using
a trusted random beacon. Further, a secret key sk is
generated (in threshold fashion) and the correspond-
ing public key pk is published.

Phase 2: The voter’s perspective

1. Voter j fills in the electronic ballot paper. After that,
the browser generates random number s and com-
putes the ciphertext u(j) = αsβt to the voting de-
cision t.

2. The JavaScript application has to prove that the en-
coded voting decision equals the voter’s choice. In
this case the same verification process can be per-
formed as described in Section 3.2 for the homo-
morphic tallying approach.

3. If the voter decides to cast her vote, the ciphertext
is sent to the Helios server along with the encrypted
decommitment value (s), and vote (t), login, pass-
word, and the ZK Proof of correct encoding, as de-
scribed in Section 3.1.

4. (Individual verifiability) After the poll closed the
Helios bulletin board publishes the received votes
and each voter can verifies that the ciphertext u(j)
is listed under the cast votes.

Phase 3: Tallying and publishing the votes

Before the votes cast can be decrypted and tallied it
is necessary to break the link between the voters and
their ciphertext. To accomplish this, a mix-net like
proposed in [14] with n mixes A1, A2, . . . An can be
used. Let there be V voters, the first mix A1 down-
loads all V published votes {u(j)}Vj=1 and receives
the encrypted decommitment values {v(j)}Vj=1 and vote
{w(j)}Vj=1 by the Helios sever. A1 will recode its input
set {〈u(j), v(j), w(j)〉}Vj=1 as follows:

1. A1 generates random value sA1(j) and calculates
uA1(j) = u(j) αsA1(j) = αs(j)+sA1(j)βt(j),
vA1(j) = v(j)E(sA1(j)) = E(s(j) + sA1(j)) and
wA1(j) = w(j)E(0) = E(t(j) + 0).

2. A1 puts the tuples in numerical order what
defines a permutation πA1 between the in-
put set {〈u(j), v(j), w(j)〉}Vj=1 and output set
{uA1(k), vA1(k), wA1(k)}Vk=1 with k = πA1(j).

3. The recoded voting decisions uA1(k) are published
on the Helios bulletin board while the correspond-
ing set of encrypted decommitment values vA1(k)
and votes wA1(k) is sent to mix A2 via a private
channel.

4. The next mix A2 process its input the same way
until the output of the final mix An gives the output
of the mix-net.

9



Figure 3: Overview over Mixing and Verification Process Using a Mix-net with Three Mixes

5. The final output of the mix-net consisting of the
triple {〈uAn(l), vAn(l), wAn(l)〉}Vl=1 is published
on the Helios bulletin board.

6. With the help of the key trustees first the keys
{v(l)}Vl=1 and following the votes {w(l)}Vl=1 are de-
crypted and published.

7. Finally the resulting filled ballots (t) are evaluated
and tallied.

An overview over this process for three mixes is given in
Figure 3.

Phase 4: Verification of the shuffling process and the
tally – universal verifiability

1. Each mix Am provides a proof that the published
output uAm is a correct recoding and permutation
of the input uAm−1, downloaded from the Helios
bulletin board. This can easily be accomplished by
a ZK proof (see for instance [31]) showing that Am
has knowledge of

(a) permutation πAm

(b) the values used to recode uAm−1 to uAm

2. Each mix Am proves privately to the verifiers
that the output vAm and wAm is a correct re-
encryption and permutation of the input vAm−1 and
andwAm−1, sent byAm− 1. FurtherAm privately
proves for each triple 〈u, v, w〉 that the decommit-
ment values are consistent, more precisely, that the
randomness s and vote t in u are the same values en-
crypted in v and w. This can be shown by proving
knowledge of

(a) permutation πAm

(b) the value sAm−1 used to change the decom-
mitment value in uAm−1 and vAm−1

(c) the randomness used to re-encrypt vAm−1 and
wAm−1.

A more detailed description can be found in [14].

3. After the tallying process the Helios server provides
a proof that the votes have been encrypted correctly.

(a) Everyone can verify that the votes were de-
coded correctly because the “blinding” factors
are revealed.

5.4 Improvements for booth voting

The implementation of Pedersen commitments for He-
lios showed that just minor changes on an eVoting system
using homomorphic public key cryptography are neces-
sary to provide everlasting privacy towards the public.
Especially for legally binding elections this property is
very important. The voters can elect their representa-
tives free and without any influence by others if they be-
lieve that their vote remains secret. Knowing that the
voting decision will be disclosed one day might affect
the voter’s behavior and the election outcome.

Thus, these results are also of interest for legally bind-
ing elections held in polling stations. By doing just small
changes on the ballot generation, authentication, and tal-
lying process everlasting privacy can be implemented
also for electronic voting systems like Prêt à Voter [30],
Scratch & Vote [4], and MarkPledge [2]. However before
proposing such a solution it has to be evaluated how the
encrypted decommitment values are stored and managed
in the back end and which information is printed on the
ballot paper. However, we believe that elaborating such
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improvements are reasonable and plan to work on this in
the future.

Conclusion

In the voting literature there are many protocols where
the tallying is based on homomorphic encryption, lead-
ing to computational privacy. In this paper we showed
that by using an unconditional homomorphic commit-
ment combined with homomorphic encryption over a pri-
vate channel, it is possible to enhance the CGS protocol
used by Helios to obtain everlasting privacy. This trans-
formation is general; it has already been applied to ob-
tain mix networks with everlasting privacy towards the
public, which, again, has applications to voting, as we
showed for Helios in particular.

Though we recognize that still a lot of work needs to
be done, especially with respect to efficiency, we think
that by applying our ideas it might be possible to trans-
form other voting protocols, and we strongly hope it rep-
resents the beginning of a paradigm shift towards ever-
lasting privacy for voting protocols in general.
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Figure 4: Proof of Validity of Ciphertext B; Compare to [11]
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