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Abstract

Writing data to a page not present in the file-system

page cache causes the operating system to synchronously

fetch the page into memory first. Synchronous page fetch

defines both policy (when) and mechanism (how), and al-

ways blocks the writing process. Non-blocking writes

eliminate such blocking by buffering the written data

elsewhere in memory and unblocking the writing pro-

cess immediately. Subsequent reads to the updated page

locations are also made non-blocking. This new han-

dling of writes to non-cached pages allow processes to

overlap more computation with I/O and improves page

fetch I/O throughput by increasing fetch parallelism. Our

empirical evaluation demonstrates the potential of non-

blocking writes in improving the overall performance of

systems with no loss of performance when workloads

cannot benefit from it. Across the Filebench write work-

loads, non-blocking writes improve benchmark through-

put by 7X on average (up to 45.4X) when using disk

drives and by 2.1X on average (up to 4.2X) when using

SSDs. For the SPECsfs2008 benchmark, non-blocking

writes decrease overall average latency of NFS opera-

tions between 3.5% and 70% and average write latency

between 65% and 79%. When replaying the MobiBench

file system traces, non-blocking writes decrease average

operation latency by 20-60%.

1 Introduction

Caching and buffering file data within the operating sys-

tem (OS) memory is a key performance optimization that

has been prevalent for over four decades [7, 43]. The

OS caches file data in units of pages, seamlessly fetching

pages into memory from the backing store when neces-

sary as they are read or written to by a process. This ba-

sic design has also carried over to networked file systems

whereby the client issues page fetches over the network

to a remote file server. An undesirable outcome of this

design is that processes are blocked by the OS during the

page fetch.

While blocking the process for a page fetch cannot be

avoided in case of a read to a non-cached page, it can

be entirely eliminated in case of writes. The OS could

buffer the data written temporarily elsewhere in memory

∗Work done while at Florida International University.

and unblock the process immediately; fetching and up-

dating the page can be performed asynchronously. This

decoupling of page write request by the application pro-

cess from the OS-level page update allows two crucial

performance enhancements. First, the process is free to

make progress without having to wait for a slow page

fetch I/O operation to complete. Second, the parallelism

of page fetch operations increases; this improves page

fetch throughput since storage devices offer greater per-

formance at higher levels of I/O parallelism.

In this paper, we explore new design alternatives and

optimizations for non-blocking writes, address consis-

tency and correctness implications, and present an imple-

mentation and evaluation of these ideas. By separating

page fetch policy from fetch mechanism, we implement

and evaluate two page fetch policies: asynchronous and

lazy, and two page fetch mechanisms: foreground and

background. We also develop non-blocking reads to re-

cently written data in non-cached pages.

We implemented non-blocking writes to files in the

Linux kernel. Our implementation works seamlessly in-

side the OS requiring no changes to applications. We

integrate the handling of writes to non-cached file data

for both local file systems and network file system clients

within a common design and implementation framework.

And because it builds on a generic design, our implemen-

tation provides a starting point for similar implementa-

tions in other operating systems.

We evaluated non-blocking writes using several file

system workloads. Across Filebench workloads that

perform writes, non-blocking writes improve average

benchmark throughput by 7X (up to 45.4X) when us-

ing disk drives and by 2.1X (up to 4.2X) when using

SSDs. For the SPECsfs2008 benchmarkworkloads, non-

blocking writes decrease overall average latency of NFS

operations between 3.5% and 70% and average write la-

tency between 65% and 79% across configurations that

were obtained by varying the proportion of NFS write

operations and NFS read operations. When replaying the

MobiBench file system traces, non-blocking writes de-

crease average operation latency by 20-60%. Finally, the

overhead introduced by non-blocking writes is negligi-

ble with no loss of performance when workloads cannot

benefit from it.
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Figure 1: Anatomy of a write. The first step, a write ref-

erence, fails because the page is not in memory. The process

resumes execution (Step 5) only after the blocking I/O opera-

tion is completed (Step 4). The dash-dotted arrow represents a

slow transition.

2 Motivating Non-blocking Writes

Previous studies that have analyzed production file sys-

tem workloads report a significant fraction of write ac-

cesses being small or unaligned writes [11, 30, 39, 44].

Technology trends also indicate an increase in page fetch

rates in the future. On the server end, multi-core systems

and virtualization now enable more co-located work-

loads leading to larger memory working sets. As the

effective memory working sets [8, 25] of workloads

continue to grow, page fetch rates also continue to in-

crease. A host of flash-based hybrid memory systems

and storage caching and tiering systems have been in-

spired, and find relevance in practice, because of these

trends [3, 4, 13, 16, 17, 18, 22, 24, 35, 40, 45, 55, 57]. On

the personal computing end, newer data intensive desk-

top/laptop applications place greater I/O demands [20].

In mobile systems, page fetches have been found to af-

fect the performance of the data-intensive applications

significantly [23]. Second, emerging byte-addressable

persistent memories can provide extremely fast durabil-

ity to applications and systems software [6, 10, 17, 27,

28, 42, 54, 56, 58]. Recent research has also argued

in favor of considering main memory in smartphones

as quasi non-volatile [32]. When used as file system

caches [29, 32], such memories can make the durabil-

ity of in-memory data a non-blocking operation. Elim-

inating any unwanted blocking in the front end of the

durability process, such as fetch-before-write, becomes

critical.

2.1 The fetch-before-write problem

Page fetch behavior in file systems is caused because

of the mismatch in data access granularities: bytes ac-

cessed by the application, and pages accessed from stor-

age by the operating system. To handle write refer-

ences, the target page is synchronously fetched before

the write is applied, leading to a fetch-before-write re-

quirement [34, 51]. This is illustrated in Figure 1. This
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Figure 2: A non-blocking write employing asyn-

chronous fetch. The process resumes execution (Step 5) af-

ter the patch is created in memory while the originally blocking

I/O completion is delayed until later (Step 6). The dash-dotted

line represents a slow transition.

Waiting I/O: Thinking:

Time
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Figure 3: Page fetch asynchrony with non-blocking

writes. Page P , not present in the page cache, is written to.

The application waits for I/O completion. A brief thinktime is

followed by a read toP to a different location than the one writ-

ten to earlier. With non-blocking writes, since the write returns

immediately, computation and I/O are performed in parallel.

blocking behavior affects performance since it requires

fetching data from devices much slower than main mem-

ory. Today, main memory accesses can be performed

in a couple of nanoseconds whereas accesses to flash

drives and hard drives can take hundreds of microsec-

onds to a few milliseconds respectively. We confirmed

the page fetch-before-write behavior for the latest open-

source kernel versions of BSD (all variants), Linux,

Minix, OpenSolaris, and Xen.

2.2 Addressing the fetch-before-write problem

Non-blocking writes eliminate the fetch-before-write re-

quirement by creating an in-memory patch for the up-

dated page and unblocking the process immediately.

This modification is illustrated in Figure 2.

2.2.1 Reducing Process blocking

Processes block when they partially overwrite one or

more non-cached file pages. Such overwrites may be of

any size as long as they are not perfectly aligned to page

2
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Workload Description

ug-filesrv Undergrad NFS/CIFS fileserver

gsf-filesrv Grad/Staff/Faculty NFS/CIFS fileserver

moodle Web & DB server for department CMS

backup Nightly backups of department servers

usr1 Researcher 1 desktop

usr2 Researcher 2 desktop

Facebook MobiBench Facebook trace [14]

twitter MobiBench twitter trace [14]

Table 1: Workloads and descriptions.
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Figure 4: Breakdown of write operations by amount

of page data overwritten. Each bar represents a different

trace and the number above each bar is the percentage of write

operations than involve at least one partial page overwrite.

boundaries. Figure 3 illustrates how non-blocking writes

reduce process blocking. Previous studies have reported

about the significant fraction of small or unalignedwrites

in production file system workloads [11, 30, 39, 44].

However, little is known about partial page overwrite be-

havior. To better understand the prevalence of such file

writes in production workloads, we developed a Linux

kernel module that intercepts file system operations and

reports sizes and block alignment for writes. We then

analyzed one day’s worth of file system operations col-

lected from several production machines at Florida Inter-

national University’s Computer Science department. Be-

sides these we also analyzed file system traces of much

shorter duration (two minutes each) available in Mo-

biBench [14, 21]. Table 1 provides a description of all

the traces we analyzed.

Figure 4 provides an analysis of the write traffic on

each of these machines. On an average, 63.12% of the

writes involved partial page overwrites. Depending on

the size of the page cache, these overwrites could re-

sult in varying degrees of page fetches prior to the page

update. The degree of page fetches also depends on

the locality of data accesses in the workload wherein a

write may follow a read in short temporal order. To ac-

count for access locality, we refined our estimates using

a cache simulator to count the number of writes that ac-
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Figure 5: Non-blocking writes as a percentage of total

write operations when varying the page cache size.

tually lead to page fetches at various memory sizes. Such

writes can be made non-blocking. The cache simulator

used a modified Mattson’s LRU stack algorithm [33] and

uses the observation that a non-blocking write at a given

LRU cache size would also be a non-blocking write at

all smaller cache sizes. Modifications to the original al-

gorithm involved counting all partial page overwrites to

pages not in the cache as non-blocking writes. Figure 5

presents the percentage of total writes that would ben-

efit from non-blocking writes for the workloads in Ta-

ble 1. For a majority of the workloads, this value is at

least 15% even for a large page cache of size 100GB.

A system that can make such writes non-blocking would

make the overall write performance less dependent on

the page cache capacity.

2.2.2 Increasing Page fetch parallelism

Processes that access multiple pages not resident in

memory during their execution are blocked by the op-

erating system, once for each page while fetching it.

As a result, operating systems end up serializing page

fetches for accesses that are independent of each other.

With non-blocking writes, the operating system allows

a process to fetch independent pages in parallel taking

better advantage of the available I/O parallelism at the

device level. Figure 6 depicts this improvement graph-

ically. Higher levels of I/O parallelism lead to greater

device I/O throughput which ultimately improves page

fetch throughput for the application.

2.2.3 Making Durable Writes Fast

Next-generation byte-addressable persistent memories

are likely to be relatively small compared to today’s

block-based persistent stores, at least initially. Main

memory in today’s smartphones has been argued to be

quasi non-volatile [32]. When such memories are used

3
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Figure 6: Page fetch parallelism with non-blocking

writes. Two non-cached pages, P and Q, are written in se-

quence and the page fetches get serialized by default. With

non-blocking writes, P and Q get fetched in parallel increas-

ing device I/O parallelism and thus page fetch throughput.

as a persistent file system cache [29, 32], the containing

devices have the ability to provide extremely fast durabil-

ity (i.e., sync operations), a function that would typically

block process execution. In such systems, any blocking

in the front end of the durability mechanism, such as the

fetch-before-write, becomes detrimental to performance.

Since non-blocking writes would allow updates without

having to fetch the page, it represents the final link in ex-

tremely fast data durability when byte addressable per-

sistent memories become widely deployed.

2.3 Addressing Correctness

With non-blocking writes, the ordering of read and write

operations within and across processes in the system are

liable to change. As we shall elaborate later (§3.3),

the patch creation and patch application mechanisms in

non-blocking writes ensure that the ordering of causally

dependent operations is preserved. The key insights that

we use are: (i) reads to recent updates can be served cor-

rectly using the most recently created patches, (ii) reads

that block on page-fetch are allowed to proceed only af-

ter applying all the outstanding patches, and (iii) reads

and writes that are independent and issued by the same

or different threads can be reordered without loss of cor-

rectness.

Another potential concern with non-blocking writes is

data durability. For file data, we observe that the asyn-

chronous write operation only modifies volatile memory

and the OS makes no guarantees that the modifications

are durable. With non-blocking writes, synchronous

writes (on account of sync/fsync or the periodic page-

flusher daemon) block to wait for the required fetch, ap-

ply any outstanding patches, and write the page to stor-

age before unblocking the process. Thus, the durabil-

ity properties of the system remain unchanged with non-

blocking writes.
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Figure 7: Process and page state diagram for page

fetch with blocking writes.

3 Non-blocking Writes

The operating system services an application write as de-

picted in Figure 7. In the Check Page state, it looks for

the page in the page cache. If the page is already in mem-

ory (as a result of a recent fetch completion), it moves to

theUpdate Page state which also marks the page as dirty.

If the page is not in memory, it issues a page fetch I/O

and enters the Wait state, wherein it waits for the page

to be available in memory. When the I/O completes, the

page is up-to-date and ready to be unlocked (states Up-

to-date and Accessible in the page state diagram). In the

Update Page state, the OS makes the page accessible. Fi-

nally, control flow returns to the application performing

the page write.

3.1 Approach Overview

The page fetch process blocks process execution, which

is undesirable. Non-blocking writes work by buffering

updates to non-cached pages by creating patches in OS

memory to be applied later. The basic approach modifies

the page fetch path as illustrated in Figure 8. In contrast

to current systems, non-blockingwrites eliminate the I/O

Wait state that blocks the process until the page is avail-

able in memory. Instead, a non-blocking write returns

immediately once a patch of the update is created and

queued to the list of pending page updates. non-blocking

writes add a new state in the page state,Outdated, that re-

flects the state of the page after it is read into memory but

before pending patches are applied. The page transitions

into the Up-to-date state once all the pending patches are

applied.

Non-blocking writes alter write control flow, thus af-

fecting reads to recently written data. Further, they re-

quire managing additional cached data in the form of

patches. The rest of this section discusses these details

in the context of general systems design as well as im-

plementations specific to Linux.

4
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Figure 8: Process and page state diagram for page

fetch with non-blocking writes.

3.2 Write Handling

Operating systems allow writes to file data via two com-

mon mechanisms: supervised system calls and unsuper-

vised memory mapped access.

To handle supervised writes, the OS uses the system

call arguments — the address of the data buffer to be

written, the size of the data, and the file (and implicitly,

the offset) to write to — and resolves this access to a data

page write internally. With non-blocking writes, the OS

extracts the data update from the system call arguments,

creates a patch, and queues it for later use. This patch is

applied later when the data page is read into memory.

Unsupervised file access can be provided by memory

mapping a portion of a file to the process address space.

In our current design, memory mapped access are han-

dled as in current systems by blocking the process to ser-

vice the page fault.

3.3 Patch Management

We now discuss how patches are created, stored in the

OS, and applied to a page after it is fetched into memory.

3.3.1 Patch Creation

A patch must contain the data to be written along with its

target location and size. Since commodity operating sys-

tems handle data at the granularity of pages, we chose

a design where each patch will apply to a single page.

Thus, we abstract an update with a page patch data struc-

ture that contains all the information to patch and bring

the page up-to-date. To handle multiple disjoint over-

writes to the same page, we implement per-page patch

queues wherein page patches are queued and later ap-

plied to the page in FIFO order. Consequently, sharing

pages via page tables or otherwise is handled correctly.

This is possible since operating systems maintain a one-

to-one mapping of pages to physical memory frames

(e.g., struct page in Linux or struct vm page in

OpenBSD). When new data is adjacent or overwrites ex-

isting patches, it is merged into existing patches accord-

ingly. This makes patch memory overhead and patch ap-

plication overhead proportional to the number of page

bytes changed in the page instead of the number of bytes

written to the page since the page was last evicted from

memory.

3.3.2 Patch Application

Patch application is rather straightforward. When a page

is read in either via a system call induced page fetch or

a memory-mapped access causing a page fault, the first

step is to apply outstanding patches, if any, to the page

to bring it up-to-date before the page is made accessi-

ble. Patches are applied by simply copying patch data to

the target page location. Patch application occurs in the

bottom-half interrupt handling of the page read comple-

tion event (further discussed in §5). Once all patches are

applied, the page is unlocked which also unblocks the

processes waiting on the page, if any.

3.4 Non-blocking Reads

Similar to writes, reads can be classified as supervised

and unsupervised as well. Reads to non-cached pages

block the process in current systems. With non-blocking

writes, a new opportunity to perform non-blocking reads

becomes available. Specifically, if the read is service-

able from one of the patches queued on the page, then

the reading process can be unblocked immediately with-

out incurring a page fetch I/O. This occurs with no loss

of correctness since the patch contains the most recent

data written to the page. The read is not serviceable if

any portion of the data being requested is not contained

within the patch queue. In such a case, the reading pro-

cess blocks for the page to be fetched. If all data be-

ing requested is contained in the patch queue, the data

is copied into the target buffer and the reading process

is unblocked immediately. For unsupervised reads, our

current design blocks the process for the page fetch in all

cases.

4 Alternative Page Fetch Modes

Let us consider the page fetch operation issued in Step

3 when performing a non-blocking write as depicted in

Figure 2. This operation requires a physical memory al-

location (for the page to be fetched) and a subsequent

asynchronous I/O to fetch the page so that the newly cre-

ated patch can be applied to the page. However, since

blocking is avoided, process execution is not dependent

on the page being available in memory. This raises the

question: can page allocation and fetch be deferred or

even eliminated? Page fetch deferral and elimination al-

low reduction and shaping of memory consumption and

page fetch I/O to storage. While page fetch deferral is

opportunistic, page fetch elimination is only possible if

the patches created are sufficient to overwrite the page

entirely or if page persistence becomes unnecessary. We

5
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now explore the page fetch modes that become possible

with non-blocking writes.

4.1 Asynchronous Page Fetch

In this mode, page fetch I/O is queued to be issued at

the time of the page write. The appeal of this approach

is its simplicity. Since the page is brought into memory

in a timely fashion similar to the synchronous fetch, it

is transparent to timer-based durability mechanisms such

as dirty page flushing [2] and file system journaling [19].

Asynchronous page fetch defines policy. However, its

mechanism may involve additional blocking prior to is-

suing the page fetch. We discuss two alternative page

fetch mechanisms that highlight this issue.

1. Foreground Asynchronous Page Fetch (NBW-

Async-FG). The page fetch I/O is issued in the con-

text of process performing the write to the file page.

Our discussion in previous sections was based on this

mechanism. Although the process does not wait for the

completion of the data fetch, issuing the fetch I/O for

the data page may itself involve retrieving additional

metadata pages to locate the data page if these meta-

data pages are not cached in OS memory. If so, the

writing process would have to block for the necessary

metadata fetches to complete, thereby voiding most of

the benefits of the non-blocking write.

2. Background Asynchronous Page Fetch (NBW-

Async-BG). The writing process moves all work nec-

essary to issue the page fetch to a different context by

using kernel worker threads. This approach eliminates

any blocking of the writing process owing to metadata

misses; a worker thread blocks for all fetches while the

issuing process continues its execution.

Synchronous fetch is a valuable improvement. However,

it consumes system resources, allocating systemmemory

for the page to be fetched and using storage I/O band-

width to fetch the page.

4.2 Lazy Page Fetch (NBW-Lazy)

When a process writes to a non-cached data page, its ex-

ecution is not contingent on the page being available in

memory. With lazy page fetch, the OS delays the page

fetch until it becomes unavoidable. Lazy page fetch has

the potential to further reduce the system’s resource con-

sumption. Figure 9 illustrates this alternative.

Lazy page fetch creates new system scenarios which

must be considered carefully. If a future page read can-

not be served using the currently available patches for

the non-cached page, the page fetch becomes unavoid-

able. In this case, the page is fetched synchronously and

patches are applied first before unblocking the reading

process. If the page gets overwritten in its entirety or if

page persistence becomes unnecessary for another rea-
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Figure 9: A non-blocking write employing lazy fetch.

The process resumes execution (Step 4) after the patch is cre-

ated in memory. The Read operation in Step 5 optionally oc-

curs later in the execution while the originally blocking I/O is

optionally issued and completes much later (Step 8). The dash-

dotted arrow represents a slow transition.

son (e.g., the containing file is deleted), the original page

fetch is eliminated entirely.

Page data durability can become necessary in the fol-

lowing instances: (i) synchronous file write by an appli-

cation, (ii) periodic flushing of dirty pages by the OS [2],

or (iii) ordered page writes to storage as in a journal-

ing file system [19, 41]. In all these cases, the page is

fetched synchronously before being flushed to the back-

ing store. Lastly, non-blocking writes are not engaged

for metadata pages which use the conventional durability

mechanisms. Durability related questions are discussed

further in §5.2.

5 Implementation

Non-blocking writes alter the behavior and control flow

of current systems. We present an overview of the im-

plementation of non-blocking writes and discuss details

related to how it preserves system correctness.

5.1 Overview

We implemented non-blocking writes for file data in

the Linux kernel (version 2.6.34.17) by modifying the

generic virtual file system (VFS) layer. Unlike the con-

ventional Linux approach, all handling of fetch comple-

tion (such as applying patches, marking the page dirty,

processing a journaling transaction, and unlocking the

page) occurs in the bottom-half I/O completion handler.

5.2 Handling Correctness

OS-initiated Page Accesses. Our implementation does

not implement non-blocking writes for accesses (writes

and reads) to un-cached pages initiated internally by the

OS. These include file system metadata page updates,

and updates performed by kernel threads. This imple-

mentation trivially provides the durability properties ex-

pected by OS services to preserve semantic correctness.

6



USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  157

Journaling File Systems. Our implementation of non-

blocking writes preserves the correctness of journaling

file systems by allowing the expected behavior for vari-

ous journaling modes. For instance, non-blocking writes

preserve ext4’s ordered mode journaling invariant that

data updates are flushed to disk before transactions con-

taining related metadata updates. Metadata transactions

in ext4 do not get processed until after the related data

page is fetched into memory, outstanding patches are ap-

plied, the page is marked dirty, and dirty buffers added

to the transaction handler. Thus, all dirty data pages re-

lated to a metadata transaction are resident in memory

and flushed to disk by ext4’s ordered mode journaling

mechanism prior to committing the transaction.

Handling Read-Write Dependencies. While a non-

blocking write is being handled within the operating sys-

tem, multiple operations such as read, prefetch, syn-

chronous write, and flush, can be issued to the page in-

volved. Operating systems carefully synchronize these

operations to maintain consistency and return only up-to-

date data to applications. Our implementation respects

the Linux page locking protocol. A page is locked af-

ter it is allocated and before issuing a fetch for it. As

a result, kernel mechanisms such as fsync and mmap are

also supported correctly. These mechanisms block on the

page lock which becomes available only after the page is

fetched and patches applied before proceeding to operate

on the page. When delayed page fetch mechanisms (as

in NBW-Async-BG and NBW-Lazy) are used, an NBW

entry for the page involved is added in the page cache

mapping for the file before the page is allocated. This

NBW entry allows for locking the page to maintain the or-

dering of page operations. When necessary (e.g., a sync),

pages indexed as NBW get fetched which in turn involves

acquiring the page lock, thus synchronizing future op-

erations on the page. The only exception to such page

locking is writing to a page already in the non-blocking

write state; the write does not lock the page but instead

queues a new patch.

Ordering of Page Updates. Non-blocking writes may

alter the sequence in which patches to different pages

get applied since the page fetches may complete out-of-

order. Non-blocking writes only replace writes that are

to memory that are not guaranteed to be reflected to per-

sistent storage in any particular sequence. Thus, ordering

violations in updates of in-memory pages are crash-safe.

Page Persistence and Syncs. If an application would

like explicit disk ordering for memory page updates, it

would execute a blocking flush operation (e.g., fsync)

subsequent to each operation. The flush operation causes

the OS to force the fetch of any page indexed as NBW even

if it has not been allocated yet. The OS then obtains the

page lock, waits for the page fetch, and applies any out-

standing patches, before flushing the page and returning

control to the application. Ordering of disk writes are

thus preserved with non-blocking writes.

Handling of disk errors. Our implementation changes

the semantics of the OS with respect to notification of

I/O errors when handling writes to non-cached pages.

Since page fetches on writes are done asynchronously,

disk I/O errors (e.g., EIO returned for the UNIX write

system call) during the asynchronous page fetch oper-

ation would not get reported to the writing application

process. Any action that the application was designed to

take based on the error reported would not be performed.

Semantically, the application write was a memory write

and not to persistent storage; an I/O error being reported

by current systems is an artifact of the fetch-before-write

design. With non-blocking writes, if the write were to be

made persistent at any point via a flush issued by the ap-

plication or the OS, any I/O errors during page flushing

would be reported to the initiator.

Multi-core and Kernel Preemption. Our implementa-

tion fully supports SMP and kernel preemption. For a

given non-cached page, the patch creation mechanism

(when processing the write system call) can contend with

the patch application mechanism (when handling page

fetch completion). Our implementation uses a single ad-

ditional lock to protect a patch queue from simultaneous

access.

6 Evaluation

We address the following questions:

(1)What are the benefits of non-blockingwrites for dif-

ferent workloads?

(2) How do the fetch modes of non-blockingwrites per-

form relative to each other?

(3) How sensitive are non-blockingwrites to the under-

lying storage type?

(4) How does memory size affect non-blocking writes?

We evaluate four different solutions. Blocking writes

(BW) is the conventional approach to handlingwrites and

uses the Linux kernel implementation. Non-blocking

writes variants include asynchronous mode using fore-

ground (NBW-Async-FG) and background (NBW-Async-

BG) fetch, and lazy mode (NBW-Lazy).

Workloads and Experimental Setup. We use the

Filebench micro-benchmark [50] to address (1), (2),

(3), and (4) using controlled workloads. We use

the SPECsfs2008 benchmark [49] and replay the Mo-

biBench traces [14] to further analyze questions (1) and

(2); the MobiBench trace replay also helps answer ques-

tion (3). The Filebench and MobiBench evaluations

were performed on a machine with Quad-Core 2.50 GHz

AMDOpteron(tm) 1381 processors, 8GB of RAM, a 500

7



158  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

0

5000

10000

15000

20000

25000

      

O
p

e
ra

ti
o

n
s
 /

 s
e

c
o

n
d

sequential-write

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

      

random-write

0

1000

2000

3000

4000

5000

6000

7000

      

random-readwrite

0

20

40

60

80

100

120

140

      

random-read

BW
NBW-Async-FG
NBW-Async-BG

NBW-Lazy

0

5000

10000

15000

20000

25000

128
256

512
1024

2048
4096

O
p

e
ra

ti
o

n
s
 /

 s
e

c
o

n
d

Size of operation (bytes)

0

5000

10000

15000

20000

25000

128
256

512
1024

2048
4096

Size of operation (bytes)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

128
256

512
1024

2048
4096

Size of operation (bytes)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

128
256

512
1024

2048
4096

Size of operation (bytes)

Figure 10: Performance for various Filebench personalities when varying the I/O size. The two rows correspond to

two different storage back-ends: hard disk-drive (top) and solid-state drive (bottom).

GB WDC WD5002ABYS hard disk-drive, a 32 GB In-

tel X25-E SSD, and Gigabit Ethernet, running Gentoo

Linux (kernel 2.6.34.14) . The above setup was also used

to run the client-side component of the SPECsfs2008

benchmark. Additionally, for the SPECsfs2008 bench-

mark, the NFS server used a 2.3 GHz Quad-Core AMD

Opteron(tm) Processor 1356, 7GB of RAM, 500 GB

WDC and 160 GB Seagate disks, and Gigabit Ethernet,

running Gentoo Linux (kernel 2.6.34.14). The 500GB

hard disk housed the root file system while the 160GB

hard disk stored the NFS exported data. The network

link between client and server was Gigabit Ethernet.

6.1 Filebench Micro-benchmark

For all the following experiments we ran five Filebench

personalities for 60 seconds using a 5GB pre-allocated

file after clearing the contents of the OS page cache.

Each personality represents a different type of workload.

The system was configured to use 4GB of main mem-

ory and memory used for patches was limited to 64MB,

a small fraction of DRAM, to avoid significantly affect-

ing the DRAM available to the workload and the OS. We

report the Filebench performance metric, the number of

operations per second. Each data-point is calculated us-

ing the average of 3 executions.

6.1.1 Performance Evaluation

We first examine the performance of Filebench when us-

ing a hard disk as the storage back-end. The top row

of Figure 10 depicts the performance for four Filebench

personalities when varying the size of the Filebench op-

eration. Each data point reports the average of 3 execu-

tions. Standard error of measurement was less than 3%

of the average for 96.88% of the cases and were less than

10% for the rest.

The first three plots involve personalities that perform

write operations. At 4KB I/O size, there is no fetch-

before-write behavior because every write results in an

overwrite of an entire page; thus, non-blocking writes

are not engaged and do not impose any overhead either.

For the sequential-write personality, performancewith

blocking writes (BW) depends on the operation size, and

is limited by the number of page misses per operation. In

the worst case, when the I/O size is equal to 2KB, every

two writes involve a blocking fetch. On average, the dif-

ferent non-blocking write modes provide a performance

improvement of 13-160% depending on the I/O size.

The second and third personalities represent random

access workloads. Random-write is a write-only work-

load, while random-readwrite is a mixed workload; the

latter uses two threads, one for issuing reads and the

other for writes. For I/O sizes smaller than 4KB, BW

provides a constant throughput of around 97 and 146

operations/sec for random-write and random-readwrite

personalities respectively. Performance is consistent re-

gardless of the I/O size because each operation is equally

likely to result in a page miss and fetch. Random-

readwrite performs better than random-write due to the

additional available I/O parallelism when two threads are

used. Further, for random-write, NBW-Async-FG pro-

vides 50-60% performance improvement due to reduced

blocking for page fetches of the process. However, this

improvement does not manifest for random-readwrite

wherein read operations incur higher latencies due to ad-

ditional blocking for pages with fetches in progress. In

both cases, the benefits of NBW-Async-FG are signifi-

cantly lower when compared to other non-blockingwrite

modes since NBW-Async-FG blocks on many of the ini-

8
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Figure 11: Memory sensitivity of Filebench. The I/O size was fixed at 2KB and patch memory limit was set to 64MB.

tial file-systemmetadata misses during this short-running

experiment.

In contrast, NBW-Async-BG unblocks the process im-

mediately while a different kernel thread blocks for the

metadata fetches as necessary. This mode shows a 6.7x-

29.5x performance improvement for random-write, de-

pending on the I/O size. These performance gains re-

duce as the I/O size increases since non-blocking writes

can create fewer outstanding patches to comply with the

imposed patch memory limit of 64MB. A similar trend

is observed for random-readwrite with performance im-

provements varying from 3.4x-19.5x depending on the

I/O size used. NBW-Lazy provides up to 45.4X perfor-

mance improvement over BW by also eliminating both

data and metadata page fetches when possible. When

the available patch memory limit is reached, writes are

treated as in BW until more patch memory is freed up.

The final two personalities, random-read and

sequential-read (not shown), are read-only workloads.

These workloads do not create write operations and the

overhead of using a non-blocking writes kernel is zero.

Non-blocking writes deliver the same performance as

blocking writes.

6.1.2 Sensitivity to system parameters

Our sensitivity analysis of non-blockingwrites addresses

the following specific questions:

(1) What are the benefits of non-blocking writes when

using different storage back-ends?

(2) How do non-blocking writes perform when system

memory size is varied?

Sensitivity to storage back-ends

To answer the first question, we evaluated non-blocking

writes using a solid state drive (SSD) based storage back-

end. Figure 10 (bottom row) presents results when run-

ning Filebench personalities using a solid state drive.

Each data point reports the average of 3 executions. Stan-

dard error of measurement was less than 2.25% of the

average in all cases except one for which it was 5%.

Performance trends with the sequential-write work-

load are almost identical to the hard disk counterparts

(top row in Figure 10) for all modes of non-blocking

writes. This is because non-blocking writes completely

eliminate the latency of accessing storage for every op-

eration in both systems. On the other hand, because the

SSD offers better throughput than the hard disk drive,

BW offers an increase in throughput for every size be-

low 4KB. In summary, the different non-blocking write

modes provide between 4% and 61% performance im-

provement depending on the I/O size.

For the random-write and random-readwrite work-

loads, the non-blocking write variants all improve per-

formance but to varying degrees. The SSD had signifi-

cantly lower latencies servicing random accesses relative

to the hard disk drive which allowed for metadata misses

to be serviced much quicker. The efficiency of NBW-

Async-FG relative to BW is further improved relative to

the hard disk system and it delivers 188% and 117% per-

formance improvement for random-write and random-

readwrite respectively. NBW-Async-BG improves over

NBW-Async-FG for reasons similar to those with hard

disks. NBW-Async-BG delivers 272% (up to 4.2X in

the best case) and 125% performance improvement over

BW on average for random-write and random-readwrite

respectively. Lastly, although NBW-Lazy performs sig-

nificantly better than BW, contrary to our expectations,

its performance improvements were lower when com-

pared to the NBW-Async modes. Upon further inves-

tigation, we found that when the patch memory limit is

reached, NBW-Lazy takes longer than the other modes

to free its memory given that the fetches are issued only

when blocking cannot be avoided anymore. While the

duration of the experiment is the same as disk drives, a

faster SSD results in the patch memory limit being met

more quickly. In our current implementation, after the

patch memory limit is reached and no more patches can

be created, NBW-Lazy defaults to a BW behavior issu-

ing fetches synchronously for handling writes to non-

cached pages. Despite this drawback, NBW-Lazy mode

shows 163%-211% and 70% improvement over BW for

random-write and random-readwrite respectively.

9
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Write size % Write size %

1 - 4095 bytes 28 8193 - 16383 bytes 7

4KB 11 16KB 5

4097 - 8191 bytes 3 16385 - 32767 bytes 1

8KB 30 32, 64, 96, 128, 256 KB 15

Table 2: SPECsfs2008 write sizes.

Sensitivity to system memory size

We answer the second question using the Filebench

workloads and varying the amount of system memory

available to the operating system. For these experiments,

we used a hard disk drive as the storage back-end and

fixed the I/O size at 2KB. Figure 11 presents the results

of this experiment. Each data point reports the average

of 3 executions. Standard error of measurement was less

than 4% of the average for 90% of the cases and were

less than 10% for the rest.

For the sequential-write workload, the non-blocking

writes variants perform 45-180% better than BW. Fur-

ther NBW-Lazy performs better and can be considered

optimal because (i) it uses very little patch memory, suf-

ficient to hold enough patches until a single whole page is

overwritten, and (ii) since pages get overwritten entirely

in the sequential write, it eliminates all page fetches.

For random-write and random-readwrite workloads,

NBW-Async-FG delivers performance that is relatively

consistent with BW; the I/O performance achieved by

these solutions is not high enough to make differences

in memory relevant. NBW-Async-BG and NBW-Lazy

offer significant performance gains relative to BW of as

much as 560% and 710% respectively. With NBW-Lazy,

performance improves with more available memory but

only up to the point at which the imposed patch memory

limit is reached prior to the completion of the execution;

increasing the patch memory limit would allow NBW-

Lazy to continue scaling its performance.

6.2 SPECsfs2008 Macro-benchmark

The SPECsfs2008 benchmark tests the performance of

NFS servers. For this experiment, we installed a non-

blocking writes kernel in the NFS server which exported

the network file system in async mode. SPECsfs2008

uses a client side workload generator that bypasses the

page cache entirely. The client was configured for a tar-

get load of 500 operations per second. The target load

was sustained in all evaluations; thus the SPECsfs2008

performance metric is the operation latency reported by

the NFS client. While the evaluation results are encour-

aging, the relative performance results we report for NFS

workloads are likely to be an underestimate. This is be-

cause our prototype was used only at the NFS server;

the client counterpart of non-blocking writes was not en-

gaged by this benchmark.

SPECsfs2008 operations are classified as write, read,

and others which includes metadata operations such as

create, remove, and getattr. For each variant solution,

we report results for the above three classes of operations

separately as well as the overall performance that rep-

resents the weighted average across all operations. Fur-

ther, we evaluated performancewhen varying the relative

proportion of NFS operations issued by the benchmark.

The default configuration as specified in SPECsfs2008

is: reads (18%), writes (10%) and others (72%). We also

evaluated three modified configurations: no-writes, no-

reads, and one that uses: reads (10%), writes (18%), and

others (72%) to examine a wider spectrum of behaviors.

We first perform a brief analysis of the workload to de-

termine expected performance. Even for configurations

that contained more writes than reads (e.g., 18% writes

and 10% reads) the actual fraction of cache misses upon

writes is far lower than the fraction of misses due to reads

(i.e 16.9% write misses vs. 83.1% read misses). This

mismatch is explained by noting that each read access

to a non-cached page results in a read miss but the same

is not true for write accesses when they are page-aligned.

Further, Table 2 reports that only 39% of all writes issued

by the SPECsfs2008 are partial page overwrites which

may result in non-blocking writes.

Figure 12 presents the average operation latencies nor-

malized using the latency with the BW solution. Exclud-

ing the read-only workload, the dominant trend is that the

non-blocking write modes offer significant reductions in

write operation latency with little or no degradation in

read latencies. Further, the average overall operation la-

tency is proportional to the fraction of write misses and

to the latency improvements for NFS write operations.

For the three configurations containing write operations,

the latency of the write operations is reduced between 65

and 79 percent when using the different modes of non-

blocking writes. Read latencies are slightly affected

negatively due to additional blocking on certain pages.

With BW, certain pages could have been fetched into

memory by the time the read operation was issued. With

non-blocking writes, the corresponding fetches could be

delayed or not issued at all until the blocking read oc-

curs. For the configuration with no write operations the

average overall latency remained relatively unaffected.

6.3 MobiBench Trace Replay

The MobiBench suite of tools contains traces obtained

from an Android device when using the Facebook and

Twitter apps [14]. We used MobiBench’s timing-

accurate replay tool to replay the traces. We fixed a bug

in the replay tool prior to using it; the original replayer

used a fixed set of flags when opening files regardless

of the trace information. MobiBench reports the aver-

age file system call operation latency as the performance

metric. We replayed the traces five times and report the

10
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Figure 13: Normalized average operation latencies when replaying MobiBench traces [14].

average latency observed. Standard error of measure-

ment was less than 4% of the average in all cases except

one for which it was 7.18%. The two left-most graphs

of Figure 13 present the results for this evaluation for

both hard disks and solid-state drives respectively. Non-

blocking writes exhibit a reduction in operation latencies

between 20% and 40% depending on the mode and back-

end storage used for both Facebook and Twitter traces.

When we analyzed the MobiBench traces, we found

that they contained a significant amount of sync op-

erations. Sync operations do not allow exploiting the

full potential of non-blocking writes because they block

the process to fetch pages synchronously. As discussed

previously, recent work on byte-addressable persistent

memories and qNVRAM [32] provide for extremely fast,

durable, in-memory operations. In such systems, the

blocking fetch-before-write behavior in OSes becomes

an even more significant obstacle to performance. To es-

timate1 the impact of non-blocking writes in such an en-

vironment, we modified the original traces by discarding

all fsync operations to simulate extremely fast durability

of in-memory data. The rightmost two graphs present

the results obtained upon replaying the modified traces.

non-blockingwrites reduce latencies by 40-60% depend-

ing on the mode and the storage back-end used.

7 Related Work

Non-blocking writes have existed for almost three

decades for managing CPU caches. Observing that entire

cache lines do not need to be fetched on a word write-

1We did not enforce ordered CPU cache flushing to persistent mem-

ory to ensure in-memory durability upon fsync.

miss thereby stalling the processor, the use of additional

registers that temporarily store these word updates was

investigated [26] and later adopted [31].

Recently, non-blocking writes to main memory pages

was motivated using full system memory access traces

generated by an instrumented QEMU machine emula-

tor [53]. This prior work outlined some of the challenges

of implementing non-blocking writes in commodity op-

erating systems. We improve upon this work by present-

ing a detailed design and Linux kernel implementation of

non-blocking writes, addressing a host of challenges as

well as uncovering new design points. We also present

a comprehensive evaluation with a wider range of work-

loads and performance numbers from a running system.

A candidate approach to mitigate the fetch-before-

write problem involves provisioning adequate DRAM

to minimize write cache misses. However, the file sys-

tem footprint of a workload over time is usually un-

predictable and potentially unbounded. Alternatively,

prefetching [46] can reduce blocking by anticipating fu-

ture memory accesses. However, prefetching is typi-

cally limited to sequential accesses. Moreover, incorrect

decisions can render prefetching ineffective and pollute

memory. Non-blockingwrites is complementary to these

approaches. It uses memory judiciously and only fetches

those pages that are necessary for process execution.

There are several approaches proposed in the litera-

ture that reduce process blocking specifically for system

call induced page fetches. The goal of the asynchronous

I/O library (e.g., POSIX AIO [1]) available on Linux and

a few BSD variants is to make file system writes asyn-

chronous; a helper library thread blocks on behalf of the

11
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process. LAIO [12] is a generalization of the basic AIO

technique to make all system calls asynchronous; a li-

brary checkpoints execution state and relies on sched-

uler activations to get notified about the completion of

blocking I/O operations initiated inside the kernel. Re-

cently, FlexSC [48] proposed asynchronous exception-

less system calls wherein system calls are queued by the

process in a page shared between user and kernel space;

these calls are serviced asynchronously by syscall kernel

threads which report completion back to the user process.

The scope of non-blocking writes in relation to the

above proposals is different. Its goal is to entirely elim-

inate the blocking of memory writes to pages not avail-

able in the file system page cache. A non-blocking write

does not need to checkpoint state thereby consuming

lesser system resources. Further, it can be configured to

be lightweight so that it does not use additional threads

(often a limited resource in systems) to block on behalf

of the running process. Finally, unlike these approaches

which require application modifications to use specific

libraries, non-blocking writes work seamlessly in the OS

transparent to applications.

There are works that are related to non-blocking

writes, but quite different in their accomplished goal.

Speculative execution (or Speculator) as proposed by

Nightingale et al. [36] eliminates blocking when syn-

chronously writing cached in-memory page modifica-

tions to a network file server using a process check-

point and rollback mechanism. Xsyncfs [37] eliminates

the blocking upon performing synchronous writes of

in-memory pages to disk by creating a commit depen-

dency for the write and allowing the process to make

progress. Featherstitch [15] improves the performance

of synchronous file system page updates by scheduling

these page writes to disk more intelligently. Featherstitch

employed patches but for a different purpose – to specify

dependent changes across disk blocks at the byte gran-

ularity. OptFS [5] decouples the ordering of writes of

in-memory pages from their durability, thus improving

performance. While these approaches optimize the writ-

ing of in-memory pages to disk they do not eliminate the

blocking page fetch before in-memorymodifications to a

file page can be made.

BOSC [47] describes a new disk update interface for

applications to explicitly specify disk update requests

and associate call back functions. Opportunistic Log [38]

describes the fetch-before-write problem for objects and

uses a second log to record updates. Both of these re-

duce application blocking allowing updates to happen

in the background but they require application modifi-

cation and do not support general-purpose usage. Non-

blocking writes is complementary to the above body of

work because it runs seamlessly inside the OS requiring

no changes to applications.

8 Conclusions and Future Work

For over four decades, operating systems have blocked

processes for page fetch I/O when they write to non-

cached file data. In this paper, we revisited this well-

established design and demonstrated that such blocking

is not just unnecessary but also detrimental to perfor-

mance. Non-blocking writes decouple the writing of

data to a page from its presence in memory by buffer-

ing page updates elsewhere in OS memory. This de-

coupling is achieved with a self-contained operating sys-

tem improvement seamless to the applications. We de-

signed and implemented asynchronous and lazy page

fetch modes that are worthwhile alternatives to block-

ing page fetch. Our evaluation of non-blocking writes

using Filebench revealed throughput performance im-

provements of as much as 45.4X across variousworkload

types relative to blocking writes. For the SPECsfs2008

benchmark, non-blockingwrites reduced write operation

latencies by as much as 65-79%. When replaying the

MobiBench file system traces, non-blocking writes de-

creased average operation latency by 20-60%. Further,

there is no loss of performance when workloads cannot

benefit from non-blocking writes.

Non-blocking writes open up several avenues for fu-

ture work. First, since they alter the relative importance

of pages in memory in a fundamental way, new page

replacement algorithms are worth investigating. Sec-

ond, by intelligently scheduling page fetch operations

(instead of simply asynchronously or lazily), we can re-

duce and shape both memory consumption and the page

fetch I/O traffic to storage. Third, I/O related to asyn-

chronous page fetching due to non-blocking writes can

be scheduled more intelligently (e.g., as background op-

erations [52] or semi-preemptibly [9]) to speed up block-

ing page fetches. Finally, certain OS mechanisms such as

dirty page flushing thresholds and limits on per-process

dirty data would need to be updated to also account for

in-memory patches.
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