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Abstract

Virtual desktop infrastructure (VDI) deployments are a rapidly growing segment in the Mobile/Cloud Era. Compared
to traditional enterprise desktop deployments, VDI can reduce the total cost of ownership by as much as 50%. However,
the cost of powering a VDI deployment is still a significant IT expense. Typically these deployments consist of a com-
plex system of interconnected server, storage and networking components. Thus, it is challenging to minimize energy
consumption of the entire system while at the same time satisfying performance requirements. In this work, we first
derive an accurate VDI performance model and then propose a hierarchical heuristic to minimize energy consumption
without violating performance constraints. We also demonstrate that such an approach reduces algorithmic complexity
significantly. Results from hardware experiments show that in scenarios with low consolidation ratios energy savings
range from 3% to 6%, while for high consolidation ratios they range from 11% to 25%. In all cases, the measured
end-to-end performance penalty is minimal.

1 Introduction

Virtual infrastructure allows data center operators to re-
duce IT costs, including electricity. Virtual machine con-
solidation increases the utilization of physical infrastruc-
ture, making the data center more efficient and reducing
its carbon footprint. Closely following on the heels of
server consolidation, enterprises are fast adopting virtual
desktop infrastructure (VDI) to replace and consolidate
existing physical desktops as well. In a VDI environ-
ment, a user’s operating system instance and applications
are run on a virtual machine hosted in the enterprise data
center. Users remotely control the virtual machines using
thin clients such as stateless hardware terminals, smart-
phones or tablet PCs.

Many have studied aspects of energy management for
pieces of a VDI system, such as networking [10][5], em-
bedded and mobile devices [8][12][17] and data centers
[9][7] etc. However, all existing work tackled these sep-
arately, as isolated components. An integrated solution
for VDI energy management does not exist in industry
today. A challenge in extending existing work and ap-
plying it to VDI energy management is that they enforce
performance (such as CPU utilization [8] or throughput)
at the granularity of a server [10][7]. In contrast, a VDI
deployment requires integrated management of end-to-
end energy and performance.

In this work, we minimize energy consumption by
manipulating various knobs such as CPU DVFS levels
and consolidating virtual machines. A key challenge is

to guarantee that performance will not be adversely af-
fected, leading to undesired violations of service level
agreements. To address this challenge, we establish a
performance model which predicts end-to-end perfor-
mance of VDI workloads, given CPU DVFS levels and
consolidation ratios etc. We select a collection of typ-
ical applications used by VDI users, and define a rele-
vant end-to-end performance metric. We do this instead
of adopting well-known CPU utilization or throughput
metrics because they don’t sufficiently reflect a user’s ex-
perience with interactive applications (which is of prime
importance in a VDI deployment). We derive an accu-
rate performance model using a black-box modeling ap-
proach.

Based on the model, we formulate an optimization
problem to minimize the energy consumption while
guaranteeing performance, and transform it into a canon-
ical form which can be solved by standard optimization
solvers. However, no polynomial time solvers exist to
obtain the optimal solution. To scale the proposed solu-
tion in VDI deployments, which can have thousands of
seats (VMs), a two-step heuristic algorithm is designed
to reduce the algorithmic complexity significantly.

We prototype the proposed solution and analyze the
overhead of each component of the implementation to
ensure that the overall solution will not introduce signifi-
cant performance degradation or increased energy con-
sumption. Experimental results from a hardware test
bed demonstrate the efficacy of the proposed solution in



terms of energy and performance. It significantly out-
performs the state-of-the-art baseline widely adopted in
industry today.

The remainder of the paper is organized as follows.
In Section 2 we describe end-to-end energy management
with performance guarantees. In Section 3, we present
details of the system implementations and experimental
results. Finally, Section 4 concludes the paper.

2 Energy Management with Per-
formance Guarantee

In this section, we first present the system architecture
of E-cubed (End-to-End Energy Management). We then
present a model of end-to-end performance for a VDI
workload. Finally, we present a formulated optimization
algorithm and heuristic for large-scale deployments.

2.1 System Architecture

Figure 1 shows the E-cubed system architecture which
works as follows. (1) Each user remotely controls a
virtual machine called a desktop VM via a thin client
(such as a smartphone or a tablet PC). In the data center,
physical servers host all the desktop VMs. The desktop
VMs are responsible for workload execution while the
thin clients only render the display and transmit user in-
put (from keyboards and mice) using a virtual desktop
communication protocol. A monitor periodically col-
lects the utilization of the desktop VMs and detects in-
put events (such as key presses) to determine the number
of active desktop VMs. The number of active desktop
VMs changes over time due to idle periods during nights
and holidays and long idle interval in office hours [15].
The number of active desktop VMs and their associated
physical servers are sent to the E-cubed. (2) The core
of E-cubed is a constraint nonlinear optimizer that min-
imizes the end-to-end energy consumption by various
knobs. They include throttling CPU DVFS levels of the
thin clients, throttling link rates and shutting down any
idle ports on the network switches, and decreasing hard
disk rotational speeds of the shared storage. Since en-
ergy consumption of servers accounts for a large portion
of all energy consumption, in this work, we focus on ma-
nipulating server DVFS levels and consolidating desktop
VMs. The work can be extended to integrate all knobs in
the future. A key challenge is to define the performance
metrics of a VDI deployment and model the relationship
between the performance metrics, CPU DVFS levels and
VMs consolidate ratios (a.k.a the number of VMs hosted
on a single host). A performance model enforces a user-
specified requirement. The detailed derivation of the per-
formance model is in Section 2.2. Moreover, the op-

timizer takes into account hardware constraints such as
making sure the CPU frequencies are adjusted according
to hardware specific ranges. (3) The optimizer throttles
the CPU DVFS levels of physical servers and consoli-
dates desktop VMs by live VM migration according to
the output of the optimizer.
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Figure 1: Integrated management architecture for virtual
desktop infrastructure.

2.2 Performance Model

We first introduce notations. Qi is the performance, fi
is chip-wide CPU frequency1, and Ri is the number of
desktop VMs hosted on the ith server. Nhost is the total
number of physical servers in a VDI deployment. NVM

is the total number of active desktop VMs. Si is the sta-
tus of the ith physical server. If the ith server hosts dek-
stop VMs, Si = 1. If the server is idle and powered off,
Si = 0. QoS is a user-specified performance require-
ment, which is a constant. fi,min, fi,max are minimum
and maximum frequencies of the ith physical server.

2.2.1 End-To-End Performance

View Planner is used to generate realistic VDI workloads
by emulating user operations. It performs a series of
random operations of all applications of the collection.
Between operations, a random sleep interval emulates
user think time. Different operations emulate different
users. We select a collection of applications which rep-
resent typical workloads for most VDI deployments in a
production environment. The collection includes Adobe
Reader, Word, Excel, Outlook, PowerPoint, Video, Inter-
net Explorer, and 7-ZIP. For each application, users may
perform various operations. For example, open a Word
document, browse, edit, finally save the document.

1Recent CPU models from both Intel and AMD support per-core
DVFS throttling and per-tile DVFS throttling. More fine grained DVFS
throttling can be utilized in future work.



Because VDI users expect their VMs to be ”respon-
sive”, the first priority performance metric is response
time of an operation. The end-to-end performance is de-
fined as a high percentile response time of all operations
performed by a VDI user. Usually, it is defined as the
95th percentile response times or the 98th percentile re-
sponse times. Since the response time measurement has
variation, we take the average to reduce its variation. De-
tailed analysis of the VDI performance definition is out
of scope of this paper.

2.2.2 Black-box Approach

In order to have an effective E-cubed design, it is nec-
essary to model the performance of a VDI deployment,
specifically, the closed-form mathematical relationship
between the 95th percentile latency of all VDI user oper-
ations and the actuators described in Section 2.1. Since
a virtual desktop infrastructure deployment is a compli-
cated computer system, a well-established physical equa-
tion based on a queuing system is not available. To
address the challenge, we select a black-box approach,
namely surface fitting.

We establish the performance model for a single phys-
ical server off-line by running a typical VDI workload
and varying CPU DVFS levels and consolidation ratios
and measuring the end-to-end performance. Based on
the collected data, an accurate model is derived by sur-
face fitting the datapoints. View Planner can be used to
generate realistic VDI workloads by emulating user op-
erations. It performs a series of random operations of
all applications of the collection. Between operations, a
random sleep interval emulates user think time. Differ-
ent operations emulate different users. CPU frequency
is varied from the highest frequency to the lowest fre-
quency, and the consolidation ratio is increased until the
performance is much lower than a specified threshold.
For clusters consisting of homogeneous servers, which is
the most common in production, the performance model
for a single physical server holds for the other identical
servers. For clusters of heterogeneous servers, each type
of server will need its own model.

Performance measurement shows a strong nonlinear
relationship between the end-to-end performance and
manipulated variables (CPU DVFS levels and consoli-
dation ratio). Beyond a certain threshold, performance
degrades significantly as DVFS level decreases and con-
solidation ratio increases. Some black-box techniques
such as system identification [13] and linear regression
[11] cannot be applied because of their assumption of lin-
earity. Machine learning is a powerful approach [14] for
deriving a complex model. However, [14] adopts an arti-
ficial neural network to represent a derived model, and an
explicit mathematical formula is unavailable. The per-

formance model for the ith server can be expressed as
follows.

Qi (fi, Ri) = Ki

(
a1

fi
+ a2

) (
b1Ri

2 + b2Ri + b3
)
(1)

Constant Ki denotes response time when only one
desktop virtual machine runs on the ith server and
its CPU runs at the maximum frequency. The term(

a1

fi
+ a2

)
represents response time inflation due to

CPU frequency throttling, and equals to 1 when f i =
fmax. The term

(
b1Ri

2 + b2Ri + b3
)

represents re-
sponse time inflation due to VM consolidation, and
equals to 1 when Ri = 1. The coefficient of determi-
nation R2 = 0.85.

Figure 2 shows the difference of predicted per-
formance based on the model and actual measure-
ment. Configurations 1-8 are combinations of randomly-
selected CPU DVFS levels and randomly-selected con-
solidation ratios. Those configurations are different from
configurations used to establish the performance model
as described before. Small difference shown in Figure
2 shows the end-to-end performance model (1) predicts
accurately.
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Figure 2: Validation of the performance model against
measurement.

It is possible that the performance model derived off-
line does not hold in a production environment in some
scenarios. For example, hardware upgrade, physical
server replacement, users running applications which are
not listed in the profiled collection, or computer se-
curity compromises and resource exhaustion due to a
Denial-of-service attack. However, those scenarios can
be detected by comparing the predicted value based on
the model and real-time performance measurement. If
the difference is abnormally large for a long interval, a
change of a VDI deployment has happened. For perma-
nent changes such as hardware upgrade, recalibration of
the model is necessary during maintenance time. If a new
application is introduced, the model can be extended.



2.3 Optimization

The following optimization will be invoked when the to-
tal number of active desktop VMs NVM is changed.

2.3.1 Optimal Algorithm

Cost function:

PVDI=

Nhost∑
i=1

Si

(
αif

βi

i +MiRi+Li

)
(2)

subject to:

Qi (fi, Ri) ≤ QoS
fi,min ≤ fi ≤ fi,max

Nhost∑
i=1

Ri = NVM

(3)

where αi, βi,Mi,Li are server-specific parameters.
Those parameters can be estimated using high dimen-
sional fitting. The detail of power modeling is similar
to the performance modeling and is omitted.

In a VDI deployment, minimization of energy con-
sumption is equivalent to minimization of power con-
sumption. Thus, the cost function to be minimized is the
power consumption. Since servers consume a majority
part of the total power consumption, we only minimize
the power consumption of servers and the power con-
sumption of other components is constant.

The above optimization formulation cannot be solved
using existing solvers directly. We present high-level
steps of tranforming the formulation to MINLP (Mixed-
Integer Nonlinear Programming). For the cost function
(2), the relationship between Si and Ri can be estab-
lished using a signum function. Si = sgn (Ri). MINLP
requires the cost function to be a continuous function
while a signum function is not continuous at 0. To meet
the requirement of MINLP, the signum function can be
approximated using a special continuous function such
as tanh. A MINLP solver will determine Ri and fi to
minimize the cost function (2). Several constraints on R i

and fi exist. The CPU frequency cannot be adjusted ar-
bitrarily and has to be within a range. VDI administrators
may assign a VM to a physical server in a static way. A
VM must be assigned to only one physical server and all
VMs must be assigned. The details of the mathematical
transformation is not presented here.

2.3.2 Scalable Algorithm

A key observation is that VM consolidation and idle
physical server shutdown can lead to significantly more
energy savings than throttling DVFS levels. Idle power
consumption of a physical server accounts for more than

Algorithm 1 Heuristic for large-scale VDI deployments
begin

1: The 1st step:
2: Calculate the number of desktop VMs per server ac-

cording to the performance model as Eqn (1), and
denote the number by R0.

3: Turn on
⌊
NV M

R0

⌋
physical servers which runs at the

highest DVFS level;
4: if Q (fmax, R0) < QoS then
5: The 2nd step: Invoke the optimization algorithm

(4)
6: end if
7: Actuators: shut-down idle physical servers, enforce

fi.
end

70% of total power consumption [4]. Thus, we design
a two-step heuristic to obtain a near optimal solution to
the optimization problem formulated in 2.3.1. In the first
step, we minimize idle server energy by consolidating
VMs and run each active server at the highest CPU DVFS
level. In the second step, we further throttle DVFS levels.

The detailed huristic for a large-scale VDI deployment
consisting of homogeneous servers is shown in Algo-
rithm 1. The 2nd step of Algorithm 1 solves the fol-
lowing optimization problem. The optimization is a con-
strained nonlinear multivariable which can be solved di-
rectly using fmincon in Matlab. Although no polynomial
solver exists for fmincon, the optimization is conducted
on a single physical server basis rather than on a cluster
basis . Thus, the the huristic reduces the algorithm com-
plexity significantly and obtains a near optimal solution
as the MINLP solver in Section 2.3.1.

Pi = αif
βi

i +MiRi+Li (4)

subject to:

fi,min ≤ fi ≤ fi,max

Qi (fi, Ri) ≤ QoS
(5)

Where Ri is determined in the first step of Algorithm
1.

3 Evaluation Results

3.1 Implementation

In this section, we introduce our physical test bed, as well
as the implementation details of each component.

Our test bed consists of two physical servers. Host1
has an AMD Opteron 6128 12-core CPU 1.9GHz with



Table 1: System Configuration

Server Cluster: 2 AMD servers vSphere
Fabric: 1 Gb Ethernet vCenter Enterprise

Shared Storage: Openfiler View Planner

16Gb main memory. Host2 has two AMD Opteron 254
dual-core CPU 2.8GHz with 4Gb main memory. It is
connected to a shared storage Openfiler by Ethernet. The
detailed hardware configuration is presented in Table 1.
The host1 processor supports five DVFS levels: 1.9GHz,
1.5GHz, 1.3GHz, 1GHz, and 800MHz. The virtual ma-
chine operating system is Windows 7. We run View Plan-
ner V2.0 [3] to emulate VDI user operations, which run
all the typical applications in Section 2.2. The length of
each run is approximately 4 hours.

CPU Frequency Control : we use Intel’s Enhanced
Intel SpeedStep Technology to enforce the new fre-
quency. To change the CPU frequency, VMWare ESXi
contains a command line tool to determine the cur-
rent frequency levels, frequency islands information, and
modify frequencies within allowable ranges. Some ad-
vanced servers come with power management policy
built in to the BIOS to manipulate CPU frequencies. To
avoid conflicts, BIOS power management policies needs
to be disabled. The average overhead (i.e., transition
latency) for frequency change is approximately 100 μ.
The CPU frequency calculated by the optimization al-
gorithms is continuous and physical CPUs only support
discrete number of frequency levels. A delta sigma con-
verter is implemented to approximate a continuous fre-
quency using discrete CPU frequencies.

Performance Measurement: latencies of operations
on the data center side can be measured using CPU per-
formance counters to obtain high-resolution timing in-
formation. By default, virtual machines cannot access
performance counters. For newer releases of vSphere,
virtual machines can have access by adding a flag to
the vmx configuration files. We develop a watermarking
technique to accurately measure the latency of the image
transmission from the data center side to the client side.
An encoded time stamp is placed in a fixed region of the
image. When a thin client receives the frame, it reads
and decodes the fixed region. The thin client and data
center must be synchronized using NTP (network time
protocol) with a common time source. More details can
be found in [16].

VM migration: VMware vMotion can migrate run-
ning a virtual machine from one host to another. Even
infrequent migrations of large VMs between hosts con-
nected by a slow link may introduce significant over-
head. By leveraging multiple NICs and efficient memory
propagation, the overhead can be significantly reduced.

Moreover, we can add host affinity rules to the optimiza-
tion problem formulated in Section 2.3 to avoid costly
VM migrations.

Power Measurement: The power consumption of the
server cluster is measured with a WattsUp Pro power me-
ter [6] by plugging servers into the power meter and then
connecting it to a standard 120-volt AC wall outlet. The
WattsUp power meter has an accuracy of 1.5% of the
measured value and samples power data every second.
Its internal memory and can store 18 hours of power data.
The USB port of the power meter is connected to a desk-
top and a logger tool running on the desktop configures
the meter and reads power data.

3.2 Baseline

Our baseline is state-of-the-art power management in a
virtualized environment [1][2]. It controls the utilization
of CPU and main memory within a fixed range by pow-
ering on and off hosts and migrating VMs but an end-
to-end performance metric for VDI deployments is not
taken into consideration. Although it works well for CPU
and main memory intensive workloads, it could be con-
servative in term of energy saving for a VDI deployment
in addition to not providing an end-to-end performance
guarantee. The first reason is that a high utilization of
vCPU and guest memory may not necessarily lead to
low end-to-end performance. Another reason is the de-
fault maximum utilization is around 70% and a fixed safe
margin of 30% exists. In contrast, the proposed solu-
tion eliminates such a margin by solving an optimization
problem. At last, the proposed solution can further ex-
tend energy efficiency of the baseline by throttling CPU
DVFS levels.

3.3 Experimental results

The purpose of this experiment is to compare the pro-
posed solution against the baseline both in terms of en-
ergy efficiency and performance by varying the number
of VMs (virtual machines) hosted by the hardware test
bed in Section 3.1. This experiment demonstrates the
main use case of the proposed solution in a production
environment. The maximum number of VMs is deter-
mined by available free physical main memory within
the cluster and represents no physical memory over-
commitment scenario. During the experiment, we con-
figure View Planner with three iterations which present a
typical length of half a workday. Power consumption is
measured at an interval of one second during the run and
energy consumption is calculated as an integral of power
with respect to time.

Figure 3(a) shows the measured energy consumption.
When VDI workload is light and the number of virtual



machines is from 1 to 5, the maximum energy saving
is 3%. The modest saving is because when the number
of VM is small, both the proposed solution and baseline
utilize only one host and shut down the idle one. The
proposed solution throttles DVFS levels aggressively to
the lowest level and the baseline configures the high-
est frequency in a static way. Although the frequencies
are very different, existing servers are non-power pro-
portional and the power dynamic range of DVFS is lim-
ited. When the VDI workload is high and the number
of virtual machines is larger than 5, the proposed solu-
tion outperforms the baseline by 11% and 24%. During
a high workload, one host will accommodate 5 virtual
machines and other virtual machines are placed on an-
other host. The baseline consolidates based on utiliza-
tion of vCPU and guest memory and will not consolidate
all virtual machines until the utilization is below a cer-
tain threshold. When multiple virtual machines are pow-
ered on, utilization of vCPU and guest memory is very
high due to the boot storm. After the boot storm, the
utilization does not decrease quickly, and is calculated
according to a weighting algorithm to avoid frequently
shutting down and turning on hosts. Thus, the base-
line will power on two hosts and consolidate VMs based
on slowly-changing utilization. In contrast, based on
the end-to-end performance metric, the proposed solu-
tion consolidates VMs into a single host and shuts down
the idle host. Figure 3(b) shows the end-to-end perfor-
mance. Currently the standard requirement for VDI QoS
is 1.5s. Both the proposed solution and baseline satisfy
the requirement. Compared to the baseline, the proposed
solution achieves significant energy savings while intro-
ducing a minimum performance penalty.

4 Conclusions

Virtual desktop infrastructure is a promising virtualiza-
tion technology to reduce enterprise IT expense. How-
ever, existing work cannot address the energy manage-
ment issue in the context of VDI. In this paper, we first
derived an explicit VDI performance model using sur-
face fitting, then propose an optimization to aggressively
reduce system energy consumption while guaranteeing
performance by utilizing the performance model. Fur-
thermore, a two-step heuristic is proposed to manage
large-scale VDI deployments. Empirical results on a
hardware test bed show that for high consolidation ra-
tio scenarios the proposed solution achieves 11% - 24%
better energy efficiency than a baseline widely adopted in
production. It also ensures that user specified end-to-end
performance requirements are met.
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Figure 3: Comparison of energy savings and perfor-
mance of the proposed solution and the baseline.
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