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Abstract

With the onset of large numbers of plug-in electric and
hybrid-electric vehicles, requiring overnight charging
ahead of the morning commute, a significant portion of
electricity demand will be somewhat flexible and accord-
ingly may be responsive to changes in electricity spot
prices. For such a responsive demand idealized, we con-
sider a deregulated electricity marketplace wherein the
grid (ISO, retailer-distributor) accepts bids per-unit sup-
ply from generators (simplified herein neither to consider
start-up/ramp-up expenses nor day-ahead or shorter-term
load following) which are then averaged (by supply allo-
cations via an economic dispatch) to a common “clear-
ing” price borne by customers (irrespective of variations
in transmission/distribution or generation prices), i.e.,
the ISO does not compensate generators based on their
marginal costs. Rather, the ISO provides sufficient infor-
mation for generators to sensibly adjust their bids. For
a generation duopoly with neither transmission capac-
ity bounds nor constraints, there are a surprising plural-
ity of Nash equilibria under quadratic generation costs.
In this paper, we explore transmission costs and con-
straints for any number of generators, and simplify our
numerical study by taking the power flow problem only
as a “commodity” flow. Notwithstanding our idealiza-
tions, we consider a complex dispatch problem the re-
tailer/grid must solve for a demand that depends on the
dispatch [19] here through the clearing price, and more-
over the grid needs to inform the generators of the sensi-
tivity of their allocation to small changes in their prices.

1 Introduction

Game theoretic approaches to the study of electricity
markets have been explored for decades [2,6,9]. Re-
cently problems associated with variations of the optimal
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power flow problem with static (inelastic) demand for an
electrical power grid [23, 24], have been considered by
several authors, e.g., [17, 19]. Indeed, demand elastic-
ity for electricity is motivated by the onset of potentially
enormous load from plug-in electric and hybrid-electric
vehicles, see e.g., [1, 16] and the references therein.

We consider a noncooperative, iterated game played
by the generators based on information from grid (inde-
pendent system operator (ISO)). That is, the grid is as-
sumed to provide sufficient information so that the gen-
erators could modify their prices to improve upon their
net utility. The game is a “discriminatory” sealed-bid
auction in that the generators earn at the rate they bid
but in a quantity determined by the ISO [6,9]. To sim-
plify matters herein, we do not consider strategic bidding
by the generators wherein they may infer demand and/or
the bidding strategies of their competitors via a proba-
bilistic model, nor multipart bidding to account for start-
up/ramp-up costs, secure contracts involving minimum
and maximum supply per generator, and the like', nor
peak-power consumption penalties [7, 10]. Also, we as-
sume a convex cost of supply [2], quadratic in particular,
without a maximum supply. Rather than demand-side
bidding, we assume a simple “passive” linear demand
response based on average cost of supply, i.e., the ISO
ensures that its customers pay the same rates irrespective
of their location or demand volume.

Our model is related to Cournot games of electric-
ity markets reversing the direction of day-ahead markets
to understand demand responds to the market clearing
prices in the long term [4]. Here we attempt to un-
derstand demand-response on the wholesale (generation-
level) market?. As such, we are focusing here on how

'For example, in [23], an affine single-part bid and associated “up-
lift” payments that are part of a joint integer-programming unit com-
mitment and continuous-linear optimal power flow (OPF, or “economic
dispatch”) problem was considered.

2 Again, simplified here by not considering generation constraints
and costs of ramp-up in day-ahead provisioning, and associated relia-
bility issues.



demand-response retailers (demand aggregators) can in-
fluence the wholesale generation market [5,22].

In summary, in this paper, we are interested in study-
ing the optimum power-flow (economic dispatch) in the
presence of flexible elastic demand for a mean clearing-
price based marketplace, assuming the generators are
free to set their prices, however in so doing energy de-
mand will change. From the perspective of the gener-
ators, we formulate a noncooperative generic game in-
volving

e generators (suppliers, wholesalers) of a single com-
modity (electricity) as players,

e aretailer-distributor (grid, ISO) that merely delivers
sufficient information to the supplier-players to act
to reach a Nash equilibrium, and

e consumers (electricity demand aggregators or indi-
vidual loads) who are also informed by the ISO of
the current spot clearing prices for power, of course.

Consistent with an ISO, we assume that the re-
tailer/distributor controls the conduits of supply. Numer-
ically, we simplify matters herein by considering power
as a simple commodity flow, i.e., not considering Ohm’s
laws on the transmission lines (graph edges). Despite
our idealizations, the system we study exhibits interest-
ing and complex behavior.

2 Problem set-up

Consider a retailer with suppliers and consumers of a sin-
gle commodity. As in [19], supposing that each supplier
g € G sets its own price p,$ per unit commodity. We
model aggregate consumer demand to be linear in re-
sponse to clearing price?

S )

Pmax

D(P) = (Dmax *Dmin)(l
where Dy, represents inflexible demand.

Suppose that suppliers suffer quadratic cost of sup-
ply*, so that the net utility/revenue® of the g™ supplier
is

ug(P) = PgSg(p)

3Herein, just the mean price of supply.

4We assume quadratic cost for tractability in the duopoly studied
in [14]. An alternative cost structure could be asymptotic to a maxi-
mum, e.g., ¢(0)/(s — smax) Where ¢(0) is the cost of keeping the gen-
erator/supplier online even if zero supply is being delivered. In this
paper, we do not consider ramp up/ramp-down constraints for genera-
tors/suppliers.

SIf the net consumer utility is collectively V(D) — PD, then for this
linear demand-response to price (1), the utility is quadratic, concave
and increasing, V(D) = (Pmax /2) (D2ax — (Dmax — D)%)/ (Dmax — Dimin)
for Dpin < D < Dpax.

—c5(Se(p)) = pgSg(@_agS;(B)a (2)

i.e., we take a nonlinear (in this case quadratic) cost of
supply, with different generators having different a, pa-
rameters.

For an noncooperative generator duopoly (two-
players), discriminatory, single-part game with no distri-
bution losses or constraints, and assuming that p; # p»
near the interior Nash equilibria, we can find surprisingly
complex plurality of Nash equilibria in closed form [14].

We assume that supply allocations are the result of the
optimization of a supply network by a linear program. In
this section, we formulate a noncooperative game among
suppliers/generators for a simple supply network of out-
tree graphs [1 1,21]6, and leave numerical study of more
complex networks to future work. In electricity markets,
the retailer is sometimes also the distribution system.

By considering no generation ramp-up constraints and
costs, the problem of supplying power maps into a multi-
commodity flow problem. Consider a single commodity
flowing in an tree-like/forest supply/distribution network
of out-trees’ with vertex/node set V and edge set E.

e Let G C V be the set of supply (out-tree-root)

nodes g, each having price per unit supply p,, and
.. . (min) (max)
minimum and maximum supply S and S,

respectively.

e Let J C V be the set of demand (out-tree-leaf)
nodes j, each having a demand D; that depends on
the clearing price P.

e Let IT be the set of all paths (without cycles) con-
necting suppliers g € G to sinks j € J.

e For every edge e € E, c, is its capacity and [, its
price to carry the commodity.

e For every path @ € II, the minimum of the com-
ponent edge capacities is its path capacity, Cr =
min,cx Ce, and the sum of its edge prices is its path
price, Ly =Y oenle-

e Finally, for every path € I, let 6(m) € G be its
source (origin, generator) node, 3(m) € J be its des-
tination (consumer) node, and x; be the quantity
flowing on this path from the source node to the des-
tination node.

2.1 Optimal power flow problem formula-
tion

Assuming fixed generation prices p, edge costs indepen-
dent of the power flow they carry, and a fixed clear-

®Note that the benchmark IEEE 33-bus power system, available at
http://www.pserc.cornell.edu/matpower, is a tree.

7A cycle-free directed graph wherein every maximal connected
component is an out-tree rooted at a supplier, see p. 43,44 of [21] with
all leaves being consumers.



ing price P, the total consumer demand is given by
D(P). The individual consumer demands are assumed
to be some fixed proportion of the total demand, i.e.,
D;(P)=a;D(P),VjcJ, whereo; >0and } ;0 = 1.
The ISO/retailer solves a constrained optimization prob-
lem in order to find x = [x1,... ’XIHI]’ the optimum sup-
ply allocations along all the paths of the out-tree net-
work, which minimizes the average cost of supply to
the consumers (including distribution costs). The opti-
mum supply allocations to the generators is then given by
Sg = Z Xr, Vg € G, and the optimum supply allo-
nell:o(n)=¢
cation to the consumers is given by Z
nell:d(n)=j
The constrained optimization problem is given by:

Z(Pgsg + Z Lyxr)

Xn, VjEJ.

Z (p(y(n) + LTE)xTC

geG nell:
min o(n)=g _ mell
x>0 Z Sg Z Xn
geG nell
such that:
Sémm) < Z X < Sémax), Vg € G (supplier limits)
nell:
o(m)=g
Z xg < ce, Ve € E (edge capacities)
TEGEH:
ecT

Z xx = Dj(P),Vj€J (consumer demands,)
nell:
8(m)=j

where D;(P) is the feasible portion of the demand of
consumer j. For the constraints pertaining to consumer
demand, in general, an inequality (<) should be used
to handle the case where the total demand is infeasi-
ble®. However, in order simplify the problem to a lin-
ear program we use equality constraints, and handle the
possibility of consumer demand infeasibility as follows.
The two limiting factors on the total supply allocation
Y remXr are (i) the total maximum supply allocation of
the suppliers (generators) S(Ma%) — Yeco Sémax), and (ii)
the maximum allocation allowed by the edge (or path)
capacities of the network give by C(™) =y 1 Cy. If
D(P) < min{S(Mma) C(maX)} 'then the problem is feasi-
ble. Hence, we define

B(P) o D(p) if D(P) < mln{S(de)7c(mdx)}
~ | min{SMa) c(Mma)} otherwise

and D;(P) = o; D(P), Vj € J.

This formulation of a commodity flow problem by the
retailer/distributor is a linear network flow program (de-
termining {xy : © € I1}) which has polynomial-time (in

8In power systems, imbalance of supply and demand may be de-
tected by frequency shifts.

the number of paths) solutions [13]. The commodity flow
is a simplification of power flow equations [24] in that it
ignores Ohm’s law on the transmission lines (edges). In
the following subsection, step 3) of the iterative game
formulation could be replaced by solution of the OPF
economic-dispatch under DC approximation [24] under
the fixed demand of step 2 and fixed generation prices of
step 1. Note that we can add “hard” power-flow bounds
(capacities) on the edges and use flow-dependent (rather
than constant) costs.

In the above formulation, we used fixed upper and
lower bounds on the supply allocations S,. Alternatively,
the quadratic penalty term in the utility function (2) can
serve as a “soft” penalty (cost) on the supply allocation.
For a positive a, and fixed supplier prices p, suppose
supplier g wants to ensure that its utility function is never
smaller than some positive value uémm), then this imposes
lower and upper bounds on its supply allocation, given by

1 (min) 1 (min)
T%(pg_ P§—4ag”g l ) <8 < @(Pg‘ﬂ/l?ﬁ—‘mg”g )s

provided the supplier price satisfies the condition p, >

2\ /agul™ . 1 ug™™ = 0, then we observe that as a

is made larger, i.e., as the cost of supply allocation in-
creases, the maximum supply allocation (or capacity) de-
creases, and vice-verse.

In actual power transmission circuits, thermal losses
may determine edge (transmission line) capacities and
costs, the latter typically in a power-flow dependent
fashion, e.g., “I2R” losses (Sec. 3.1 of [24]). Analo-
gous to the way in which the capacity of supply allo-
cation (generation) decreases as the cost of supply in-
creases, the edge capacities will also effectively decrease
as the power-flow dependent edge costs increase. In
this formulation, we have assumed that the edge costs
l,, Ve € E are independent of the power flow on the

edges/transmission-lines Z Xp, Ve € E.
nell.een

2.2 Set-up of suppliers’ iterative game on a
platform of demand response

We neither assume that each supplier’s cost of produc-
tion is known to the retailer (i.e., the a, terms), nor
that the retailer bases its compensation to the suppli-
ers based on this (as in [19]). In the following, de-
note as S(D(P),p) the solution of the above optimal
power flow allocation problem to determine supply allo-
cations for fixed demands (which are based on the clear-
ing price P) D(P) = {D;(P)|j € J} and fixed supplier
prices p = {pg|g € G}. We propose the following itera-
tive supplier game wherein, for fixed supplier prices, the
clearing price and the consumer demands are adjusted it-
eratively until they converge to a fixed point. Then each



supplier g € G adjusts its price pg, given the current price
for all other suppliers Py such that its utility function

ug(pg.p_

suppliers p, the iterative supplier game proceeds as fol-
lows:

) is increased. Given initial prices set by the

1. The retailer/ISO sets an initial mean price of supply
(clearing price charged to all consumers), P, say just
as the mean of the initial supplier prices, pg, Vg €
G.

2. Determine the price-dependent consumer demands
D(P), where D;(P) = a,jD(P), Vj € J.

3. Retailer solves the economic dispatch optimal
power flow allocation problem S(D(P),p) given
fixed demands D and generation/supply costs p.

4. Retailer computes a new mean (clearing) price of

supply, P = Z SePg/ Z Se.
geG geG

5. If the change in clearing price P is significant (larger
than some threshold), then go back to Step 2; Else
continue to Step 6.

6. For the current set of supplier prices, consistent sup-
ply allocations, consumer demands, and clearing
price have been found. Now each supplier sets a
new price of supply such that there is an increase
in its utility function using one of the following two
approaches:

(i) Best-response play action: Each supplier g sets a
new price of supply based on (an estimate of)

argmax pgS(peip ) = ColSe(Peip o)), B
where ¢, (x) is the cost of supply (assumed = ;x>
above).

(ii) Better-response play action: Each supplier g
calculates approximate left and right partial deriva-
tives of its utility function with respect to its price

Dg l.e.,
At — ”g(Pg+€aB,g)*“g(Pg7£7g)
¢ €
Auj = ”g(ngB,g)_”g(Pg_E, 378)7
€

where € N\, 0°. If the left and right derivatives have
different signs (a non-differentiable point), then
there are two possibilities. If Au, > 0 and Au; <0,
the current price p, is a local maximum and there is
no need to change p,. If Au, <0 and Au; > 0, the

9We chose a value of € = 107°.

current price is a local minimum. In this case, we
increase p, by a small value {if [Aug | > |Au, |; oth-
erwise we decrease p, by . In case the derivatives
have the same sign (may still be a non-differentiable
point), we increase p, by C if both derivatives are
positive and decrease p, by { if both derivatives are
negative. The step { should increase the price by a
small value such that there is an increase in the value
of the utility function. It should not make large
changes to the price like the best-response play ac-
tion!©.

7. Exit if there is no change in the supplier prices (i.e.,
if an equilibrium set of prices is obtained); Else go
back to Step 1.

Competition among suppliers may cause discontinu-
ities in best-response function (3), in which case a Nash
Equilibrium Point (NEP) does not necessarily exist. In
such situations, the best-response iterated play may lead
to convergence problems and exhibit limit cycle behavior
(cf., Section 3). Alternatively, the suppliers could play
the iterated better-response non-cooperative game, pos-
sibly with more reliable convergence properties [12,20].

Given global knowledge of the retailer’s supply con-
duits'!, each supplier could compute its “best-response”
prices in Step 6 leading to a Nash equilibrium. Alterna-
tively, the retailer could not explicitly divulge its system
state (just as the cost of supply is not known to the re-
tailer in our set-up) and compute the revenue function
fe(Pg) = PgSe(pg;p_ ) for each supplier g € G, again
assuming p  fixed from the previous iteration.

Note how this algorithm depends on forecasts of de-
mand for the upcoming epoch (which needs to be long
enough to accommodate the ramp-up/down times of the
suppliers). Day-ahead forecasts [18] could be used to in-
form the initial prices set by the suppliers.

3 Numerical study

We study the iterative supplier game described in section
2.2 with an example out-tree forest that has two gener-
ator (source) nodes and three consumer (sink) nodes as
shown in Fig. 1. We consider the scenario where the
edge prices are independent of the power-flow they carry,
and the edge capacities are set to large values so that they
do not constrain the supply allocation on any of the paths.

10We chose { as follows. Starting with a small trial value of { =
0.005 pg, if ug(pg + C,Eig) > ug(pg, P,g,) we accept the value of ;

Else { is decreased by a factor of 2 iterati‘vely until ug(pg +8,p_ ) >

4
ug(pg; p_,)-

11 Again, the motivating example here is a power system retailer/ISO
which owns and operates the grid connecting generators/suppliers to

loads/consumers.



Then we consider a scenario where some of the edge ca-
pacities are decreased in order to constrain the supply
allocation on certain paths, effectively simulating the ef-
fect of increased edge (or path) costs.

Figure 1: Example out-tree network with two suppliers
(root nodes) and three consumers (leaf nodes) used in our
study

For the out-tree network in Fig. 1, the fixed edge costs
l,, Ve € E were randomly chosen from a uniform prob-
ability distribution on the interval [0.1,1]. For this sce-
nario, the edge capacities were all set to a large value of
1000 so that, effectively, the supply allocations and dy-
namics of the game are not affected by the edge capaci-
ties. The constants in D(P), our model for the total con-
sumer demand, were chosen as Dy, = 0, Dpax = 1000,
and Pyax = 5. The total consumer demand D(P) is as-
sumed to be proportionally divided among the individ-
ual consumers, i.e., 0j = ﬁ, Vj € J. For clearing prices
P > Ppax, the flexible demand is 0. The minimum supply
allocation for the suppliers was set to Sg‘i“ =10, g¢g=1,2,
and the maximum supply allocation for the suppliers
was set to Sg** = 500, g =1,2. By varying the con-
stants a; and ap in the supplier utility functions u;(p)
and us(p), we found some values of these constants for
which the game has interior Nash Equilibrium Points
(NEPs), while for other choices of these constants there
are no NEPs. We next illustrate the dynamics of the game
for a case where there is an interior NEP, and for a case
where there is no NEP.

3.0.1 Game with an interior NEP

For the choice a; = 0.02 and a; = 0.04, the game has an
interior NEP at supplier prices (p},p3;) = (4.29,4.53).
For any two-supplier game, this can be illustrated us-
ing plots of the best response curves of the two sup-
pliers, defined as Ai(p2) = argmax,, _ou1(p1,p2) and
M (p1) =arg max,, .o u(p1, p2). The points of intersec-
tion of these two curves are the NEPs of the game. In

Fig. 2, the best response curves A;(p2) and A(pp), and
the single NEP (p7, p3)) are shown.

——Best response of supplier 2 Best response of supplier 1 ‘

4.5+
Z.Z(p,l)*)/
ne

NEP

Aylp)——>

1
0 0.5 1 1.5 2 25 3 3.5 4 4.5
P

Figure 2: The best response curves for the example out-
tree network with a; = 0.02 and a, = 0.04. The point of
intersection of the two curves is a NEP.

Next, we simulated the iterative game described in
section 2.2 from different values of initial supplier prices
p, and compared the dynamics of both the best-response
play action and the better-response play action. In this
case, we found that the best-response iterated play con-
verged to the NEP (4.29,4.53) from a wide range of
initial prices, implying that the NEP has a large basin
of attraction. In Fig.3, we show the trajectories of the
best-response iterated play from different initial supplier
prices, all of which converge to the NEP.

On the other hand, the better-response iterated play
converges to a few different mutual local maxima of
the supplier utility functions starting at different initial
prices, but does not converge to the NEP unless initial-
ized very close to the NEP. This is illustrated with trajec-
tories of the better-response iterated play from different
initial supplier prices in Fig. 4.

It is interesting to compare the final clearing price (to
consumers) of the best-response and better-response it-
erated play. For the best-response approach, which con-
verges to the NEP from a wide range of initial supplier
prices, the clearing price at the NEP is around 4.37. For
the better-response approach, which converges to a few
different equilibrium supplier prices from different ini-
tial supplier prices, the distinct clearing prices at conver-
gence are around 4.37,4.40,4.46,4.49,4.68, and 4.82. In
this example, the better response approach converges to
larger values of clearing price.
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Figure 3: Trajectories of the best-response iterated play
from different initial supplier prices (indicated with a
cross symbol) for the example out-tree network with
a; = 0.02 and a; = 0.04. All the trajectories converge
to the NEP in just a few iterations.

5

Figure 5: The best response curves for the example out-
tree network with a; = 0.002 and a, = 0.004. In this case
the curves do not intersect and hence there are no NEPs.

In this scenario, we simulated the best-response iter-
ated play starting from different initial supplier prices
and found that the iterations do not converge, but ex-

. hibit limit-cycle oscillations after a certain number of

iterations. In Fig.6, we show the trajectories of the
est-response iterated play from different initial sup-
plier prices, all of which exhibit limit-cycle oscillations
around the region where the best response curves have
discontinuities.

IS
T

3.5
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L
2- X
1.5 X
1+
0.5
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0 0.5 1 1.5 2 25 3 3.5 4 4.5 !

Figure 4: Trajectories of the better-response iterated play
from different initial supplier prices (indicated with a
cross symbol) for the example out-tree network with
a; = 0.02 and a, = 0.04. The trajectories converge to
different locally optimum equilibrium points.

3.0.2 Game with no NEPs

For a different choice of a; = 0.002 and a, = 0.004, the
best response curves of the suppliers are shown in Fig.5.
Note that the curves do not intersect (although they ap-
pear to be) because of the presence of discontinuities as
indicated in the figure. Also, since the best response
curves are discontinuous, a Nash equilibrium does not
necessarily exist [14].

Pl
250
2F X
150 x
s 1 15 2 25 3 35 a 15

Figure 6: Trajectories of the best-response iterated play
from different initial supplier prices (indicated with a
cross symbol) for the example out-tree network with
a; = 0.002 and a; = 0.004. All the trajectories exhibit
limit-cycle oscillations.

However, when the better-response method is used to



incrementally update the supplier prices, the iterations
are stable and always converge to some mutual local
maxima of the supplier utility functions, starting from
different initial prices. This is illustrated with the better-
response trajectories from different initial prices in Fig.
7.

rations (http://www.pserc.cornell.edu/matpower) includ-
ing those with more general distribution graphs. We’ll
also consider commodity-flow problems with edge costs
that are dependent on the flow they carry (e.g., to model
losses on edges or retailer operations and maintenance
charges). Given supply and demand constraints with
multiple source and sink nodes, a minimum-cost flow
problem can be solved using the Edmonds-Karp algo-

* <rithm which has computational complexity O(|V||E|?)

for a flow network with |V| nodes and |E| edges [8].
In alternative economic dispatch formulations, the price
to consumers may vary depending on the mix of supply

o they receive and their particular distribution costs. That
3 is, in the above out-tree forest framework, the price to
P.
Bsp

consumer j is

Pi(x) = ( )

nell:o(n)=j

(pc(n) + Ln)xn> Z Xn

nell:o(n)=j

In more centralized and “less deregulated” frameworks,
rather than a competitive game among the generators, the

Figure 7: Trajectories of the better-response iterated play
from different initial supplier prices (indicated with a
cross symbol) for the example out-tree network with
a; = 0.002 and a; = 0.004. All trajectories converge to
some locally optimum equilibrium point.

We can also compare the final clearing price of the
best-response and better-response approaches. Since the
best-response approach does not converge in this ex-
ample, we computed the average clearing price over
one period of the limit-cycle, which has a value of
around 2.28. For the better-response approach, some
distinct clearing prices at convergence are given by
3.21,3.27,3.39,3.59,4.83. Although the best-response
approach has a lower average clearing price compared
to the better response approach, its limit cycle behav-
ior when there are no NEPs (as observed in this exam-
ple) may make it unsuitable in practice. On the other
hand, the better-response approach has better conver-
gence properties and is also more efficient from a compu-
tational standpoint since the suppliers only have to make
a small change to their prices based on a local search.

4 Discussion

Similar results ensue when edge capacities are tighter
and affect the equilibrium results and when gener-
ation costs are affine to account for ramp-up. In
future work, we will study DC approximate anal-
ysis [24] of standard IEEE power system configu-

ISO/retailer stipulates price of supply and minimizes to-
tal generation cost (dec Cg, I.e., itknows ¢, Vg € G) for
economic dispatch OPF.
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