
DAPA: Diagnosing Application Performance Anomalies for
Virtualized Infrastructures

Hui Kang
Stony Brook University

hkang@cs.stonybrook.edu

Xiaoyun Zhu
VMware, Inc

xzhu@vmware.com

Jennifer L. Wong
Stony Brook University

jwong@cs.stonybrook.edu

Abstract
As cloud service providers leverage server virtualization
to host applications in virtual machines (VMs), they must
ensure proper allocation of resource capacities in order
to satisfy the contracted service level agreements (SLAs)
with the application owners. However, the ever-growing
number of virtual and physical machines within such in-
frastructure creates greater challenges in quickly and ef-
fectively localizing the system bottlenecks that lead to
SLA violations. This paper describes DAPA, a new per-
formance diagnostic framework to help system admin-
istrators analyze application performance anomalies and
identify potential causes of SLA violations. DAPA incor-
porates several customized statistical techniques to cap-
ture the quantitative relationship between the application
performance and virtualized system metrics. We have
built a prototype implementation of DAPA on a cluster
of virtualized systems to diagnose a set of SLA viola-
tions for an enterprise application. Preliminary evalua-
tion results show that DAPA is able to localize the most
suspicious attributes of the virtual machines and physical
hosts that are related to the SLA violations.

1 Introduction
An increasing number of businesses and organizations
are deploying their business critical applications and con-
sumer services into virtualized cloud infrastructures. In
return, the cloud service providers must manage and en-
sure all hosted customer applications meet their con-
tracted service level agreements (SLAs). When a hosted
application experiences an SLA violation due to poor
performance, the cloud provider must quickly localize
the application or system component(s) causing the ob-
served performance anomaly in order to bring the system
back to its normal operation. Common performance di-
agnosis procedures today heavily rely on the system ad-
ministrator’s domain knowledge in specific application-
s/platforms and associated performance best practices,
which are labor intensive, error prone, and non-scalable.

Prior research has used inference-based techniques [1,
4, 6, 3, 10] or machine learning algorithms [7] to iden-
tify dependencies among system components and local-
ize likely causes of faults and performance anomalies in
traditional data centers and networks. However, the ma-
jority of existing methods are designed in the absence
of virtualization, and hence do not utilize or account
for the following characteristics of a virtualized infras-
tructure: (1) Application SLA violations can occur due
to resource interference or contention between VMs co-
located on the same physical host, a phenomenon nonex-
istent on traditional, dedicated infrastructure. (2) Fine-
grained, system-level performance counters are readily
available on most virtualization platforms, requiring no
customized instrumentation. (3) VMs can be migrated
from one host to another, causing the same application to
depend on different hardware components over time. (4)
The dependency between the VMs and their hosts may
lead to strong correlation between some performance
metrics. This needs to be dealt with explicitly to avoid
inaccurate results and wasted computation.

In this work, we present a new online Diagnostic And
Performance Analysis tool (DAPA) to assist cloud sys-
tem administrators in managing and diagnosing applica-
tion performance on virtualized infrastructures. Figure 1
illustrates the system architecture of DAPA and its repre-
sentative workflow. For example, the cloud user deploys
a multi-tier web application onto the cloud provider’s vir-
tualized infrastructure. The monitoring component of
DAPA continuously collects both application and sys-
tem metrics and monitors the key performance metrics
as indicated by the SLA (1). The state of the SLA is
also being monitored by the cloud user. When a poten-
tial SLA violation is detected, the SLA monitor sends an
alarm to DAPA’s analysis engine (2). The modeling com-
ponent of the analysis engine then starts building corre-
lation models that relate application performance to ob-
served system metrics, and the diagnosis component uses
these models to produce the most suspicious system at-

1

Cloud User

Cloud Infrastructure

Anomalous
VM & host
attributes

Analysis Engine

Diagnosis D

Cloud Provider

System
Administrator

Modeling

SLA Monitor

Metric Collector

Monitoring

C

Figure 1: DAPA system architecture and workflow

tributes that are associated with particular VMs and hosts
(3). Based upon these outputs, the cloud system admin-
istrator determines the cause of the observed SLA viola-
tion, and then takes remediation steps, such as changing
resource configurations of associated VMs or using VM
migrations, to address the performance problem (4)(5).

We develop an innovative application of the statis-
tical variable selection algorithm, Least Angle Regres-
sion (LARS), in the DAPA framework for the purpose
of modeling the relationship between application perfor-
mance and system metrics. To the best of our knowledge,
our approach is the first to adopt LARS for performance
management in virtualized cloud environments. More-
over, we design two additional steps to further improve
the quality of the model: (1) As relevant metrics from
VMs and hosts may correlate with each other and thus
jeopardize the accuracy and stability of the LARS re-
sults, we introduce a metric pre-processing step in order
to mitigate the correlation noise. (2) We exploit the clus-
tering of the models with close similarity in conjunction
with model reconciliation to identify the most suspicious
attributes related to the SLA violation.

We have built a prototype implementation of DAPA
and an example of a virtualized platform with a multi-
tier application running in VMs deployed across multi-
ple physical hosts. The preliminary evaluation of DAPA
involves case studies of several performance bottlenecks
and system anomalies. The experimental results demon-
strate that our approach is able to localize the most sus-
picious attributes of the VMs and the physical hosts that
are related to the observed SLA violations.
2 Related work
Anomaly detection and diagnosis. Prior research has
extended classical problem determination techniques to
fault detection and diagnosis in distributed systems.
These techniques often rely on establishing a depen-
dency model between interacting system components [6,
4, 1, 3]. They either require heavy instrumentation of
the middleware [6, 4] or need software agents to record
and analyze packet traces on each host [1, 3] to infer de-
pendencies. Similarly, a two-level dependency graph is

studied in [10] to localize link failures in IP networks.
Another line of work relied on machine learning tech-

niques to model the relationships in distributed sys-
tems. For example, a Tree-Augmented Bayesian Net-
work (TAN) model is adopted in [7] to correlate applica-
tion performance states with system-level measurements,
and to identify a subset of system metrics that provide the
classification of the performance states. However, the
computational complexity of TAN makes it unfit for on-
line analysis in large-scale environments. Similar tech-
niques have been applied to classify the states of hun-
dreds of performance metrics collected in a data cen-
ter and to create “fingerprints” for observed performance
crises using a selected subset of relevant metrics [5]. Our
work can allow the creation of similar fingerprints using
the suspicious VM- and host-attributes selected.
Application performance modeling. There has been
a large body of work studying analytical performance
models for modern multi-tier applications, for the pur-
poses of resource provisioning, capacity planning, and
performance anomaly detection. In [16] a traditional
queueing network model is extended to estimate the per-
formance of a multi-tier Internet application. Other work
rely on regression-based techniques to estimate parame-
ters in similar performance models [15, 18].

Recent work on developing analytical performance
models for virtualized applications aims to build model-
based adaptive resource allocation systems. Typically,
such models characterize application-level performance,
e.g., throughput or response time, as a function of
system-level and workload-level parameters, such as re-
source utilization and transaction rate. Model structure
and parameter values are inferred from measurement
data using statistical learning techniques [13, 11, 12].

All of the above performance models have their input
parameters pre-determined by human experts. Instead,
DAPA employs simple statistical learning techniques to
automatically choose a set of important system-level at-
tributes that are likely related to observed performance
anomalies. This allows our approach to scale to environ-
ments with a much larger number of collected metrics
and more complex infrastructures.
3 Overview and Challenges
The DAPA framework has three main components: met-
ric monitoring, online modeling, and diagnosis. In order
to properly identify the system metrics which are con-
tributing to an SLA violation, system metrics for each
component are measured from both the application and
system level. A sliding window of these measurements is
maintained for online evaluation. Then the online model-
ing and the diagnosis processes of the DAPA framework
work collaboratively in order to localize the most likely
causes of the detected SLA violation.

The application of statistical techniques to modeling

2

of system behavior is plagued by several challenges. The
most obvious challenge is the sensitivity of the models
to variation in the data, or system metrics in this case,
and overtuning of the models. A related challenge is de-
termining the proper set of metrics to build the model.
Many regression-based methods fail to eliminate highly
correlated metrics and therefore create undesired noise.
On the other hand, brute force calculation of pairwise
correlations among all system metrics is not only time
consuming, but often leads to inconsistent results.

Secondly, because of the system variation and work-
load dynamics, it is often required that the models be
updated for different periods of time. Recreating models
periodically can result in a collection of models being
built over time, each only relevant to the workload and
system behavior at the time. Clustering of these models
into different groups in correspondence with the applica-
tion’s SLA compliance state is challenging and requires
an automated and systematic approach. For example, it
may be difficult to find a clean cut between the time peri-
ods of SLA compliance and SLA violation, due to a great
deal of uncertainty constantly present in a shared virtu-
alized environment. The measurement data any model
is based on may exhibit the features of both normal and
abnormal states of the system.
4 DAPA approach
To address these challenges, we have developed a mod-
eling and diagnosis workflow (Figure 2) that involves
multiple key steps specifically designed to improve the
quality of the data and the accuracy of the modeling pro-
cess. One such step is metric pre-selection to mitigate
the “correlation noise” by eliminating those correlated
metrics prior to constructing model series. We also use a
clustering and reconciliation strategy to identify the best
data set representing the SLA violation state, so that it
can be used to identify the attributes of the likely causes
of the performance anomaly.

The monitoring component continuously collects the
application performance and system metrics at a fine
time granularity (e.g., every 5 seconds). It also moni-
tors the SLA metric and raises an alarm if an SLA vio-
lation is detected. We define another condition named
potential SLA violation, which is a more stringent re-
quirement than the true SLA requirement, as the trigger
to start the modeling phase of the analysis. For example,
if an SLA violation occurs when more than 10% of the
response times are greater than one second within a spec-
ified period, the potential SLA violation condition is met
when more than 5% are generated in the specified pe-
riod. Using these more stringent conditions, the DAPA
approach can begin to monitor and model the behavior
of the system prior to an actual SLA violation occurring.
Therefore, the characteristics of the system (closest to
normal operation) can be used to compare with anoma-

Modeling

Diagnosis

Monitoring

ng

Figure 2: Workflow of DAPA analysis engine.

lous states. We describe the details of the modeling phase
and the diagnosis phase in the next two subsections.
4.1 Modeling
To improve the quality of the regression models, we de-
signed two pre-processing steps, model pre-construction
and metric pre-selection, so that those highly correlated
metrics can be filtered out before a final set of models
are constructed. We leverage the strengths of the Least
Angle Regression (LARS) technique [8] in this process.
Efron [8] proved conceptual and computational similar-
ities between three variations of LARS (i.e., stagewise
selection, LAR, and Lasso). We use Lasso in our work,
and for the rest of this paper, we use the terms Lasso and
LARS interchangeably.

Let X1,X2, · · · ,Xm be the n-dim sample vectors of the
m predictor variables and Y be the n-dim sample vector
of the response variable. A candidate vector of regres-
sion coefficients β = (β1,β2, · · · ,βm) produces the pre-
dicted response vector as Ŷ=∑m

i=1βiXi. Lasso chooses β
to minimize the residual sum of squares (RSS) between
the measured and the predicted responses, subject to a
constraint on the sum of absolute values of the regres-
sion coefficients (L1 penalty).

min ‖Y− Ŷ ‖=
n
∑
j=1

(

y j−
m
∑
i=1

βiX ji

)2

,s.t.
m
∑
i=1

|βi| ≤ t.

The bound t in the above equation affects the result-
ing coefficients in such a way that a very small t shrinks
regression toward 0. As t increases, Lasso ensures that
coefficients become non-zero one at a time. Every time
an additional coefficient becomes non-zero is referred to
as one step. For a given constraint t, only a subset of the
predictor variables have non-zero coefficients.

Two important features make Lasso suitable for model
selection. First, by selecting an appropriate t, the pre-
dictor variables with non-zero coefficients in the Lasso

3

model are important factors affecting the response vari-
able, leading to a simple model with good prediction
accuracy. Second, for the most significant variables,
Lasso retains their presence by reducing the impact (i.e.,
shrinking their coefficient values less). By doing so, the
coefficients of the selected valuable predictor variables
can provide accurate predictions of future values.

In DAPA, we use the system metrics collected from
each VM or host as the predictor variables, X1, · · · ,Xm,
and the observed application response time as the re-
sponse variable, Y. In order to use Lasso for the pur-
pose of model construction and metric selection, we face
two main issues. First, we must select an appropriate
regression model learned at the kth step of the Lasso
regression, where k < m, meaning only a subset of the
predictor variables have non-zero coefficients. Second,
as we mentioned earlier, some mutually correlated met-
rics will have negative effects on the model accuracy and
therefore need to be eliminated. Given the basic under-
standing of the Lasso regression, we now describe the
two pre-processing steps in modeling.
Model pre-construction. We first go through a prelimi-
nary model pre-construction step using Lasso, where the
inputs to the algorithm are n samples (e.g., n = 240) of
the predictor variables and the response variable, col-
lected from a time window before the potential SLA vi-
olation occurred. Lasso produces an ordered list of the
predictor variables, say, {X1,X2, · · · ,Xm}, where Xi is the
variable whose regression coefficient becomes non-zero
at the ith step, and a sequence of Cp,i values (a statis-
tic representing risk in including Xi [8]). These are then
passed onto the next metric pre-selection phase as inputs.
Metric pre-selection. The metric pre-selection algo-
rithm presented in Algorithm 1 takes advantage of the
information from the pre-constructed model and the Cp,i
heuristic to eliminate highly correlated metrics, instead
of calculating the correlation for every pair of metrics.

First, we check if Cp,i is reduced (i.e., Cp,i <Cmin) af-
ter adding the metric Xi to the regression model. If so, Xi
remains in the metric set X . Otherwise, Xi has undesir-
able consequences–unstable and inaccurate coefficients,
particularly if Xi has some strong collinear relationship
with metric(s) already in the set. Thus, we calculate the
correlation between Xi and the earlier metrics to deter-
mine if they have strong collinearity. If the correlation is
higher than corrThreshold, Xi is then removed from the
metric set X . Once a metric is removed, the remaining
Cp,i values for all remaining metrics are a reflection of
the model with this metric included. In Algorithm 1, inc
is a counter that keeps track of the number of times Cp,i
is increased; once inc reaches incThreshold, the while
loop stops. Rather than repeating the Lasso regression
each time a metric is removed, we also use a f lag to
indicate that correlations between all remaining metrics

Algorithm 1:Metric Pre-Selection
 X ←− Initial metrics set {X1,X2, · · · ,Xm} ;
incT hreshold←− α (Stop condition);
corrThreshold←− β ;
f lag←− false ;
inc←− 0; i←− 1;Cmin = INT MAX; /* first metric */;
while inc< incThreshold do

if Cp,i <Cmin then
/* Keep this metric in the set, improve model fit and reduces
risk */
if f lag == true then

for (j←− 1; j < i && Xj ∈ X; j++) do
if |corr(Xi,Xj)|> corrThreshold then

X ←− X−{Xi} ;

else
/* metric increases the risk, to be removed */
inc++;
for (j←− 1; j < i && Xj ∈ X; j++) do

if |corr(Xi,Xj)|> corrThreshold then
X ←− X−{Xi} ;
f lag←− true ;

Cmin ←−Cp,i ;
i++ ;

Remove {Xi+1, · · · ,Xm} from X ;

must be checked. Note that this extra computation adds
minimal overhead to the approach since the outer loop is
bounded by incThreshold.
Model series construction. Using the pre-selected met-
rics, DAPA then constructs a series of models using non-
overlapping time windows prior to the potential SLA vi-
olation, each with T measurement samples (e.g., T=120)
for a given period of time (e.g., 10 minutes). This model
construction phase continues as time goes on. If no real
SLA violation occurs two hours after the potential SLA
violation is detected, the modeling phase stops and the
system moves back to the passive monitoring mode; if
however, a true SLA violation is detected within two
hours, DAPA continues to build correlation models for at
least one more hour, or until SLA violation stops. Then
the series of models will be fed into the diagnosis com-
ponent for further analysis.
4.2 Diagnosis
Model clustering. The series of models constructed
span across time periods both before and after the SLA
violation. Therefore, they may exhibit different charac-
teristics. However, the models from the potential SLA
violation phase may demonstrate characteristics of both
SLA compliance and SLA violation. In order to im-
prove modeling accuracy, we must correctly classify
these models into different categories representing dis-
tinct system states.

In DAPA, we use the k-means clustering algorithm
with k = 2 to classify the models into two clusters, char-
acterizing the SLA compliance and violation states of the

4

host host

VMs

…
… …

 …

Trace file

Figure 3: Testbed architecture for DAPA experimentation.

system. More specifically, we represent each model by
the vector of regression coefficients, [β1,β2, · · · ,βm], and
use Euclidean distance as the distance measure. Note
that k= 2 is not always the optimal setting. We leave the
investigation of optimal k as future work.
Model reconciliation The final stage of DAPA involves
aggregating all the sample data belonging to the SLA vi-
olation cluster, and creating a reconciled LARS model.
The top selected metrics from this model are then pre-
sented to the system administrator as suspicious system
attributes, ordered by significance to the application per-
formance. The higher impact a metric has on the ob-
served performance metric, the earlier it enters the list of
selected metrics. Hence, a system administrator can be-
gin diagnosing the application performance anomaly in
the order of the system metrics selected.
5 Preliminary Results
We now describe our preliminary experience using the
DAPA analysis tool to model the application perfor-
mance and system metrics and to detect the suspicious
metrics related to SLA violations caused by three types
of synthetic faults injected into the system.
Deployment. The benchmark we choose is the Olio so-
cial network application due to its popularity in bench-
marking virtualized systems such as Cloudstone [14] and
VMmark 2.0 [17]. For the sake of scalability, we create
more than one instance for each tier of the Olio applica-
tion and deploy all instances in VMs across three phys-
ical machines. Xen 4.0.1 is used as the hypervisor. The
deployment is as shown in Figure 3.

We drive the Olio application with the trace-driven
workloads generated by Faban [9] using the real-world
trace from the world cup 98 website [2]. To feed the
trace file to Olio, we have to customize the workload file
format and scale down the workload intensities.

The core of the DAPA tool is the model analysis en-
gine, which we implemented in a separated machine as
shown in Figure 3. The analysis engine aggregates 54
metrics collected from within the VMs and from the
hosts, as well as those from the SLA monitor. These met-
rics include the crucial system resources such as CPU
utilization, memory usage, disk activities. We use ex-
isting monitoring tools (e.g., vmstat, dstat, and
virt-top) to collect these data. The SLA is defined

(a) Lasso of original metrics (b) Lasso after metric pre-selection

Figure 4: Lasso regression for the disk-busy case. x-axis: ∑mi=1 βi,
y-axis: standardized coefficients (βi). Each line denotes a coefficient.

against the application performance in terms of the re-
sponse time of a particular transaction type such as tag
search of a social event. The response times and system
metrics are collected in 5 second intervals. For each syn-
thetic fault injection case, we use 120 data samples to
construct one model using Lasso regression, and build a
total of 10 models in a 100-minute run. Five of the mod-
els are built using data prior to detecting the potential
SLA violation and five additional after.
Fault injections. In our initial experiments, we inject
one single fault at a time into one of the VMs or hosts to
induce degraded performance in the storage, memory, or
CPU resources, leading to an SLA violation. We inject
the following three types of faults: (1) disk- intensive
processes to contend the I/O resource within an appli-
cation tier VM instance, (2) ballooning down the mem-
ory allocation of a database tier VM, and (3) creating a
CPU-intensive VM to contend the CPU resource with a
co-located application tier VM instance.
Results of metric pre-selection. Figure 4 shows the
Lasso regression steps of the input metrics before and af-
ter the metric pre-selection phase for the disk-busy case.
Due to the space limit, we omit the regression results of
the pre-selection algorithm for the other two faulty cases
as they have similar results. Several key observations are
presented as follows.

First, in Figure 4(a) the coefficients of a subset of met-
rics grow more rapidly than others and in opposite direc-
tions. The cause is that as Lasso has a tendency to push
the coefficients to large values as quickly as possible, it
increases the coefficients for every pair of highly corre-
lated metrics at the same time, but in opposite directions
so they can cancel out. In contrast, the coefficients in
Figure 4(b) does not have this property. This shows that
our metric pre-selection algorithm helps to eliminate the
highly correlated metrics, which makes the model coeffi-
cients unstable and sensitive to small data changes. Sec-
ond, the proposed pre-selection algorithm constrains the
coefficients in a small range. Because the pre-selection
algorithm filters metrics with strong correlations, the co-
efficients of the selected metrics have much smaller val-
ues than those of the original metrics. (Notice the scales

5

!

"

#

$

 " $ %

(

 " $ %

Figure 5: First two metrics selected by DAPA in the disk contention
case: wait: CPU I/O wait, bo: block written to disk.

of the y-axis in Figure 4(a) and (b) are different.) Finally,
we see that the number of metrics is reduced by around
1/3 from 54 to 32, as the pre-selection algorithm stops
whenCp,i reaches a relatively small value.

We conclude that using the proposed metric pre-
selection algorithm not only improves the model accu-
racy and stability by filtering highly correlated metrics,
but also reduces the number of input metrics to the mod-
eling function, which reduces model construction time.
Diagnosis results. In addition to modeling the perfor-
mance metrics of an SLA violation, we also infer the re-
source bottleneck that is the root-cause of the problem
through the derived models. For each case, we first run
the k-means clustering algorithm on the coefficient vec-
tors of the models with k = 2. In the next step, we rec-
oncile the data from the models of SLA violation, run
LARS on the aggregated data set, and obtain the ordered
metrics based on the regression steps. Figure 5 plots the
response time as a function of the first two metrics se-
lected by LARS on the reconciled data for the SLA vio-
lation caused by the disk contention case. With some do-
main knowledge, the system administrator can conclude
that the I/O activity of VM1 becomes a resource bottle-
neck for the application, leading to the SLA violation.
6 Conclusion and Future Work
We have designed and implemented a practical and ef-
fective model-based performance diagnosis framework,
DAPA. We argue the importance and necessity of assur-
ing model accuracy in face of metric variations and im-
proving its scalability in a large-scale environment. As
part of our approach, we propose several customizations
of statistical modeling techniques integrated in the DAPA
framework, including a metric pre-selection algorithm
and generating ranked system metrics from reconciled
models related to performance degradations.

Although the preliminary evaluation results are en-
couraging, we have several ideas to further improve the
DAPA framework. One goal is to clearly differentiate
causes for performance degradation due to misconfigu-
ration of VMs and due to interference from other VMs
sharing the same infrastructures. This can be achieved by
incorporating the internal knowledge from various sys-
tem layers of the virtualization platform into the mod-
eling process (as in a ”gray-box” approach). Further-

more, we aim to automate the process of finding the
causal relationship between VM instances based upon
their functionalities in the hosted application. We lever-
age a chained network composed of nodes represent-
ing individual VM instances. Although there were prior
publications on application topology discovery, very few
were specifically designed for virtualized systems. The
global knowledge combining the modeling results and
the network topology of VM instances can enable more
comprehensive understanding of performance anomalies
than local inferences alone. The incorporation of intelli-
gence in the VM instances is work-in-progress. Finally,
we plan to expand our testbed to a larger-scale multi-
tenant environment hosting different applications for fur-
ther evaluation of the DAPA framework.
References
[1] AGUILERA, M., MOGUL, J., WIENER, J., REYNOLDS, P., AND MUTHI-

TACHAROEN, A. Performance debugging for distributed systems of black
boxes. In SOSP (2003), pp. 74–89.

[2] ARLITT, M., AND JIN, T. A workload characterization of study of the 1998
world cup web site. In IEEE Networks (May/June 2000), pp. 30–37.

[3] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ,
D. A., AND ZHANG, M. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In Sigcomm (2007),
pp. 13–24.

[4] BARHAM, P., ISAACS, R., MORTIER, R., AND NARAYANAN, D. Magpie:
Online modeling and performance-aware systems. In HotOS IX (2003),
pp. 85 – 90.

[5] BODIK, P., GOLDSZMIDT, M., FOX, A., WOODARD, D. B., AND AN-
DERSEN, H. Fingerprinting the datacenter: Automated classification of
performance crises. In Eurosys (2010), pp. 111–124.

[6] CHEN, M., KICIMAN, E., FRATKIN, E., FOX, A., AND BREWER, E.
Pinpoint: Problem determination in large, dynamic internet services. In
DSN (2002), pp. 595 – 604.

[7] COHEN, I., CHASE, J. S., GOLDSZMIDT, M., KELLY, T., AND SYMONS,
J. Correlating instrumentation data to system states: a building block for
automated diagnosis and control. In OSDI (2004), pp. 231–244.

[8] EFRON, B., HASTIE, T., JOHNSTONE, I., AND TIBSHIRANI, R. Least
angle regression. The Annals of Statistics 32 (2004), 407–499.

[9] FABAN. Faban harness and benchmark framework.
http://java.net/projects/faban/.

[10] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN, A. C.
Ip fault localization via risk modeling. In NSDI (2005), pp. 387–390.

[11] KUNDU, S., RANGASWAMI, R., DUTTA, K., AND ZHAO, M. Application
performance modeling in a virtualized environment. In HPCA (2010), pp. 1
– 10.

[12] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-clouds: Man-
aging performance interference effects for qos-aware clouds. In Eurosys
(2010), pp. 237–250.

[13] PADALA, P., HOU, K.-Y., SHIN, K., ZHU, X., AND UYSAL, M. Auto-
mated control of multiple virtualized resources. In Eurosys (2009), pp. 13–
26.

[14] SOBEL, W., SUBRAMANYAM, S., AND ET. AL. Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web 2.0.
In Workshop on Cloud Computing and its Applications (2008).

[15] STEWART, C., KELLY, T., AND ZHANG, A. Exploiting nonstationarity for
performance prediction. In Eurosys (2007), pp. 31–44.

[16] URGAONKAR, B., AND ET AL. An analytical model for multi-tier internet
services and its applications. SIGMETRICS Perform. Eval. Rev. 33 (June
2005), 291–302.

[17] VMWARE. VMmark 2.0.
http://blogs.vmware.com/performance/.

[18] ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. A regression-based an-
alytic model for dynamic resource provisioning of multi-tier applications.
In ICAC (2007), p. 27.

6

