EyeQ: Practical Network Performance Isolation for the Multi-tenant Cloud

Vimalkumar Jeyakumar

Mohammad Alizadeh
David Mazieres
Balaji Prabhakar

Stanford University

Abstract

The shared multi-tenant nature of the cloud has raised
serious concerns about its security and performance for
high valued services. Of many shared resources like
CPU, memory, etc., the network is pivotal for distributed
applications. Benign, or perhaps malicious traffic in-
terference between tenants can cause significant perfor-
mance degradation that hurts performance of applica-
tions, and hence, impacts their revenue. Network perfor-
mance isolation is particularly hard because of the dis-
tributed nature of the problem, and the short (few RTT)
timescales at which they manifest themselves. This prob-
lem is further exacerbated by the large number of com-
peting entities in the cloud, and their volatile traffic pat-
terns.

In this paper, we motivate the design of our system
called EyeQ, with the goal of providing predictable net-
work performance to tenants. The enabler for EyeQ is
the availability of high bisection bandwidth in data cen-
ters. The key insight is that by leaving a headroom
of (say) 10% of access link bandwidth, EyeQ simpli-
fies dealing with potentially a global contention problem
into one that is mostly local, at the sender and receiver.
This allows EyeQ to enforce predictable network sharing
completely at the end hosts, with minimum support from
the physical network.

1 Introduction

The shared, multi-tenant nature of cloud providers
has raised concerns about their security and perfor-
mance. Many cloud customers have reported the “noisy-
neighbour” [2, 4] problem, where performance of the
system is unpredictable if a colocated tenant tries to grab
resources (CPU, disk, IO) disproportionately. While hy-
pervisors are equipped with mechanisms ot deal with
CPU, memory and disk isolation, network isolation has
attracted attention only recently. To date, commercial

Changhoon Kim
Windows Azure

Extra Large Instance

15 GB memory

8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)
1,690 GB instance storage

64-bit platform

1/0 Performance: High

API name: ml.xlarge

Figure 1: Screenshot of an offering from Amazon EC2.
CPU, disk and memory are allocated in familiar units. In
contrast, the units of “I0O,” is unclear.

offerings of network performance document only reach-
ability isolation. But, network performance isolation is
particularly vital for scale-out distributed services which
have a demanding network component, unlike CPU in-
tensive jobs.

Many cloud service providers today have some means
of allocating CPU, memory and disk resources, in fa-
miliar units such as “virtual” cores, GB of memory and
disk capacity (Figure 1). When it comes to 10, which
includes the network, the units are either absent, or neb-
ulous: “low, moderate and high.” Customers do not get
a clear picture of their network resource guarantees, and
are unable to cope with bad performance. Some of them
either give up [3] on the cloud citing bad performance,
or significantly rearchitect their applications. For exam-
ple, Netflix reported that their own data center networks
offered good performance, which afforded them to build
chatty applications; but on Amazon Web Services, they
redesigned their infrastructure to deal with performance
variability [1]. Our experience in talking to customers
suggests that they would like to have predictable perfor-
mance, as if the network allocated to them were dedi-
cated.

Conventially, network sharing has been enforced by
making the network aware of competing classes of traf-
fic, i.e., by configuring Class-Of-Service queues exposed
by many commodity switches. However, as noted by
Shieh et. al [18], the number of queues in switches has

not evolved beyond 8 or 16 queues per port. Hence, we
need a scalable mechanism to cope up with number of
tenants in the cloud. In the rest of this paper, we fo-
cus on the problem of sharing the network at large scale:
~10K tenants, ~100K servers and ~1M VMs. Pro-
viding predictable network performance—i.e. guaran-
tees on bandwidth, latency, jitter—is hard because, (a)
unlike CPU, memory and disk, network contention is a
distributed problem: contention can occur anywhere in
the network; (b) the number of contending entities and
their traffic characteristics are diverse: tens of thousands
of tenants with different flavours of TCP, UDP; (c) very
short timescale (few milliseconds) contention can affect
long term performance (as shown in Figure 2).

To enable a customer to set clear expectations of net-
work performance, we envison that a cloud provider
should be able to provision network resources for its
tenants, starting with bandwidth, in familiar units:
bits per second. The provider assures each instance
(VM) a guaranteed minimum bandwidth, so that the VM
is able to transmit and receive at atleast the chosen capac-
ity. The provider then supports a simple performance ab-
straction where the customer’s ‘virtual’ network of VMs,
in aggregate, perform as if they were connected to a sin-
gle switch with full bisection bandwidth. We asked our-
selves, “What are the requirements of a mechanism that
tries to enforce such guaranteed performance?” We ar-
rived at the following requirements by talking to devel-
opers and operators of a cloud provider; the requirements
are by no means complete, but some of these are high-
lighted by other proposals [6, 18] as well.

1. Performance guarantee The mechanism should
work in the worst case: it should guarantee band-
width to VMs, irrespective of the application de-
mands, traffic communication patterns, and network
activity of VMs belonging to other tenants.

2. Simplicity The mechanism should be simple and
should co-exist with network stacks of customers’
VMs. It should not rely on any kind of extensive
signalling from the application about its bandwidth
demands, and should not require customers to over-
haul their applications.

3. High Utilization The mechanism should retain the
statistical multiplexing benefits of the cloud, and not
statically allocate resources.

4. Scalability The mechanism should scale efficiently
with the number of tenants, VMs, servers; the size
and speed of the network, i.e. 1Gbps, 10Gbps,
40Gbps, and beyond.

Related Work: Recently, hypervisor based mecha-
nisms have been proposed that mitigate the effect of

many (possibly) malicious traffic patterns. Seawall [18]
tackled the problem by tunneling packets through end-
to-end congestion-controlled tunnels. On a link, this
achieves weighted max-min fairness between multiple
source VMs. The inherent problem of weighted shar-
ing is that a tenant’s bandwidth share depends on the
unknown activity (i.e., number of senders) of other ac-
tive tenants; this violates our first requirement. Okto-
pus [6] also made the case for predictability in data cen-
ter networks, and used an end-to-end mechanism com-
bined with intelligent placement to provide strict band-
width guarantees. However, Oktopus operated at fairly
large timescales (2 seconds). As we will see in §2, it is
important for performance isolation mechanisms to react
quickly, within a few round trip times. Moreover, Okto-
pus (and SecondNet [13]) statically reserve bandwidth,
which violates our third requirement.

The rest of the paper is organized as follows. Section 2
further elaborates the difficulties of sharing the network.
Section 3 lays down some design choices that greatly
simplify mechanisms for sharing network bandwidth,
and Section 3.2 presents a preliminary design for enforc-
ing predictable network performance. Finally, Section 4
concludes with some directions for future work.

2 Why is network sharing hard?

In this section, we will first see why network sharing is
a hard problem, and then discuss various scenarios in
which performance interference can occur.

Distributed Nature: In a general network topology,
contention (or congestion) for bandwidth and latency
can happen at any hop inside the network. To cope
with increasing application bandwidth demands, mod-
ern data center networks have very high bisection band-
width. Even in such network topologies with large bisec-
tion bandwidth, congestion can happen anywhere if the
traffic does not conform to the hose model [11] (i.e., if
the traffic matrix is non-admissible). This situation arises
when any link in the network receives traffic at a sus-
tained rate greater than its capacity. If the traffic matrix
is admissible, then it is difficult to congest the network
core, but it is easy to congest any single “port,” i.e., an
end-host. This happens if more than one host sends data
simultaneously to a receiver (N to 1 traffic pattern).

Traffic diversity: Many cloud environments host tens of
thousands of tenants, allowing them to bring their own
code and OS. This allows customers to tweak settings in
their network stack; use different TCP implementations
that have better performance; use multiple TCP connec-
tions to boost throughput; disable congestion control, or
even use an unreactive UDP session to transmit data.

Two end hosts
9G 9G
7G 7G
() [
©5G ©5G
o o
3G B8 top 3G
®-@ udp
UDP: minbw 3.3G 1G6 — total 1G (@@ udp]
TCP: minbw 6.7G 0 20 40 60 80 100 120 20.50 20.52 20.54 20.56 20.58 20.6(
Time (s) Time (s)
(a) TCP vs UDP setup. (b) Performance degradation of TCP flow (¢c) ON-OFF traffic pattern at small

due to bursty UDP traffic.

timescales.

Figure 2: At large timescales (2 second intervals), the UDP tenant’s demand is seemingly small. But, at a finer timescale, its bursty
nature has an adverse effect on the dynamics of TCP. These finer timescale interactions put a stringent performance requirement on
the reaction times of any isolation mechanism, and mechanisms that react at large timescales may not see the big picture.

This diverse nature of application traffic and unknown
communication patterns present a significant challenge.

Fine timescales: The maximum end-to-end latency
within a data center is becoming smaller, and is cur-
rently of the order of few 100us. Since a major-
ity of applications use TCP—which operates at RTT
timescales—interactions at small timescales could affect
performance. To understand why timescales matter, con-
sider an experiment where there are two tenants TCP
(green) and UDP (red), and say we wish to share band-
width between TCP and UDP in the ratio 2:1. Both ten-
ants send traffic to their servers, that are colocated on
an end-host. The TCP tenant starts one long lived flow,
but the UDP tenant sends traffic in an ON-OFF bursty
fashion so that its average rate is about 2.3Gbps (ON for
10ms, OFF for 20ms, at 7Gbps maximum). Figure 2(b)
shows the per-tenant receive throughput for both TCP
and UDP, aggregated over a 2 second period. The traf-
fic looks benign at such large timescales (Figure 2(b)),
when it is actually very bursty at smaller timescales (Fig-
ure 2(c)). Such bursty traffic patterns are not uncom-
mon for many multi-tiered applications [7]. The fine
timescales of interactions places stringent requirement
on the reaction times of any mechanism.

3 Consequences on Design

3.1 Network Design

Such stringent requirements of providing predictable
performance guarantees to tenants do exist for cloud
providers. The network design plays a crucial role in
dealing with network resource contention within the data
center. Since servers’ capital and operational costs ac-
count for a large fraction (~85% [12]) of the total costs

of a data center, it is important that the network does
not prevent the servers from achieving their full poten-
tial [17].

If one is to design a network that offers predictable
performance in the presence of unknown and random
traffic patterns, the network necessarily needs to have a
high, if not full-bisection bandwidth. In hindsight, it is
not surprising that many recent research efforts [11, 14]
have focused on how to build such high bandwidth inter-
connects from cheap commodity hardware. Further, to
ensure that the available bisection bandwidth is well uti-
lized, there is a need for intelligent routing mechanisms;
this is an area of active research [5, 16]. These mecha-
nisms bring us one step closer to realizing the data center
network as one giant switching fabric [19].

3.2 Mechanism design

If one were to view the data center network as a giant
switch, how would a bandwidth arbitration mechanism
look like? While previous work such as MPTCP [16]
and Hedera [5] focus on maximizing the total through-
put of the data center fabric, we now discuss a possible
answer to the above question, where the goal is enforcing
fairness across multiple traffic classes.

Addressing distributed contention: Algorithms for
bandwidth sharing (such as weighted round robin), and
their implementations (such as deficit round robin), have
been designed with the model of an output queued
switch. In this model, bandwidth contention is visible
locally, at the output port of a switch, where it can be
resolved using packet scheduling algorithms. Hence,
switch designs that try to provide Quality of Service
guarantees strive to emulate an output queued switch, us-
ing a switching fabric that has some speedup over the

1
RX 0G
Switch
1G
.

dropped

Figure 3: The difficulty of detecting access link con-
tention on the receive path.

edge link capacity. For any arrival traffic pattern to the
switch, it has been shown that a speedup of about 2 is
necessary [8], to perfectly emulate an Output Queued
Switch. In practice, it has been found that a smaller
speedup (between 1.1 and 1.2) usually sufficies [10] to
have the same benefits of an Output Queued Switch. The
purpose of speedup is to simultaneously ensure that (a)
the fabric is not a bottleneck; and (b) contention is moved
to the edge (i.e., the output queue), where it can be de-
tected and resolved locally.

The above observation guides the design of our mech-
anism. Viewing the network as a giant switching fabric
greatly simplifies a global network contention problem
to a local one: contention for transmit and receive band-
width of the access link. Contention on the transmit side
happens first within the end host, which can be resolved
by packet scheduling mechanisms at the VSwitch. Un-
fortunately, contention at the receiver first occurs at the
access link, which is inside the network. As shown in
Figure 3, in-network congestion can cause network de-
mands of a VM to go undetected. It is important that
the access link contention be quickly detected. To un-
derstand this, consider the example shown in Figure 2.
When UDP bursts at 7Gbps, the access link saturates
(at short-timescales) leading to packet drops. Since the
switch is not tenant aware, it drops both TCP and UDP
packets, to which TCP aggressively reacts by exponen-
tially backing-off. This ‘elasticity’ of TCP hides the true
demand for bandwidth, and hence, mechanisms that react
at timescales larger than a few RTTs cannot differentiate
between two cases: one where there is a genuine lack of
demand, and the other, where TCP has backed-off.

Introducing a small speedup to the network fabric
(over the edge links) mitigates contention from the net-
work, moving it completely to the edge, i.e., the VSwitch
port inside the hypervisor. This allows the VSwitch to
detect impending network congestion, and accurately ac-
count for congestion on a per-VM basis. The speedup ef-
fectively gives headroom to prevent packet drops in the
network, and allows the VSwitch to tease out the true
network demand from the underlying TCP flow, without
requiring any interaction with the VM’s TCP stack. By

TX datapath RX datapath
@] | @
f R%te Vo (Congestion Detectors |

VSwitch

et @f

A

Feedback

End-to-End
Flow Control

Figure 4: Overall system architecture.

measuring the rate at which each VM is receiving traffic
at the congestion detectors, the VSwitch signals sources
that exceed their fair share. Thus, the VSwitch can
enforce rich bandwidth sharing policies—such as mini-
mum, maximum, or weighted bandwidth guarantees—in
an end-to-end fashion.

To achieve the effect of speedup, we slow down the
end-hosts by detect congestion when the access link uti-
lization exceeds some fraction ¥ (less than, but close to
1). This bandwidth headroom of (1 — ¥) may seem like
a big price to pay, but in some cases, it actually leads to
better link utilization (as shown in Figure 5).

Taming traffic diversity: Our notion of performance
isolation translates to providing minimum end-to-end
bandwidth guarantees to tenants. Thus, to be agnostic
to the type of traffic, we treat packets between source-
destination pairs as a single meta-flow whose aggregate
rate is controlled through end-to-end congestion control,
irrespective of the tenants’ network stack.

Embracing timescales: The example shown in Fig-
ure 2(a) illustrates the need to react quickly, at timescales
of the order of round-trip times. Implementing the end-
to-end rate control mechanism in a distributed fashion, in
the datapath makes it possible to react to congestion in a
timely manner, within a few RTTs.

3.3 EyeQ Architecture

Figure 4 shows the high level overview of EyeQ’s trans-
mit (TX) and receive (RX) datapaths. The TX datap-
ath consists of rate limiters to enforce admission con-
trol. Contention at the transmit side is resolved by us-
ing a TX-weighted round robin (WRR) scheduler that as-

0 20 40 60 80 100 120
Time (s)

Figure 5: A preliminary prototype of our design helps mitigate
the harmful bursty nature of UDP traffic, and let TCP traffic at-
tain its minimum bandwidth guarantee of 6.6Gbps. Figure 2(b)
shows the harmful effect of UDP traffic without our isolation
mechanism.

sures each VM its (egress) minimum bandwidth guaran-
tee. To ensure that traffic does not congest any receiver,
there are multiple per-destination rate limiters. This is
analogous to ‘Virtual-Output-Queues’ in switches; mul-
tiple per-destination rate limiters prevent packets to un-
congested destinations from head-of-line blocking other
packets. These rate limiters vary their sending rate pe-
riodically using a control loop similar to TCP’s AI/MD
process, using feedback generated by the RX datapath.

The RX datapath consists of a number of congestion
detectors, one per VM. Each detector is assigned a “fair
rate” by the RX-WRR scheduler, and generates feedback
whenever the VM exceeds its allotted rate. The conges-
tion detector is clocked by the arrival of packets; if a
packet arrives to a VM, and the VM’s rate exceeds its
share, the congestion detector sends a feedback to the
source of the packet. The feedback can be anything:
a single bit (such as ECN), or an explicit rate (such as
RCP [9]). The RX-WRR scheduler enforces speedup by
splitting a maximum of y C between the VMs, where C
is the physical NIC capacity. The RX datapath works in
tandem with the TX datapath to enforce end-to-end flow
control.

4 Discussion and Future Work

In this paper, we discussed a mechanism for enforcing
network performance isolation in a large multi-tenant en-
vironment. We have implemented this design as a Linux
Kernel Module, and tested it against many adversarial
traffic patterns similar to the scenario discussed in Fig-
ure 2(a). We found that EyeQ is able to mitigate the
harmful effects of malicious traffic. In particular, Fig-
ure 5 shows how EyeQ protects the TCP tenant from
bursty UDP traffic, while simultaneously improving the

total network utilization from about 4Gbps (Figure 2(b))
to about 8Gbps.

In-network contention: While high bandwidth network
designs present lesser opportunity for in-network con-
tention, it does not eliminate its possibility. EyeQ does
not ignore this possibility, but gracefully falls back to
per-sender max-min fairness, using tenant agnostic con-
gestion notification mechanisms such as ECN. If the net-
work gets congested on ‘large’ timescales (such as a few
hours), it strongly indicates an unbalanced system de-
sign. We believe that the right approach is to invest more
on the network, so that it does not “get in the way” of
providing customer satisfaction.

Other Scenarios: The mechanism presented in this pa-
per focuses on a particular kind of traffic pattern, which
we call “intra-tenant;” communication between VMs of
the same tenant happens over a high speed network in-
terconnect, interfering with similar communication pat-
terns of other tenants. However, cloud networks also
host services like memcached clusters, storage, load bal-
ancers. These services are usually implemented as ten-
ants, and hence “inter-tenant” communication can also
result in performance interference. While we demon-
strated EyeQ’s ability to enforce minimum bandwidth
guarantees on a per-VM basis, EyeQ can directly benefit
from techniques such as Distributed Rate Limiting [15]
that enforce a limit on aggregate bandwidth consump-
tion.

Also, a data center has a lot of network capacity, but
typically only has ~100Gbps uplink bandwidth to the In-
ternet. Since tenants share this uplink, it is important
to have automated defense mechanisms to protect this
bandwidth that is crucial for the infrastructure. And fi-
nally, it is equally important to protect the downlink, and
defend against attacks originating from the Internet; this
is the holy grail of Internet Quality of Service.

5 Conclusion

We presented EyeQ, a platform to enforce network shar-
ing policies at large scale. By viewing the data center
network as a giant switch, and by trading off a small frac-
tion of the access link bandwidth, EyeQ is able to assure
a guaranteed minimum bandwidth guarantees to VMs in
a timely fashion, completely at the edge, with minimum
support from the network.

References

[1] 5 lessons we’ve learned wusing AWS.
http://techblog.netflix.com/2010/12/
5-lessons-weve-learned-using-aws.html.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Has Amazon EC2 become over subscribed?
http://alan.blog-city.com/has_amazon_
ec2_become_over_subscribed.htm.

Mixpanel-Why we moved off the cloud.
http://code.mixpanel.com/2011/10/27/
why-we-moved-off-the-cloud/.

VMWare: Rethink IT: Getting rid of
noisy neighbours. http://blogs.
vmware.com/rethinkit/2010/09/
getting-rid-of-noisy-cloud-neighbors.
html.

AL-FARES, M., RADHAKRISHNAN, S., RAGHA-
VAN, B., HUANG, N., AND VAHDAT, A. Hed-
era: Dynamic flow scheduling for data center net-
works. In Proceedings of the 7th USENIX confer-
ence on Networked systems design and implemen-
tation (2010), USENIX Association.

BALLANI, H., CoSsTA, P., KARAGIANNIS, T.,
AND ROWSTRON, A. Towards predictable data-
center networks. In ACM SIGCOMM (2011).

BENSON, T., ANAND, A., AKELLA, A., AND
ZHANG, M. Understanding data center traffic char-
acteristics. ACM SIGCOMM CCR (2010).

CHUANG, S., GOEL, A., MCKEOWN, N., AND
PRABHAKAR, B. Matching output queueing with a
combined input/output-queued switch. Selected Ar-
eas in Communications, IEEE Journal on (1999).

DUKKIPATI, N., MCKEOWN, N., AND FRASER,
A. Rcp-ac: Congestion control to make flows com-
plete quickly in any environment. In INFOCOM
2006.

FIROOZSHAHIAN, A., MANSHADI, V., GOEL,
A., AND PRABHAKAR, B. Efficient, fully local
algorithms for cioq switches. In INFOCOM 2007.
26th IEEE International Conference on Computer
Communications. IEEE (2007), IEEE, pp. 2491-
2495.

GREENBERG, A., HAMILTON, J., JAIN, N., KAN-
DULA, S., KiM, C., LAHIRI, P., MALTZ, D., PA-
TEL, P., AND SENGUPTA, S. VL2: a scalable
and flexible data center network. ACM SIGCOMM
(2009).

GREENBERG, A., HAMILTON, J., MALTZ, D.,
AND PATEL, P. The cost of a cloud: research prob-
lems in data center networks. ACM SIGCOMM
Computer Communication Review (2008).

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Guo, C., Lu, G., WANG, H., YANG, S., KONG,
C., SuN, P., Wu, W., AND ZHANG, Y. Second-
net: A data center network virtualization architec-
ture with bandwidth guarantees. In Proceedings
of the 6th International COnference (2010), ACM,
p- 15.

NIRANJAN MYSORE, R., PAMBORIS, A., FAR-
RINGTON, N., HUANG, N., MIRI, P., RADHAKR-
ISHNAN, S., SUBRAMANYA, V., AND VAHDAT,
A. Portland: a scalable fault-tolerant layer 2 data
center network fabric. In ACM SIGCOMM (2009),
ACM.

RAGHAVAN, B., VISHWANATH, K., RAMABHAD-
RAN, S., YOCUM, K., AND SNOEREN, A. Cloud
control with distributed rate limiting. In Proceed-
ings of the 2007 conference on Applications, tech-
nologies, architectures, and protocols for computer
communications (2007), ACM.

Railciu, C., BARRE, S., PLUNTKE, C., GREEN-
HALGH, A., WISCHIK, D., AND HANDLEY, M.
Improving datacenter performance and robustness
with multipath tcp. In SIGCOMM (2011).

RASMUSSEN, A., PORTER, G., CONLEY, M.,
MADHYASTHA, H., MYSORE, R., PUCHER, A.,
AND VAHDAT, A. Tritonsort: A balanced large-
scale sorting system. In Proceedings of NSDI
(2011).

SHIEH, A., KANDULA, S., GREENBERG, A.,
KiM, C., AND SAHA, B. Sharing the data center
network. In NSDI, USENIX (2011).

WANG, G., ANDERSEN, D., KAMINSKY, M.,
KozucH, M., NG, T., PAPAGIANNAKI, K.,
GLICK, M., AND MUMMERT, L. Your data cen-
ter is a router: The case for reconfigurable optical
circuit switched paths.

