Exploiting Hardware Heterogeneity within the Same Instance Type of
Amazon EC2

Zhonghong Ou', Hao Zhuang', Jukka K. Nurminen', Antti Y14-Jadski', Pan Hui*
T Aalto University, Finland; tDeutsch Telekom Laboratories, Germany

Abstract

Cloud computing providers might start with near-
homogeneous hardware environment. Over time, the
homogeneous environment will most likely evolve into
heterogeneous one because of possible upgrades and re-
placement of outdated hardware. In turn, the hardware
heterogeneity will result into performance variation. In
this paper, we look into the hardware heterogeneity and
the corresponding performance variation within the same
instance type of Amazon Elastic Compute Cloud (Ama-
zon EC2). Standard large instance is selected as the ex-
ample. We find out that there exist three different sub-
types of hardware configuration in the standard large in-
stance. Through a set of detailed micro-benchmark and
application-level benchmark measurements, we observe
that the performance variation within the same sub-type
of instance is relatively small, whilst the variation be-
tween different sub-types can be up to 60%. By selecting
better-performing instances to complete the same task,
end-users of Amazon EC2 platform can achieve up to
30% cost saving.

1 Introduction

Cloud computing attracts a significant amount of atten-
tion from industry, academia, and media because of its
on-demand, pay-as-you-go, etc, characteristics. As a
representative and one of the most widely adopted public
cloud platforms, Amazon Elastic Compute Cloud (Ama-
zon EC2) has been used for a host of small and medium-
sized enterprises (SMEs) for various usages. Amazon
EC2 was introduced in 2006, and supports a wide ar-
range of instance types. Naturally, these different types
of instances are likely hosted by heterogeneous hard-
ware. Over time, because of hardware upgrade and re-
placement, it would be interesting to investigate the fol-
lowing issues:

(1) Does the same type of instance utilize homoge-

neous or heterogeneous hardware configuration?

(2) If heterogeneous hardware is used, what is the re-
sulting performance variation?

In this paper, we try to answer the aforementioned two
questions by utilizing the standard large instance type,
i.e. ml.large. Similar results are observed for the other
types of instances within the same standard family, in-
cluding small (m.small), and extra large (m/.xlarge) in-
stances. Our contributions are as follows:

(1) We observe that within the same instance type,
Amazon EC2 uses heterogeneous hardware to host the
instances.

(2) The variation of the same sub-type of instances, i.e.
hosted by identical hardware, is relatively small, whilst
the variation among different sub-types of instances , i.e.
hosted by heterogeneous hardware, can reach up to 60%.

(3) Compared with taking the random instances as-
signed by Amazon EC2 platform, by selecting better-
performing instances to complete the same task, EC2
users can acquire up to 30% of cost saving.

The rest of the paper is structured as follows. In
Section 2, we present background and related literature
of Amazon EC2 study. Section 3 details the micro-
benchmark measurements and application-level bench-
marks. Section 4 analyzes the potential cost saving for
EC2 end-users. In Section 5 we conclude the paper and
present ideas for future work.

2 Related Work

Several studies have been conducted to analyze various
aspects of Amazon EC2. Garfinkel [4] conducted a mea-
surement study of various Amazon Web Services (AWS)
to evaluate the feasibility and cost of moving a large-
scale research application from localized server to Ama-
zon offering. Palankar et al. [8] performed measure-
ments focusing on Amazon S3 to testify its ability to
provide stable storage support for large-scale scientific

computation application. Walker [12] studied the perfor-
mance of Amazon EC2 high-performance cluster com-
pute instances against a locally configured equivalent
processors cluster, and showed that there exists a per-
formance gap between the EC2 provisioned cluster and
local traditional scientific cluster. Wang et al. [13] pre-
sented a measurement study on the impact of virtualiza-
tion on Amazon EC2 platform. Their findings indicated
that virtualization causes instability and variation to net-
work throughput and packet delay. Li et al. [7] developed
a performance and cost comparator, i.e. CloudCmp, to
measure cloud services from different cloud providers.
Their study demonstrated that there was no single winner
who outperformed the other counterparts in all aspects of
its cloud service offerings. Cooper et al. [2] developed
Yahoo! Cloud Serving Benchmark (YCSB) framework
to facilitate performance comparison. Barker et al. [1]
analyzed the impact of virtualization on the performance
of latency sensitive applications in the cloud.
Furthermore, in exploiting heterogeneity in the cloud,
there exist several studies. Suneja et al. [10] proposed
to use Graphics Processing Uint (GPU) acceleration to
speed up cloud management tasks in Virtual Machine
Monitor (VMM). Lee et al. [6] introduced a schedul-
ing mechanism in the cloud that takes into consideration
heterogeneity of the underlying platform and workloads.
Through mathematical modeling, Yeo et al. [14] found
out that in order to achieve optimal performance, the per-
formance variation among a heterogeneous cloud infras-
tructure should be no larger than three times. To the best
of our knowledge, there is no work focusing on exploit-
ing the heterogeneity within the same instance type of
Amazon EC2, which motivates our work in this paper.

3 Micro-benchmark

In this section, we first analyze the hardware configu-
ration of Amazon EC2. Then we utilize several micro-
benchmark tools to evaluate the performance of various
sub-types of instances. Specifically, standard large in-
stance (ml.large) is selected as the representative for per-
formance evaluation.

3.1 Hardware Configurations of EC2

We acquire the hardware information of Amazon EC2
instances by using cpuid command, a non-trapping in-
struction that can be used in user mode without trigger-
ing trap to the underlying processor. Thus, the hyper-
visor does not capture the instruction and return modi-
fied results. Furthermore, we run cat /proc/cpuinfo com-
mand to verify the results from cpuid. The CPU models
from both sources are identical, and the results are listed

Table 1: Hardware configuration

Instance type | CPU model | %(2011) | %(2012)
E5507 45% 12%
ml.small E5430 34% 38%
E5645 3% 30%
2218HE 18% 20%
E5507 58% 40%
E5430 29% 17%
ml.large E5645 5% 42%
2218HE 4% 1%
270 4% -
E5507 31% 6%
ml.xlarge E5430 27% 46%
E5645 40% 48%
270 2% -

in Table 1. It is noteworthy that we only list the stan-
dard instance family in Table 1. Diversified hardware is
also used in high-CPU instance family (cl.medium and
cl.xlarge). We exclude them due to space limit. Fur-
thermore, the high-memory instances use identical Intel
X5550 processors, and the cluster compute and cluster
GPU instances both use Intel Xeon X5570 processors.

We collected hardware information within two peri-
ods of time to investigate the hardware changes from
hardware upgrade or replacement. One period is from
April through July in 2011; the other one is from Jan-
uary through March in 2012. For each period, we collect
hardware information of 200 instances for each instance
type, covering all availability zones in the US (Virginia)
east region. The percentage of each CPU model is shown
in ”%(2011)” and ”%(2012)” columns, respectively. The
”2218HE” and 270" models are from AMD Opteron se-
ries, whilst the rest are from Intel Xeon series. From
Table 1, it is clearly shown that newer processor mod-
els are replacing older ones gradually, whilst the older
ones are likely used for smaller instances in the same
instance family. For example, in ml.large instance, the
AMD Opteron 270 (released in 2005) processor that was
found in 2011 is no longer accessible in 2012, whilst the
Intel Xeon E5645 (released Q1°10) CPU model is more
frequently accessible in 2012 than in 2011. This trend
is similar in all standard (including m1.small, mi.large,
and ml.xlarge) and high-CPU (including c/.medium and
cl.xlarge) instances.

Furthermore, we notice that the probability of a spe-
cific type of processor, e.g. E5645, significantly varies
in different availability zones. In one availability zone,
we can acquire 95% of instances hosted by E5645 ma-
chines, whilst in another zone, the probability of E5645
instances is as low as 10%. We conjecture that the avail-
ability zone with 95% of E5645 machines is a newly built

-@-E5645-2
% - E5430-2
* e @ E5507-2
YAy KK K TN KD Es6a5-1
* * "%]| -+- E5430-1

-9- E5507-1

o8gofag plopdscfoso
700}

*y, K

*

600 ..“...”1’0.‘,”.0.

00 PRt R RRE RIS

“Muwowt’,ﬂwuo

0 5 10 15 20
Instance

Figure 1: UnixBench score, one and two processes

data center within the US east region. The interesting
question to ask is whether the heterogeneous hardware
configuration within the same instance type leads to di-
versified performance. We select the ml.large instance
as the example to evaluate performance because this in-
stance has a relatively large amount of memory and can
be used in various general applications.

3.2 Micro-benchmarks

We use several micro-benchmark tools to measure the
performance of ml.large instance, including UnixBench
[11] to measure the CPU, Redis [9] to measure the mem-
ory, and Dbench [3] to measure the disk subsystems. To
provide apples-to-apples comparison, we use the same
Amazon Machine Image with CentOS5.6 in all the in-
stances tested. The benchmark is the only process run-
ning when we conduct the measurements.

CPU performance: UnixBench [11] utilizes multiple
tests to measure various aspects of the system’s perfor-
mance, primarily CPU’s performance. The test results
are compared to the baseline system to produce an index
value. The entire set of index values are then combined
to make a composite index for the system. To measure
the likely diversity of instances from the same hardware
configuration, we choose 20 instances from each sub-
type of instance, i.e. E5507, E5430, and E5645. The
results of the UnixBench benchmark are shown in Fig.
1. The figure clearly demonstrates that the differences
amongst the same sub-type of instances, e.g. E5507, is
small, whilst the differences between different sub-types
are significant. If one process is running, E5430 and
E5645 are comparable in terms of performance, whilst
they are approximately 1.15 times of the performance of
E5507. When two processes are running, E5645 outper-
forms E5430, whilst E5430 further outperforms E5507.
The performance variation in times is 1.21, and 1.1 times
for E5645, and E5430, respectively, wherein E5507 is
taken as the baseline.

Memory performance: Redis [9] is an in-memory

>

D> ,’, > [>~ D J>‘\
_05’:’]>' g P> > ‘\‘ ’I>
s | P
@4—;343_&, \D,,l:r-*:“\ 2 o
8 E T Tk R o N
%3* ol Tk
g | > E5645
o -m-E5430
Z% = E5507

T 20 40 60 80 100 120

Number of clients

Figure 2: Redis SET operation

key-value store that has the benchmark utility to simulate
multiple concurrent clients to send requests (e.g. SET,
and GET) at the same time. In our measurements, we
perform 100,000 requests and vary the number of con-
current clients. Random key is used to perform the op-
erations. The detailed results from GET operations are
depicted in Fig. 2. The results from other operation are
similar to GET operation. Similar to Fig. 1, in mem-
ory operations, E5645 instances outperform E5430 and
E5507 instances. The memory performance of E5645 is
1.5 times of that of E5507, whilst E5430 is 1.14 times of
E5507.

Disk performance: The results from Dbench [3]
show similar trends as the Unixbench, and Redis. E5645
instances can provide disk throughput 1.25 times as high
as ES507 instances, whilst ES430 provides comparable
disk throughput as E5507.

3.3 Application-level Benchmark

We use Httperf [5] to measure the Web server through-
put. Dynamic HTTP request is used to make the pro-
cessor busy. Dynamic request means after receiving a
request from a client, the Web server performs a mathe-
matical summation from 1 through 100, and then returns
the result to the client. Thus, the dynamic Web test is
CPU-bound rather than network-bound. To try to avoid
potential bottleneck from client machine, we use a high-
CPU medium instance from the same zone acting as the
client. The Httperf throughput results are depicted in Fig.
3. The figure demonstrates that the advantages from sep-
arate subsystems, e.g. CPU, memory and disk, are accu-
mulated at application-level, where E5645 is 1.6 times as
efficient as E5507 and E5430 is 1.2 times as E5507.

->-E5645
3501 -@-E5430
- | ¥ E5507

Response/sec
n
«a
o

5 - L L L L L L L
% 100 150 200 250 300 350 400 450
Request/sec

Figure 3: Httperf performance

Table 2: Notations

Notation | Definition

f Hourly cost of an instance

h Number of hours to run

m Number of different instances

n Number of instances needed with
worst performance
Probability of instances hosted with

pi a specific hardware

. Performance variation compared to

! the baseline instance
C The total cost

4 Cost Analysis

Now we are aware that there exists various hardware con-
figuration in the same instance type. We analyze the po-
tential cost saving by seeking for the best-performing in-
stances in the same instance type. The worst-performing
instance is used as the baseline, the other instances are x
(no less than 1) times as fast as the baseline instance. We
use the notations defined in Table 2.

Given the same amount of task (computation, commu-
nication etc), with better-performing instances, the task
can be completed with two alternatives: (1) smaller num-
ber of instances running for the same amount of time; (2)
same number of instances running for shorter period of
time. From the cost perspective, these two alternatives
are the same. We take the first alternative as the exam-
ple. The expected value of the performance of a random
instance is defined as follows:

E(X)=Y xi*pi (1
i=1

The total cost of completing the task, equivalent to n
h hours’ work, using random instances can be deduced
as follows:

Cmnd()m Zi’l*l’l*f/E(X) (2)

If we aim to select the best-performing instances to
complete the task, the cost of this optimized scenario is:

C()pt =nx*hx f/xnpt 3

Furthermore, the “trial and error” testing process re-
sults in extra cost for the optimized scenario. As in Ama-
zon EC2, the less than one hour usage is rounded up to
and charged as one hour. Thus, the extra cost of finding
n best-performing instances is:

Coxtra =n* f/popt 4

Here we assume that the test of finding one fast in-
stance takes no more than one hour and the jobs are rel-
atively small to the population of available servers. As
a matter of fact, we can simply request for one instance
from Amazon, then inspect its cpuid. If the instance is
not the best-performing one, we simply discard it and re-
quest for another one. The potential cost saving is:

Csaving = Crandom — Copt —Cextra @)

Put Eq. 1, Eq. 2, Eq. 3, and Eq. 4 in Eq. 5, we can
deduce the following equation:

Csaving = (h/(le *pi) - h/xopt - l/papt) *I’l*f (6)
i=1

Understandably, if one fast instance is able to acquire
cost gain, the total cost gain achievable from multiple
instances grows linearly with the number of instances.
This is also applicable to the price of the instance.

Again, take the ml.large instance as the example.
There are three different sub-types of instances, E5430,
E5507, and E5645. The probability of each subtype of
instance is 17%, 40%, and 42%, respectively. The unit
cost of a regular ml.large instance (excluding reserved
instances and spot instances) is $0.34/hour. The worst-
performing instance is ES507, thus it is taken as the base-
line. On average, E5430 and E5645 is 1.1 and 1.4 times,
respectively, as fast as E5507. Put all these values in Eq.
6, we can acquire the following equation:

Ciaving = 0.34 %% (0.1368 %1 — 2.38))

In order to achieve cost saving, the requirement is
Csaving > 0, then we can get the necessity: h > 17.4.
That is to say, given the aforementioned probability of
each subtype of instance and its respective performance,
it starts to make sense from cost perspective to select
E5645 instances to complete the task if the required time
is larger than 18 hours.

o
o

-]

o
*

he]
11
o
(4]

Fom |

n—n—nﬂ“:"n'n'

[o2]
o
L

e e -k kK

'
(=]

Cost saving(%)

-k
ek
KK

n
(=]

'5~"[>,4>4>_[>-[>|>+>4>-|>-|>|>+>4>-|>-|>{>+>{T

v

4 6. . 10
Performance variation (times)

Figure 4: Cost saving analysis

If we have a task requires 100 E5507 com-
parable ml.large instances to complete in a year
(24hours/day*365days/year=8760 hours), the potential
cost saving for the whole year is $40664, a 16% cost
saving in percentage.

Recall from section 3.1 that different hardware is not
distributed uniformly among all the availability zones,
but rather in some zone one type of hardware dominates
the whole zone, whist in another zone, another type of
hardware dominates. Thus, it would also be interest-
ing to analyze two types of hardware (e.g. E5507 and
E5645) and investigate the maximum cost saving achiev-
able. The result is depicted in Fig. 4, wherein p stands
for the probability of the fast instances (e.g. E5645), and
x-axis stands for the performance variation in times.

Understandably, if the fast instances account for the
majority of the overall instances, e.g. p = 0.9, without a
selection process, the probability of acquiring a fast in-
stance is very high. Thus, the performance is close to
the optimal situation with the selection process, and the
cost saving achievable is trivial. However, as the fast
instances account for less proportion of the overall in-
stances, the cost saving achievable is becoming signifi-
cant. In the case of p =0.1, if the fast instance is 10 times
as fast as the slow instance, the cost saving is as high as
80%. Obviously, this is an unrealistic situation with all
the efforts Amazon contributes to make the same type
of instances function closely. From section 3.2 and 3.3,
we know that 1.2-1.6 times variation is highly possible.
With 1.5 times variation, the achievable cost saving can
reach 30%. For SMEs, which are the major customers of
Amazon EC2 platform, this saving has a big impact.

5 Conclusions

In this paper, we investigated the hardware heterogeneity
within the same instance type of Amazon EC2. Stan-
dard large instance (m1.large) was taken as the example.

Through two periods of several-month measurements in
2011 and 2012, we found out that Amazon EC2 uses di-
versified hardware to host the same type of instance. The
hardware diversity results in performance variation. In
general, the variation between the fast instances and slow
instances can reach 40%. In some applications, the vari-
ation can even approach up to 60%. By selecting fast
instances within the same instance type, Amazon EC2
users can acquire up to 30% of cost saving, if the fast
instances have a relatively low probability. In the future,
we plan to investigate the scheduling mechanism and an-
alyze its impact on the performance of Amazon EC2 in-
stances.

6 Acknowledgments

The research conducted in this paper has been funded by
the Finnish funding agency for technology and innova-
tion (Tekes) in Massive Scale Machine-to-Machine Ser-
vice (MAMMotH) project (Dnro 820/31/2011).

References

[1] BARKER, S., AND SHENOY, P. Empirical evaluation of latency-
sensitive application performance in the cloud. Proceedings of
MMSys (2010), 35-46.

[2] COOPER, B., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
YCSB. Proceedings of SoCC (2010), 143-154.

[3] Dbench. https://wuw.samba.org/ftp/tridge/dbench/.

[4] GARFINKEL, S. L. An evaluation of Amazon’s grid computing
services: EC2, S3 and SQS. Tech. Rep. tR-08-07, Harvard Uni-
versity, 2007.

[5] Httperf.
httperf/.

[6] LEE, G., CHUN, B., AND KATZ, R. H. Heterogeneity-aware
resource allocation and scheduling in the cloud. Proceedings of
HotCloud (2011), 1-5.

[7] L1, A., YANG, X., KANDULA, S., AND ZHANG, M. CloudCmp:
comparing public cloud providers. Proceedings of IMC (2010),
1-14.

[8] PALANKAR, M., IAMNITCHI, A., RIPEANU, M., AND
GARFINKEL, S. Amazon S3 for science grids: a viable solution?
Proceedings of the 2008 international workshop on Data-aware
distributed computing (2008), 55-64.

[9] Redis. http://redis.io/.

[10] SUNEJA, S., BARON, E., AND E. DE LARA, R. J. Accelerating
the cloud with heterogeneous computing. Proceedings of Hot-
Cloud (2011), 1-5.

[11] Unixbench. http://freecode.com/projects/unixbench.

http://www.hpl.hp.com/research/linux/

[12] WALKER, E. Benchmarking amazon EC2 for high-performance
scientific computing. USENIX ;login: 33,5 (2008), 18-23.
[13] WANG, G., AND NG, T. The impact of virtualization on network

performance of amazon ec2 data center. Proceedings of INFO-
COM (2010), 1-9.

[14] YEO, S., AND LEE, H. Using mathematical modeling in pro-
visioning a heterogeneous cloud computing environment. Com-
puter 44, 8 (2011), 55-62.

