
Big Data Platforms as a Service: Challenges and Approach

James Horey, Edmon Begoli, Raghul Gunasekaran, Seung-Hwan Lim, and James Nutaro
Computational Sciences & Engineering

Oak Ridge National Laboratory
{horeyjl, begolie, gunasekaranr, lims1, nutarojj}@ornl.gov

Abstract
Infrastructure-as-a-Service has revolutionized the man-
ner in which users commission computing infrastruc-
ture. Coupled with Big Data platforms (Hadoop, Cassan-
dra), IaaS has democratized the ability to store and pro-
cess massive datasets. For users that need to customize
or create new Big Data stacks, however, readily avail-
able solutions do not yet exist. Users must first acquire
the necessary cloud computing infrastructure, and man-
ually install the prerequisite software. For complex dis-
tributed services this can be a daunting challenge. To ad-
dress this issue, we argue that distributed services should
be viewed as a single application consisting of virtual
machines. Users should no longer be concerned about
individual machines or their internal organization. To
illustrate this concept, we introduce Cloud-Get, a dis-
tributed package manager that enables the simple instal-
lation of distributed services in a cloud computing en-
vironment. Cloud-Get enables users to instantiate and
modify distributed services, including Big Data services,
using simple commands. Cloud-Get also simplifies cre-
ating new distributed services via standardized package
definitions.

1 Introduction

Cloud computing has fundamentally changed the land-
scape of large-scale computing. Users are now able to
quickly instantiate simple virtual machines with little ef-
fort, and are able to exploit scalable platforms to serve
their applications. Although most users tend to think
of public cloud infrastructures (e.g., Amazon), private
cloud computing has recently gained much traction from
both commercial and open-source interests [18]. Tools
such as OpenStack are simplifying the process of manag-
ing virtual machine resources. This growth in popularity
affords the research community with an opportunity to
re-visit fundamental computing abstractions. One of the

core abstractions that we address in this paper is the no-
tion of an application and the components that constitute
the application.

In this paper, we take the position that in the context
of distributed services, an application should consist of
a set of virtual machines. Examples of such services in-
clude Big Data platforms (e.g., Hadoop [11, 10], Cas-
sandra [16]), and scalable web platforms (e.g., Ruby on
Rails [7], Django [5]). Users should interact with the ser-
vice as a whole (perhaps via dedicated login node), and
rarely interact with the underlying virtual machines. In
this sense, a single VM is analoguous to a single process
in a traditional computing environment. From the user’s
perspective, the VMs that are used to instantiate the ser-
vice should be opaque. Even more importantly, users
should no longer care about exactly what occurs within a
single VM (or even how that VM operates).

To demonstrate the usefulness of this approach, we in-
troduce Cloud-Get, a set of tools used to create and man-
age distributed Big Data platforms. Our approach is in-
spired by modern Linux package managers (i.e., apt-get,
yum). Package managers enable users to easily search
for and install applications. An application package may
specify a set of dependencies necessary for the applica-
tion to function properly. In theory, package managers
enable users to easily install applications without worry-
ing about specific libraries, compilation flags, etc. Like-
wise, Cloud-Get enables users to search for distributed
services that reside on a cloud computing environment
(either private or public), and to instantiate these services
using a set of simple commands. In turn, a Cloud-Get
may instantiate multiple, heterogeneous virtual machines
(depending on the package description), and also fetch
other Cloud-Get dependencies. For example, the HBase
package (a key-value store for Hadoop) [3] may require
the Hadoop package, ZooKeeper [13] package, etc. Un-
like traditional package managers, however, Cloud-Get
does not “install” applications. Instead, instantiating a
service is more analoguous to forking a process. Users

Big	
 Data	
 Store	

vDisk	
 vDisk	
 vDisk	
 vDisk	

VM	
 VM	
 VM	
 VM	
 VM	

Policy	
 enforced,	
 syntac5c	
 data	
 transforma5on	
 	

Client	
 App	
 App	
 App	
 1	

User-­‐defined	
 virtual	
 cloud	
 enclaves	
 	

App	
 2	

Figure 1: Cloud-Get simplifies the construction of Big
Data services that exhibit different organizations.

can instantiate a package multiple times (perhaps with
different parameters), and use a unique handle to man-
age each instance.

Another key element of Cloud-Get is the ability to
communicate and transfer data across services. This is
analoguous to the notion of a named pipe. Cloud-Get
provides a set of tools for users to create data pack-
ages that specify how data should be transferred from
one service to another set of services. These packages
are designed to be declarative in nature and emphasize
the what (i.e., data) over the how (i.e., protocol) Like
the service packages, data packages can be uploaded to
a shared repository so that users can search for and re-
use existing packages. Since Cloud-Get operates over an
IaaS environment, actual data transfer between services
can be heavily optimized.

2 Motivation

Cloud-Get is motivated by the observation that while
IaaS provides a simple means to create individual vir-
tual machines, there is no analaguous method to instan-
tiate complex, distributed services. For example, a user
that wishes to deploy a distributed Big Data platform will
need to install various packages on individual VMs (af-
ter creating the VMs). The installation process may dif-
fer across machines depending on the role of that ma-
chine. Once installed, the platform will most likely re-
quire some configuration. For example, to exchange ssh
keys or provide topology information. In addition, differ-
ent Big Data services will have different organizations.
While some systems may prefer local storage associated
with several virtual machines, others services may prefer
shared storage across machines (Figure 1).

The notion of providing distributed services in a cloud

computing environment is not a new idea. Both es-
tablished commercial entities (e.g., Amazon [2], Mi-
crosoft [8]) and recent start-ups (e.g., Heroku [6]) pro-
vide users with a simple interface to instantiate particular
Big Data tools. Other commercial vendors (e.g., Cloud-
era) provide packages for Big Data appliances to instan-
tiate in private clusters. These Platforms-as-a-Service
(PaaS) are often instantiated over IaaS to ensure scalabil-
ity, reliability, etc. These platforms, however, are created
in a service specific manner. Internal tools used by these
companies are most likely specific to the platform they
offer. We seek to provide basic abstractions and tools
that can be used to create new services over IaaS plat-
forms.

Cloud-Get can be viewed as a way to create new PaaS
and SaaS (Software-as-a-Service) platforms with an em-
phasis on Big Data services. We envision multiple use
cases for this technology. These use cases are motivated
by challenges that we’ve encountered in standing up Big
Data systems.

• Data dissemination Organizations that need to dis-
seminate data to users usually do so by providing
links over the web 1. However, as datasets become
larger, the time and cost of transferring data be-
comes prohibitive [12]. Also, many datasets are
sensitive in nature [15]; controlling access to the
data is difficult to accomplish in current settings.

• Complex architectures Big Data platforms require
a complex set of storage, caching, and analysis com-
ponents. Instead of treating these pieces as separate
things to install, Cloud-Get enables users to pack-
age these components together into a single service.

• Analytic services By packaging various storage
and analysis components together, users can cre-
ate analytic services. Using data-get (the Cloud-
Get communication component), users will be able
to interact with complex analytic services without
considering the underlying software and hardware.

3 Architecture

Users interact with Cloud-Get via RESTful API and a set
of command-line tools. Cloud-Get is designed to operate
within a cloud computing environment and itself consists
of multiple virtual machine components. Figure 2 illus-
trates the basic architectural components. Users connect
to the Cloud-Get management node. This node imple-
ments the Cloud-Get API and interacts with the other
components (including the cloud computing layer). The
management node also implements components to start

1http://www.data.gov/

Templates Storage Pools

SSDHD

Packages Services

CloudStack APICloudStack API

Data-Get

Virtual Machines

Cloud-Get APICloud-Get API

CLICLI

1) Install

2) Fetch
multiple
templates

3) Template
metadata

4) Instantiate
Multiple VMs

5) Optimize
data transfer

Figure 2: Users interact with the Cloud-Get API via
command-line tools. Cloud-Get, in turn, interacts with
an underlying cloud management layer.

new services, keep track of running services, etc. Cloud-
Get also includes nodes to manage the service and data
package repositories. These repositories store packages
that describe the distributed services. These packages do
not actually store the virtual machine templates; instead
the repositories interact with the underlying cloud com-
puting layer to manage the images.

3.1 Service Packages

A service package (a.k.a. cpack) defines a Cloud-Get ap-
plication. In the most simple form, a cpack file includes
a description of the various VM resources that constitute
the service. These include a unique identifier (e.g., head
node, slave node), a template identifier (to identify the
VM template), and a set of hardware requirements (i.e.,
CPU, memory, etc.). The cpack file also includes infor-
mation regarding external dependencies. Finally, each
VM type can specify what data it requires after it starts
(i.e., the IP address of a seed node). This data can come
from another VM or from an external dependency.

The service package can also include a set of event
handlers. Events are generated by the Cloud-Get man-
agement tool and are used to control the operation of
the distributed service. Event handlers are divided into
package events and node events. Package events operate
over the entire service, while node events operate over
specific nodes. Within a package event handler, package
authors can specify the order in which VM types (includ-
ing dependencies) are started. Any data that a VM type
requires are also explicitly listed in the handler. Package
events include:

• start/stop: Defines what happens when the service
is started or stopped. The handler defines which
VM types to start along with any ordering or data
restrictions.

• storage increase: Defines what happens when the
user requests to increase the total storage capacity.

• node increase: Defines what happens when the user
requests to increase the number of working VMs.

Each VM node must also be able to respond to events
(either originating from the package event handler, or
from an external client). Node specific events include:

• configuration update: Indicates a configuration
value has changed (e.g., IP addresses, etc).

• machine update: Indicates that the underlying VM
has changed (e.g., CPU, memory, disk).

• custom update: Package authors can also define
their own events specific to their service.

We provide a simple Python library that package authors
can include in their VM templates that provides basic
event handlers. However, users are free to implement
their own event handlers.

3.2 Data Packages
A data package (a.k.a. dpack) defines how data is trans-
ferred between services. To that end, a dpack is similar in
concept to a named pipe. However, unlike most pipe se-
mantics, a data package can define what data to retrieve
from a particular source and can optionally define ex-
pected communication characteristics (i.e., the number
of bytes, timeliness constraints). Since the source may
consist of an arbitrary service, the dpack does not restrict
the user in defining the data extraction method. For ex-
ample, if the data source consists of a Hadoop service,
the data transfer may consist of the output of a MapRe-
duce job. Likewise, the data sink must be able to under-
stand the output of the source. Once a dpack is attached
a sink and source, the dpack can operate in either contin-
uous or single-shot mode. In single-shot mode, the data
transfer takes place once. However, in continous mode,
the data transfer occurs regularly (defined by the user).
By attaching a set of data packages to services, the use
can define an explicit data flow through the system.

Note that the use of data packages does not preclude
any service from communicating with other services via
other means. Instead, data packages offer a simple way
to copy over bulk data and chain services together. In ad-
dition to this, the use of data packages enables potential
optimizations. For example, data co-located on shared
disks can be locally copied. For read-mostly workloads,

the system can employ copy-on-write semantics leading
to further bandwidth improvements.

3.3 Usage
We anticipate two types of users: package maintainers
and clients. Package maintainers create and maintain the
Cloud-Get packages. Creating a package consists of cre-
ating the appropriate virtual machine templates, populat-
ing the VM with software and management scripts, and
creating a package description. This process is largely
performed on the cloud computing platform. Clients in-
teract with existing packages via command-line tools or
scripts. Clients may also create data packages to define
how data flows between services. An example of the
Cloud-Get management API is shown in Table 1.

4 Implementation and Challenges

We currently have a prototype implementation of Cloud-
Get running on top of the CloudStack platform 2. Cloud-
Stack provides Infrastructure-as-a-Service. The various
Cloud-Get services (the service manager, package repos-
itory, and data manager) are instantiated as a set of vir-
tual machines managed by CloudStack. Cloud-Get func-
tionality is not specific to CloudStack, and we anticipate
offering additional backends in the future (e.g., Open-
Stack3, Amazon EC2, etc.). In our current implemen-
tation, we do not provide any tools to simplify the cre-
ation of cloud-get packages, although this is something
we hope to address in the future. Specifically we hope to
support operations such as merge to combine multiple,
existing cloud-get packages.

Like many IaaS platforms, CloudStack includes many
opportunities for low-level control of virtual resources.
For example, CloudStack enables VMs to allocate stor-
age from a variety of storage pools, including shared
(e.g., iSCSI) and local (i.e., attached directly to a phys-
ical host). Although the disk image is treated the same
by the VM, different storage pools have different trade-
offs. For example, a single VM guest may have lower
latency access to local storage. However, as the number
of co-located VMs are increased, a more capable, shared
disk may result in higher aggregate bandwidth. Also, dif-
ferent storage pools may have different limitations. For
example, CloudStack does not normally allow users to
allocate virtual disks over local storage (since these disks
can only be attached to VMs residing on a specific host).
Optimally allocating storage across a set of virtual ma-
chines is an ongoing research challenge.

Although CloudStack offers a relatively comprehen-
sive API, it does hide certain hypervisor options. For

2http://cloudstack.org
3http://openstack.org/

example, some hypervisors enable users to specify the
write buffer cache strategy (i.e., none, write-through,
write-back). We have found that write-back consistently
offers the best performance for large, sequential writes
and can perform even better than writes executed in the
host (data not shown). Write-through consistently ex-
hibits the worst performance (nearly a 30x difference).
Although it is tempting to simply choose write-back,
write-back has the highest likelihood of losing data since
the data is cached twice (once on the VM and the host).
Exposing these options in a standard manner would
greatly simplify the implementation of Cloud-Get.

We are also optimizing the co-scheduling of virtual
machines. CloudStack and other IaaS platforms enable
the use of pluggable virtual machine schedulers. Of-
ten, these default schedulers assume independence be-
tween virtual machines, though they consider perfor-
mance interference among virtual machines [17]. How-
ever, with Cloud-Get, sets of virtual machines are de-
signed to work together: their execution might be corre-
lated to each other; and they may communicate heavily
internally with more sporadic communication with ex-
ternal services. Co-locating guests on a single host will
often result in better network performance between those
guests (since communication never leaves the host). Co-
locating guests, however, may also lead to poor disk per-
formance with wide variance [9, 19]. Preliminary results
on our CloudStack infrastructure indicate a drop from
133 MB/s (single VM performing sequential read of a
1GB file) to 109 MB/s when 11 VMs are simultaneously
performing sequential reads of the same file. In addition,
both sequential and random access of large files without
buffer caching can lead to linear slowdown with large
read variance (up to 64%) 4 Managing these communi-
cation and disk I/O tradeoffs to ensure the highest per-
formance remains a critical challenge.

5 Discussion and Conclusions

Cloud-Get is a system to simplify the installation and
management of distributed services. Cloud-Get lever-
ages cloud computing platforms to dynamically instan-
tiate sets of virtual machines that work together. In addi-
tion, Cloud-Get features powerful data transfer capabil-
ities between services to enable users to create explicit
data flows. Unlike other management software (Pup-
pet [14], Chef [4] Cloud-Get only interacts with virtual
machines. Users are not expected to interact directly with
software packages or libraries. Such an approach simpli-
fies packaging and management, since all library depen-
dencies, language frameworks, etc. can be encapsulated

4We experimented with a node with a 12-core CPU, 48GB RAM,
and two 2TB 7200 RPM SATA drive. Each VM had one vCPU and
4GB RAM.

start(service, nodes, capacity) Starts a new service and returns a unique instance handle
stop(instance) Stops the instance
modify nodes (instance, nodes) Increases the number of nodes associated with the instance
modify storage(instance, capacity) Increases the storage associated with the instance

Table 1: Cloud-Get service management API.

within a single virtual machine. At Oak Ridge National
Laboratory, we are using a prototype version of Cloud-
Get to manage our data analysis infrastructure consisting
of Hadoop and a variety of distributed storage tools.

We believe that the cheap provisioning of virtual
machines, enabled by cloud computing, enables us to
re-visit core computational abstractions. Virtual ma-
chines should serve the same purpose as a process for
distributed applications. Much like how an applica-
tion might use multiple processes to improve perfor-
mance, we envision distributed applications automati-
cally spawning VMs to improve scalability. In this view,
distributed services consisting of virtual machines would
consitute a core component of a cloud-computing oper-
ating system. Our approach shares common goals with
prior proposals [20], although our approach is coarser-
grained. We believe that working towards finer-grained
control over the underlying VM resources will constitute
an important step towards our shared vision [1]. To that
end, we expect Cloud-Get to continue playing an impor-
tant role in realizing this vision.

6 Acknowledgements

This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government re-
tains and the publisher, by accepting the article for publi-
cation, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes. This research has been made pos-
sible by a Lab Directed Research and Development grant
at Oak Ridge National Laboratory.

References
[1]

[2] Amazon web services. http://aws.amazon.com.

[3] Apache hbase. http://hbase.apache.org.

[4] Chef. http://wiki.opscode.com/display/chef/Home.

[5] Django. http://www.djangoproject.com.

[6] Heroku. http://www.heroku.com.

[7] Ruby on rails. http://rubyonrails.org.

[8] Windows azure. http://www.windowsazure.com.

[9] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,
RABKIN, A., STOICA, I., AND ZAHARIA, M. A view of cloud
computing. Communications of the ACM 53, 4 (2010).

[10] BORTHAKUR, D. The hadoop distributed filesystem: Architec-
ture and design. http://hadoop.apache.org.

[11] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data
processing on large clusters. Communications of the ACM 51, 1
(Jan. 2008), 107–113.

[12] DEELMAN, E., AND CHERVENAK, A. Data management chal-
lenges of data-intensive scientific workflows. In IEEE Interna-
tional Symposium on Cluster Computing and the Grid (2008).

[13] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: wait-free coordination for internet-scale systems.
In Proceedings of the USENIX Annual Technical Conference
(Berkeley, CA, USA, 2010), USENIX Association.

[14] KANIES, L. Puppet: Next-generation configuration manage-
ment. The USENIX Association Newsletter 31, 1 (2006).

[15] KIFER, D., AND MACHANAVAJJHALA, A. No free lunch in data
privacy. In ACM SIGMOD/PODS Conference (2011).

[16] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized
structured storage system. ACM SIGOPS Operating Systems Re-
view 44, 2 (Apr. 2010), 35–40.

[17] LIM, S.-H., HUH, J.-S., KIM, Y., AND DAS, C. R. Migration,
assignment, and scheduling of jobs in virtualized environment.
In 3rd USENIX Workshop on Hot Topics in Cloud Computing
(2011).

[18] MICROSOFT. Microsoft private cloud. Tech. rep., 2012.

[19] WACHS, M., XU, L., KANEVSKY, A., AND GANGER, G. R.
Exertion-based billing for cloud storage access. In Proceedings
of 3rd USENIX Workshop on Hot Topics in Cloud Computing
(2011).

[20] ZAHARIA, M., HINDMAN, B., KONWINSKI, A., GHODSI, A.,
JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I. The
datacenter needs on operating system. HotCloud’11.

