
Practical Confidentiality Preserving Big Data Analysis ∗

Julian James Stephen Savvas Savvides Russell Seidel Patrick Eugster
Department of Computer Science, Purdue University

Abstract
The “pay-as-you-go” cloud computing model has

strong potential for efficiently supporting big data anal-
ysis jobs expressed via data-flow languages such as
Pig Latin. Due to security concerns — in particular leak-
age of data — government and enterprise institutions
are however reluctant to moving data and correspond-
ing computations to public clouds. We present Cryp-
sis, a system that allows execution of MapReduce-style
data analysis jobs directly on encrypted data. Crypsis
transforms data analysis scripts written in Pig Latin so
that they can be executed on encrypted data. Crypsis to
that end employs existing practical partially homomor-
phic encryption schemes, and adopts a global perspective
in that it can perform partial computations on the client
side when PHE alone would fail. We outline the original
program transformations underlying Crypsis for reduc-
ing the cost of data analysis computations in this larger
perspective. We show the practicality of our approach by
evaluating Crypsis on standard benchmarks.

1 Introduction
Cloud computing offers an attractive paradigm for in-

dustry and government wanting to perform cost-efficient
data analysis. However, in order to adopt the paradigm,
sensitive data has to be moved to the cloud, and trust
must be placed on the infrastructure provider to ensure
data confidentiality. Even with a trusted provider, mali-
cious users and programs and software defects can lead
to data leaks.

The ability to maintain sensitive data only in an en-
crypted form in the cloud and still perform meaningful
data analysis is of great value. Even within an enter-
prise, maintaining data in an encrypted format helps pre-
vent insider attacks and accidental leaks. As a conse-
quence, homomorphic encryption has become the holy
grail of cryptography. Despite advances occurring reg-
ularly (e.g. [13]), generic, fully homomorphic encryp-
tion (FHE) still exhibits prohibitive overheads. However,
FHE may not be necessary for many real-life compu-
tations. Several existing cryptographic systems (“cryp-
tosystems”) are partially homomorphic, i.e., homomor-

∗Financially supported by DARPA grant # N11AP20014,
Northrop Grumman Information Systems, Purdue Research Founda-
tion grant # 204533, and Google Award “Geo-Distributed Big Data
Processing”.

phic with respect to certain operations. More precisely,
if E(x) and D(x) denote the encryption and decryp-
tion functions for input data x respectively, a cryptosys-
tem is said to be homomorphic with respect to opera-
tion χ iff ∃ψ | D(E(x1)ψE(x2)) = x1χx2. For exam-
ple, when χ is ×, the cryptosystem is said to be mul-
tiplicative homomorphic (e.g., unpadded RSA [19], El-
Gamal [12]). Leveraging such existing homomorphic
schemes however goes through addressing several chal-
lenges, especially in the context of big data analysis.
Many of these jobs are typically expressed in domain-
specific security-agnostic high-level data flow languages,
like Pig Latin [16] or FlumeJava [7], which are com-
piled to sequences of several MapReduce tasks [9]. This
makes the application of established techniques hard.
Recent approaches to leveraging partially homomorphic
encryption (PHE) for secure cloud-based computing tar-
get different application scenarios or work loads. For in-
tance, CryptDB [18] is based on the MySQL database
server and does not enable parallelization through a
MapReduce substrate; MrCrypt [24] only supports sin-
gle MapReduce tasks.

This paper presents Crypsis, a runtime system for
Pig Latin which allows corresponding scripts to be exe-
cuted efficiently by exploiting cloud resources but with-
out exposing input data in the clear. More specifically,
Crypsis extends the scope of encryption-enabled big data
analysis based on the following insights:

Extended program perspective: By analyzing entire data
flow programs, Crypsis can identify many opportuni-
ties for operating in encrypted mode. For example,
Crypsis can identify operations in Pig Latin scripts that
are inter-dependent with respect to encryption, or in-
versely, independent of each other. More precisely,
when applying two (or more) operations to a same data
item, many times the second operation does not use
any side-effect of the former, but operates on the orig-
inal field value. Thus, multiple encryptions of a same
field can support different operations by carefully han-
dling relationships between such encryptions.

Extended system perspective: By considering the possi-
bility of performing subcomputations on the client
side, Crypsis can still exploit cloud resources rather
than giving up and forcing users to run entire data flow
programs in their limited local infrastructure, or de-



faulting to FHE (and then aborting [24]) when PHE
does not suffice. For example, several programs in
the PigMix (I+II) benchmarks [3] end up averaging
over the values of a given attribute for several records
after performing some initial filtering and computa-
tions. While the summation underlying averaging can
be performed in the cloud via an additive homomor-
phic encryption (AHE) scheme, the subsequent divi-
sion can be performed on the client side.

Considering that the amount of data continuously de-
creases as computation advances in most analysis jobs, it
makes sense to compute as much as possible in the cloud.

The contributions of this paper are as follows. After
presenting background information (Section 2), we

1. propose an architecture for executing Pig Latin
scripts in the cloud without sacrificing confidential-
ity of data (Section 3).

2. outline a novel field-sensitive program analysis and
transformation for Pig Latin scripts that distin-
guishes between operations with side-effects (e.g.,
whose results are used to create new intermedi-
ate data) and without (e.g., filters). The results
are semantically equivalent programs executable by
Crypsis that maximize the amount of computations
done on encrypted data in the cloud (Section 4).

3. present initial evaluation results for an implemen-
tation of our solution based on the runtime of
Pig Latin scripts obtained from the open-source
Apache Pig [2] PigMix benchmarks (Section 5).

Section 6 contrasts with related work. Section 7 con-
cludes with final remarks.

2 Background: Pig Latin
Apache Pig [2] is a data analysis platform which in-

cludes the Pig runtime system for the high-level data
flow language Pig Latin [16]. Pig Latin expresses data
analysis jobs as sequences of data transformations, and
is compiled by Pig to MapReduce tasks executed by
Hadoop [14]. Pig allows data analysts to query big data
without the complexity of writing MapReduce programs.
Also, Pig does not require a fixed schema to operate, al-
lowing seamless interoperability with other applications
in the enterprise ecosystem. These desirable properties
of Pig Latin as well as its wide adoption1, prompted us
to select it as the data flow language for Crypsis. We give
a short overview of Pig Latin below and refer the reader
to [16] for more details.

1According to IBM [10], “Yahoo estimates that between 40% and
60% of its Hadoop workloads are generated from Pig [...] scripts. With
100,000 CPUs at Yahoo and roughly 50% running Hadoop, that’s a
lot[...]”.

Untrusted ServiceTrusted Client

1.

2.

3.

4.

6.

7.

Source 
Script

Unencrypted 
Data

Encrypted 
Data

Program
Transformation

Encryption 
Service

Execution
Handler

Unmodified
Pig Service

Crypsis 
UDFs

5.

Figure 1: Architecture of Crypsis. Shading indicates
novel components due to Crypsis.

Data types and statements. Pig Latin includes simple
types (e.g., int, long), and complex types (e.g., bag,
tuple, map). Furthermore, a field is a data item which
can be a bag, tuple, or map. Pig Latin statements work
with relations; a relation is simply a (outermost) bag of
tuples. Relations are referred to by program variables
(aliases). Pig Latin supports assignments to variables.

Operators and expressions. Relations are created by
loading an input file or by applying relational opera-
tors to other relations. Examples of relational operators
are JOIN, GROUP..BY, FOREACH..GENERATE etc. Op-
erators in Pig Latin can also include arithmetic opera-
tors (e.g., +, -, \, *), comparisons, casts, as well as
STORE and LOAD operators.

Functions. Pig Latin includes built-in functions (e.g.,
ABS, COS AVG) and allows users to define their own user
defined functions (UDFs) if needed. For the purpose of
this work, we assume that Crypsis is aware of the encryp-
tion type required for the correct operation of all func-
tions that are part of a Pig Latin script. We enforce this
by pre-registering a set of functions with Crypsis.

3 Architecture and System Overview
We designed Crypsis having in mind an adversary ca-

pable of fully manipulating the cloud infrastructure. The
adversary can see encrypted data and Pig Latin scripts
that operate on the data. The adversary can control the
computation software and control the cloud infrastruc-
ture. Crypsis ensures confidentiality in the presence of
such an adversary. However, Crypsis does not address in-
tegrity and availability issues. (Corresponding solutions
are described in our previous work [23] which inversely,
however, does not address confidentiality.)

Figure 1 illustrates the architecture of Crypsis proto-
type. Script execution proceeds by the following steps:
1. Program transformation. The user submits a
source Pig Latin script that operates on unencrypted data.
Crypsis analyzes it to identify the required encryption



schemes under which the input data should be encrypted.
Operators in source script are replaced with calls to
Crypsis UDFs that perform the corresponding operations
on encrypted data and constants are replaced with their
encrypted values to generate a target script that executes
entirely on encrypted data. Details of this transformation
are presented in Section 4.

2. Infer encryption schemes missing from cloud.
The encryption service keeps an input data encryption
schema which tracks what parts of the input data are al-
ready encrypted and stored in the cloud. This is nec-
essary since some parts of the input data might be en-
crypted under multiple encryption schemes (to support
multiple operations) and other parts might not be avail-
able in the cloud at all. Based on the input data en-
cryption schema and the required encryption schemes in-
ferred in the previous step, the encryption service identi-
fies the encryption schemes missing from the cloud.

3. Encrypt and send data to the cloud. In case some re-
quired encryption schemes are not available in the cloud,
the encryption service draws the unencrypted data from
the local storage, encrypts it using the appropriate cryp-
tosystem and sends it to the cloud storage. Crypsis makes
use of several encryption schemes each implemented us-
ing different cryptosystems. The first scheme is the ran-
domized (RAN) encryption which does not support any
operators, and is intuitively, the most secure encryption
scheme. We implement RAN using Blowfish [22] to
encrypt integer values, taking advantage of its smaller
64-bit block size, and use AES [8] which has a 128-bit
block size to encrypt everything else. We use CBC mode
in both of these cryptosystems with a random initializa-
tion vector. The next scheme is the deterministic (DET)
encryption which allows equality comparisons over en-
crypted data. We construct DET using Blowfish and
AES pseudo-random permutation block ciphers for val-
ues of 64 bits and 128 bits respectively, and pad smaller
values appropriately to match the expected block size.
For values longer than 128 bits we follow the approach
used in CryptDB [18] and use a variant of CMC mode
[15] with a zero initialization vector. We implement the
order-preserving encryption (OPE) scheme which allows
order comparisons using the order-preserving symmet-
ric encryption [5] implementation from CryptDB. Lastly,
we use the Paillier [17] cryptosystem to implement ad-
ditive homomorphic encryption (AHE) which allows ad-
ditions over encrypted data and ElGamal [12] cryptosys-
tem to implement multiplicative homomorphic encryp-
tion (MHE) which allows us to perform multiplications
over encrypted data.

4. Execute encrypted script. When all required en-
crypted data is loaded in the cloud, the execution handler
issues a request to start executing the job.

DAG

Script analysis SAF

Encryption 
analysis

Script 
transformation

MET

Operand Encryption

Output Encryption

Required 
Encryption Schemes

Input Data 
Encryption Schema

Target 
Script

Source 
Script

Figure 2: Program transformation in Crypsis

5. Crypsis UDFs. Crypsis does not impose any changes
to the Pig service. Instead, operations on encrypted data
are handled by a set of pre-defined UDFs stored in the
cloud storage along with the encrypted data.

6. Re-encryption. During the target script execution,
it is possible that intermediate data are generated after
some operations are performed. The encryption scheme
of that data depends on the last operation performed on
that data. For example, after an addition operation, the
resulting sum will be encrypted under AHE. If that in-
termediate data is subsequently involved in an operation
that requires an encryption scheme other than the one it is
encrypted under (for example multiplying sum with an-
other value requires MHE), the operation cannot be per-
formed. Crypsis handles this situation by re-encrypting
the intermediate data. Specifically, the intermediate data
is sent to the client where it can be securely decrypted
and then encrypted under the required encryption scheme
(for example sum is re-encrypted under MHE), before
sent back to the cloud. Once the re-encryption com-
pleted, execution of target script can proceed.

7. Results. Once the job is complete, the encrypted re-
sults are sent to the client where they can be decrypted.

4 Program Analysis and Transformation
We use the Pig Latin script shown in Listing 1 as a

running example to explain the analysis and subsequent
transformation process for Pig Latin scripts in Crypsis.
This script loads two input files: input1 with two fields
and input2 with a single field. The script then filters
out all rows from input1 which are less than or equal
to 10 (Line 3). Lines 4 and 5 group input1 by the first
field and find the sum of the second field for each group.
Line 6 joins the sum per group with the second input file
input2 to produce the final result which is stored into an
output file (Line 7). This script is representative of the
most commonly used relational operations in Pig Latin
and allow us to explain key features about Crypsis.

Figure 2 provides an outline of the different steps and



1 A = LOAD ’input1’ AS (a0, a1);
2 B = LOAD ’input2’ AS (x0);
3 C = FILTER A BY a0 > 10;
4 D = GROUP C BY a1 ;
5 E = FOREACH D GENERATE group AS b0,

SUM(C.a0) AS b1;
6 F = JOIN E BY b0, B BY x0;
7 STORE F into ’out’;

Listing 1: Source Pig Latin script S1

intermediate data structures in our program transforma-
tion. We describe each of these steps below.

Input script analysis. First, Crypsis checks the user-
submitted source (Pig Latin) script for syntax errors and
generates a directed, acyclic data flow (DAG) represen-
tation of it. The data flow representation uses relations as
vertices and the data flow between relations as the edges.
We also generate two additional data structures: (a) a
map of expression trees (MET), and (b) a set of anno-
tated fields (SAF). MET consists of all expressions that
are part of the source script. Each vertex in the data flow
graph is given keys to all expressions that are part of the
relation represented by that vertex. SAF contains one en-
try for each field in the schema of each relation. In other
words every 〈relation, f ield〉 pair maps to one entry in
the SAF. We refer to an individual entry simply as an AF
(annotated field). The intution behind using AFs instead
of actual field names is that, in the transformed program,
one field in the source script may be loaded as multiple
fields, each under a different encryption scheme. Each
AF also tracks its lineage using a parent field. The par-
ent of an annotated field could be another annotated field
or an expression tree. In cases where an AF represents a
field which is newly generated as part of a Pig Latin rela-
tional operation (GROUP..BY, FOREACH etc.), the parent
will be the expression tree used to generate it. Otherwise,
the parent of an AF will be the corresponding AF in the
vertex in the DAG that comes before it.

Encryption analysis. The program transformation com-
ponent then identifies the encryption scheme required for
each field. The required encryption for each field is iden-
tified by observing all occurrences of the field in the
MET. All operators and UDFs to be used in the script
are pre-registered with the encryption scheme required
for operands and the encryption scheme of output gen-
erated. Some Pig Latin relational operators also require
fields to be in specific encryption schemes. For exam-
ple, fields or expressions that become the grouped field or
joined field, of GROUP BY or JOIN respectively, require
the field or expression to be in DET. This information,
along with all the expression trees in MET, is sufficient
to identify the encryption scheme required for each AF.

1 A = LOAD ’enc_input1’ AS (a0_ope,
a0_ah, a1_det);

2 B = LOAD ’enc_input2’ AS (x0_det);
3 C = FILTER A BY OPE_GREATER(a0_ope ,

’0xD0004D3D841327F2CCE7133ABE1EFC14’);
4 D = GROUP C BY a1_det ;
5 E = FOREACH D GENERATE group AS b0,

SUM(B.a0_ah) AS b1;
6 F = JOIN E BY b0, B BY x0_det;
7 STORE F into ’out’;

Listing 2: Transformed Pig Latin script

Script transformation. Once we know the encryption
scheme required for each field, we use the lineage in-
formation available through the parent field of AFs and
metadata about the encrypted input file to identify which
fields of the encrypted input file should be loaded. In
cases where a valid encryption scheme is not present, we
wrap the field in a reencrypt operation. The reencrypt
operation contacts the encryption service on the trusted
client to convert the field to the required encryption
scheme. Constants in MET are also transformed into en-
crypted form as required for the operation in which they
are used. The transformation generates the list of fields
to be loaded from the encrypted version of the input file,
and modifies the MET to use the newly loaded files. List-
ing 2 shows the transformed Pig Latin script for our ex-
ample. Note that field a0 is loaded twice, under two en-
cryption schemes, and that the constant 10 is encrypted
using the OPE scheme to perform the comparison.

5 Evaluation
In this section we demonstrate the practicality of Cryp-

sis. Because of space constraints we summarize our re-
sults here and provide details at [4].

Microbenchmarks. We first constructed a microbench-
mark that compares the size of the unencrypted data with
the size of the encrypted data. We also compare the time
taken to perform simple operations on unencrypted data
with the time taken to perform the same operations on
encrypted data and show the results in Table 1. The eval-
uation of this microbenchmark was performed on a sin-
gle machine with two 32 bit CPUs and 3 GB of RAM.

PigMix. We ran the Apache PigMix2 [3] benchmark to
evaluate the perfomance of Crypsis. PigMix2 is a set of
17 Pig Latin scripts that tests the latency and scalability
of the Pig runtime. Our evaluation was carried out using
a cluster of 11 c3.large nodes from Amazon EC2 [1].
The nodes have two 64 bit virtual CPUs and 3.75 GB
of RAM. We discuss the results here and some lessons
learned.

We used the data generator script that is part of PigMix



Size (KB) Time (ms)
Add Multiply

Λ† NE‡ AHE MHE NE AHE NE MHE
2 269 12071 12153 32 477 32 2267
4 538 24142 24306 63 895 62 4118
6 807 36212 36459 92 1314 90 5978
8 1076 48283 48611 121 1730 118 7818

10 1345 60354 60764 150 2147 147 9658

Table 1: Comparing size of data and latency of addi-
tion and multiplication operations over plaintext and en-
crypted data. †Λ is the number of operations performed
in multiples of 1000. ‡NE denotes no encryption or
plaintext data.

to generate an input data set with 3300000 rows (5GB).
These input data were encrypted at the client side using
Pig Latin queries running entirely on the client cluster.

While running benchmark, one problem we faced
was in Pig Latin scripts (e.g. L1) that projects the
value of map fields using chararray constants as
keys (map#’key’). Current Pig implementation does
not allow variables, functions or data types other than
chararrays to act as keys for such projections. This
causes an issue because we consider encrypted text
always as bytearrays. Further, even if we cast a
bytearray to chararray in order use it as a key
in the map, we will have to deal with representing
special characters in the bytearray in script file.
To avoid this, during encryption of keys for maps,
we generate the hex representation of the byte array
and store it as a string of characters. This allows
us to transform a projection like page_links#’b’

into page_links#’4E87D339A9550DCDB6137AAD’.
Also, Pig Latin supports int, long, float and double
literals for representing numbers within the Pig Latin
script. Unfortunately, the range of numbers that may ap-
pear in the cipher text space may exceed the max lim-
its in each of these supported data types. We overcome
this limitation by representing the numeric constants
as strings and performing the actual comparison using
BigInteger or BigDecimal classes within UDFs.

Figure 3 shows the results of the PigMix benchmark.
On average we observe 3× overhead in terms of latency,
which is extremely low compared to FHE.

6 Related Work
Differential privacy and functional encryption solve

different problems associated with confidentiality. Dif-
ferential privacy aims to improve the accuracy of statis-
tical queries, without revealing information about indi-
vidual records; data and computation reside within the
trusted server. Functional encryption focuses on ensuring
that an untrusted process learns only the ouput of a func-
tion f (x) about data. In comparison, Crypsis assumes

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

L1
 

L2
 

L3
 

L4
 

L5
 

L6
 

L7
 

L8
 

L9
 

L1
0 

L1
1 

L1
2 

L1
3 

L1
4 

L1
5 

L1
6 

L1
7 

Ti
m

e 
(s

ec
) 

PigMix Script 

Pig 
Crypsis 

Figure 3: Latency of Pig Latin scripts in PigMix

data and computation to reside in an untrusted environ-
ment and prevents the untrusted process from learning
anything about data. sTile [6] keeps data confidential by
distributing computations onto large numbers of nodes in
the cloud, requiring the adversary to control more than
half of the nodes in order to reconstruct input data. Aira-
vat [20] combines mandatory access control and differ-
ential privacy to enable MapReduce computations over
sensitive data. Both sTile and Airavat require the cloud
provider and cloud infrastructure to be trustworthy.

CryptDB [18] is a seminal system leveraging PHE
for cloud-based data management. As suggested by its
name, CryptDB is a database system extending MySQL,
focusing on SQL queries. Monomi [25] improves per-
formance of encrypted queries similar to those used
in CryptDB and introduces a designer to automatically
choose an efficient design suitable for each workload.
Both CryptDB and Monomi lacks MapReduce-style par-
allelization. MrCrypt [24] consists in a program analysis
for MapReduce jobs that tracks operations and their re-
quirements in terms of PHE. When sequences of opera-
tions are applied to a same field, the analysis defaults to
FHE, noting that the system does not currently execute
such jobs at all due to lack of available FHE cryptosys-
tems.

7 Conclusions and Outlook
In this paper, we have outlined the necessity for com-

puting on encrypted big data and the potential of partially
homomorphic encryption towards this goal. We also pre-
sented the high-level design of Crypsis, a system that
achieves this goal.

We are currently investigating a number of optimiza-
tions, and further, heuristics for selecting from differ-
ent possible execution paths in the transformed Pig Latin
script. In particular we’re investigating paths which per-
form re-encryption of data at clients (in contrast to costly
re-encryption in the cloud as with FHE) and minimizing
these re-rencryptions themselves. To this end we’re also
employing sampling to determine amounts of data at dif-
ferent points in analysis jobs.



References
[1] Amazon EC2. http://amazon.com/ec2.
[2] Apache Pig. http://pig.apache.org.
[3] Apache PigMix benchmark. https://cwiki.apache.

org/confluence/display/PIG/PigMix.
[4] Crypsis Tech Report. https://www.cs.purdue.edu/

homes/stephe22/securebigdata.
[5] BOLDYREVA, A., CHENETTE, N., LEE, Y., AND O’NEILL,

A. Order-preserving Symmetric Encryption. In EUROCRYPT
(2009).

[6] BRUN, Y., AND MEDVIDOVIC, N. Keeping Data Private while
Computing in the Cloud. In IEEE CLOUD (2012).

[7] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S.,
HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM, N.
Flumejava: Easy, Efficient Data-parallel Pipelines. In PLDI
(2010).

[8] DAEMEN, J., AND RIJMEN, V. The Design of Rijndael: AES
- The Advanced Encryption Standard. Springer Verlag, Berlin,
Heidelberg, New York, 2002.

[9] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI (2004).

[10] DEVELOPERWORKS, I. Process your Data with Apache
Pig, 2012. http://www.ibm.com/developerworks/
library/l-apachepigdataquery/.

[11] DINUR, I., AND NISSIM, K. Revealing Information While Pre-
serving Privacy. In PODS (2003).

[12] ELGAMAL, T. A Public-Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. IEEE Transactions on
Information Theory 31, 4 (1985).

[13] GENTRY, C., SAHAI, A., AND WATERS, B. Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. In CRYPTO (2013).

[14] HADOOP. Hadoop. http://hadoop.apache.org/.
[15] HALEVI, S., AND ROGAWAY, P. A tweakable enciphering mode.

In CRYPTO (2003).
[16] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND

TOMKINS, A. Pig Latin: A Not-So-Foreign Language for Data
Processing. In SIGMOD (2008).

[17] PAILLIER, P. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In EUROCRYPT (1999).

[18] POPA, R. A., REDFIELD, C. M. S., ZELDOVICH, N., AND
BALAKRISHNAN, H. CryptDB: Protecting Confidentiality with
Encrypted Query Processing. In SOSP (2011).

[19] RIVEST, R., SHAMIR, A., AND ADLEMAN, L. A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM 21, 2 (1978), 120–126.

[20] ROY, I., SETTY, S. T. V., KILZER, A., SHMATIKOV, V., AND
WITCHEL, E. Airavat: Security and Privacy for MapReduce. In
NSDI (2010).

[21] SAHAI, A., AND WATERS, B. Fuzzy Identity Based Encryption.
IACR Cryptology ePrint Archive 2004 (2004).

[22] SCHNEIER, B. Description of a new variable-length key, 64-
bit block cipher (blowfish). In Fast Software Encryption (1994),
Springer-Verlag, pp. 191–204.

[23] STEPHEN, J. J., AND EUGSTER, P. Assured Cloud-Based Data
Analysis with ClusterBFT. In Middleware (2013).

[24] TETALI, S., LESANI, M., MAJUMDAR, R., AND MILLSTEIN,
T. MrCrypt: Static Analysis for Secure Cloud Computations. In
OOPSLA (2013).

[25] TU, S., KAASHOEK, F., MADDEN, S., AND ZELDOVICH, N.
Processing Analytical Queries over Encrypted Data. In PVLDB
(2013).

http://amazon.com/ec2
http://pig.apache.org
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://www.cs.purdue.edu/homes/stephe22/securebigdata
https://www.cs.purdue.edu/homes/stephe22/securebigdata
http://www.ibm.com/developerworks/library/l-apachepigdataquery/
http://www.ibm.com/developerworks/library/l-apachepigdataquery/
http://hadoop.apache.org/

	Introduction
	Background: Pig Latin 
	Architecture and System Overview
	Program Analysis and Transformation
	Evaluation
	Related Work
	Conclusions and Outlook

