
Enabling Scalable Social Group Analytics via Hypergraph Analysis Systems

Benjamin Heintz and Abhishek Chandra
Department of Computer Science & Engineering

University of Minnesota

Abstract
With the rapid growth of large online social networks,
the ability to analyze large-scale social structure and be-
havior has become critically important, and this has led
to the development of several scalable graph processing
systems. In reality, social interaction takes place not just
between pairs of individuals as in the common graph
model, but rather in the context of multi-user groups.
Research has shown that such group dynamics can be
better modeled through hypergraphs: a generalization of
graphs. There are not yet, however, scalable systems to
support hypergraph computation, and several challenges
and opportunities arise in their design and implementa-
tion. In this paper, we present an initial attempt at build-
ing a scalable hypergraph analysis framework based on
the GraphX/Spark framework. We use this prototype to
examine several programmability and implementation is-
sues through experiments with two real-world datasets
on a 6-node cluster.

1 Introduction

The advent of online social networks and communities
such as Facebook and Twitter has led to unprecedented
growth in user interactions (such as “likes”, comments,
photo sharing, and tweets), and collaborative activi-
ties (such as video/document editing and shared quests
in multi-player games). This has resulted in massive
amounts of rich data that can be analyzed to better un-
derstand user behavior, information flow, and social dy-
namics. The traditional way to study social networks is
by modeling them as graphs, where each vertex repre-
sents an entity (e.g., a user) and each edge represents the
relation or interaction between two entities (e.g., friend-
ship). Several graph analytics frameworks [11, 19, 20]
have been introduced to scale out the computation on
massive graphs comprising millions or billions of ver-
tices and edges.
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Figure 1: A hypergraph can model groups unambigu-
ously compared to a simple graph. Here, we have three
groups: two consisting of pairwise interactions, and one
including all three vertices.

While graph analytics has enabled a better understand-
ing of social interactions between users, there is a grow-
ing interest [16] to study a group or team of individuals as
a distinct entity on its own. A group is an underlying ba-
sis for many social interactions and collaborations, such
as users on Facebook commenting on a common event of
interest or a team of programmers working together on a
software project. In these cases, the interactions between
users is driven primarily as a result of their group mem-
bership, and not as individual pairwise interactions hap-
pening in a vacuum. Further, the dynamics of many such
systems may also be driven through group-level events,
such as users joining or leaving groups, or finding others
based on group characteristics (e.g., common interest).
Since such group-based phenomena involve multi-user
interactions, it has been shown that many natural phe-
nomena can be better modeled using hypergraphs than
by using graphs [7].

Formally, a hypergraph is a generalization of a graph,
and is defined as a tuple H = (V,E), where V is the
set of entities, called vertices, in the network, and E is
the set of subsets of V , called hyperedges, representing
relations between one or more entities [1]. As illus-
trated in Figure 1, a hypergraph can model groups un-
ambiguously compared to a graph1. Recent work [25]

1



has shown that hypergraph models can also achieve a
significant improvement in modeling accuracy compared
to graph-based models. While hypergraph algorithms
have received much less attention compared to graph
algorithms, there has been work on developing hyper-
graph counterparts for problems such as centrality es-
timation [3], shortest path computation [9], and others.
These algorithms will likely receive more attention as the
study of group dynamics matures.

From a systems standpoint, a key challenge in en-
abling hypergraph analysis is the massive scale of the
underlying data (millions or billions of vertices and hy-
peredges). As a result, similar to a graph analysis sys-
tem, a hypergraph analysis system must also be scalable,
both in terms of memory and storage utilization to sup-
port large data, as well as by enabling distributed com-
putation across multiple CPUs and nodes for increased
parallelism. The focus of this paper is on such systems-
level challenges.

In this paper, we present an initial attempt at build-
ing a scalable hypergraph analysis system based on the
GraphX framework [11] in Apache Spark [26] and use
this prototype to illustrate the various challenges and op-
portunities involved. We propose a concise but expres-
sive hypergraph API which we use to implement hy-
pergraph extensions of the popular PageRank [21] al-
gorithm. We then discuss a number of alternative tech-
niques for implementation issues related to data repre-
sentation and execution. We also examine the impact of
various factors on the tradeoffs of selecting different al-
ternatives. Some of the key factors include hypergraph
characteristics, algorithm behavior, and the mechanisms
provided by (as well as the efficiency of) the underlying
computational platform. Our analysis is based on pre-
liminary empirical results obtained by running the algo-
rithms/prototype on a 6-node cluster with two publicly
available datasets obtained from DBLP and Friendster.

2 A Hypergraph PageRank Algorithm

We begin by presenting an exemplar hypergraph algo-
rithm based on PageRank [21], a widely used algorithm
in graph analytics to determine the relative importance
of different vertices in a graph. It is used in a variety of
applications, such as search, link prediction, and recom-
mendation systems.

We can imagine extending PageRank to the hyper-
graph context in many ways. First, it is possible to com-
pute the PageRank for vertices based on their member-
ship in different hyperedges in the hypergraph. In a so-
cial context, this would correspond to determining the
importance of a user based on her group memberships
(e.g., a user might be considered more influential if she
is part of an exclusive club).

At the same time, it is possible to compute the PageR-
ank for hyperedges based on the vertices they contain.
This corresponds to estimating the importance of groups
based on their members (e.g., a group with Fortune 500
CEOs is likely to be highly influential). This extension
also illustrates the fact that hyperedges can be consid-
ered as first-class entities associated with similar state
and computational functions as vertices in typical graph
computation.

This elevation of hyperedges to first-class status sug-
gests a further extension to PageRank: we can compute
additional attributes for each hyperedge using arbitrary
functions of its member vertices. For instance, we can
use an entropy function to determine the uniformity of
each hyperedge; i.e., the extent to which its members
contribute equally to its importance.

3 A Hypergraph API

These example PageRank algorithms suggest the follow-
ing key requirements of an API for a hypergraph anal-
ysis system. First, it must support hyperedges as first-
class entities on par with vertices, with their own state
and compute functions. Secondly, the computation can
be logically carried out in a series of alternate steps
involving computation on vertices and hyperedges re-
spectively. Guided by these requirements, we propose
a concise and expressive API for hypergraph computa-
tion (see Listing 1)2. The key modeling abstraction is
the HyperGraph, which is parameterized on the hyper-
vertex3 and hyperedge attribute types4.

The core computational method, compute, provides
an iterative computational model similar to Pregel [19].
Using this method, users can easily express computa-
tion that proceeds iteratively in a series of alternate su-
persteps, during which hypervertices (resp., hyperedges)
update their state and compute new messages, which are
delivered to hyperedges (resp., hypervertices). In this
model, hyperedges are clearly elevated to first-class sta-
tus; they can maintain their state, carry out computation,
and send messages just as hypervertices do.

To use the compute method to orchestrate their itera-
tive computation, users encode their hypervertex (resp.,
hyperedge) behavior in the form of a Program compris-
ing a Procedure for consuming incoming messages, up-
dating state, and producing outgoing messages, as well
as a MessageCombiner for aggregating messages des-
tined to a common hyperedge (resp., hypervertex). The
Context provides methods that enable the Procedure

to update hypervertex (resp., hyperedge) state, and to
send messages to neighboring hyperedges (resp., hyper-
vertices).

Using this API, we are able to implement a hypergraph
PageRank algorithm which computes ranks for hyperver-
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trait HyperGraph[HVD, HED] {
def compute[ToE, ToV](

maxIters: Int,
initialMsg: ToV,
hvProgram: Program[HVD, ToV, ToE],
heProgram: Program[HED, ToE, ToV])
: HyperGraph[HVD, HED]

}

object HyperGraph {
trait Program[A, InMsg, OutMsg] {

def messageCombiner: MessageCombiner[OutMsg]
def procedure: Procedure[A, InMsg, OutMsg]

}

type MessageCombiner[Msg] = (Msg, Msg) => Msg

type Procedure[A, InMsg, OutMsg] =
(Int, NodeId, A, InMsg, Context[A, OutMsg]) => Unit

trait Context[A, OutMsg] {
def become(attr: A): Unit
def send(msgF: NodeId => OutMsg,

to: Recipients): Unit
}

}

Listing 1: Key abstractions from our hypergraph API
(expressed in Scala).

tices using only 19 lines of code. Further computing hy-
peredge ranks requires only a single line of additional
code. An even richer version which also computes the
entropy of each hyperedge requires fewer than 25 lines
of code.

Note that a user might be able to implement the same
algorithms without using the hypergraph abstraction ex-
plicitly or using our API. For instance, for the simplest
PageRank variant, where we compute only vertex ranks,
it is possible to define a transformation function from the
input hypergraph to a weighted graph such that an ex-
isting graph PageRank algorithm yields identical results.
We refer to this weighted graph as the one-mode projec-
tion of the original hypergraph. Such a transformation,
however, is highly non-trivial requiring significant devel-
oper time and effort, and the resulting graph consumes
significantly more space than a hypergraph representa-
tion (see Section 5). Further, this approach does not ap-
ply to the richer algorithm variants, as they require mod-
eling hyperedges as first-class entities. An alternative
approach could be to use an affiliation network model
explicitly capturing group affiliations of users [8]. How-
ever, such an approach is also tedious and error-prone,
and many existing graph processing abstractions (such
as GraphX’s Pregel implementation) cannot be applied
without modification. Yet another disadvantage of such
approaches is that, by disguising hypergraphs as graphs,
they preclude any hypergraph-aware optimization at the
underlying system level.

4 Implementation Issues

Next, we explore two key issues involved in the imple-
mentation of our hypergraph computing API: how to rep-
resent the hypergraph at the system level, and how to par-
tition this hypergraph for distributed computation.

4.1 Representation
The choice of the underlying platform has a major impact
on how we represent hypergraphs at the system level. If
using an underlying graph processing platform, we can
represent the hypergraph as a bipartite graph, where one
partition comprises exclusively hypervertices, and the
other exclusively hyperedges, with low-level graph edges
connecting hyperedges to their constituent hypervertices.
If the underlying platform provides a more flexible multi-
graph abstraction, allowing multiple parallel edges be-
tween pairs of vertices, then we can represent hyperver-
tices using graph vertices, and hyperedges using labeled
graph edges: any two vertices that belong to a common
hyperedge h are connected by an edge with label h. If
we instead implement our API directly on a general dis-
tributed computing framework such as Hadoop or Spark,
then there is much more flexibility of representation.

While these alternative representations are all equally
valid, each has its strengths and weaknesses. One key ad-
vantage of the bipartite graph representation is its porta-
bility: it can be implemented on any graph computing
system. For example, the underlying dataflow for our
compute method is a natural extension of the dataflow
in the existing GraphX Pregel implementation. How-
ever, a straightforward transformation that does not dis-
tinguish between the two distinct types of entities—
hyperedges and hypervertices—can result in suboptimal
performance. Hyperedges and hypervertices may have
significantly different characteristics including attribute
sizes, degree/cardinality distribution, and behavior of
their respective Programs, resulting in poor I/O perfor-
mance and load imbalance. As a result, the underlying
system must use mechanisms and optimizations that are
aware of these differences.

A multigraph representation, on the other hand, repre-
sents hypervertices and hyperedges using distinct under-
lying entities (viz., vertices and edges respectively), and
as a result avoids these potential performance pitfalls.
One limitation, however, is that only a few existing graph
computing platforms (such as GraphX) provide a multi-
graph abstraction. Additionally, mapping our hypergraph
API into this representation would require a completely
different dataflow than is provided directly by existing
systems. Compared to the bipartite representation, this
representation might also be more storage-intensive, es-
pecially if the hypergraph contains many large hyper-
edges. This problem could be addressed through intel-
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ligent transformations to the underlying multigraph that
might yield interesting performance trade-offs.

Finally, implementing a hypergraph directly on top of
a general distributed computing platform such as Hadoop
or Spark opens up an essentially limitless range of opti-
mization opportunities, but it fails to take advantage of
the many recent advances in graph computing systems.
Further, graphs remain the right tool for a broad range
of problems, and implementing a hypergraph API atop a
graph system makes it much easier for application devel-
opers to mix and match graph and hypergraph computing
as their applications require.

4.2 Partitioning
To scale to large hypergraphs, it is essential to distribute
computation across multiple nodes. The decision of how
to partition the underlying representation can have a sig-
nificant impact on performance, in terms of both compu-
tation load balance, as well as network I/O. Graph com-
puting systems such as Pregel partition graphs by assign-
ing each vertex to a unique machine, and thus “cutting”
edges; the volume of network I/O is then driven directly
by the number of cut edges. PowerGraph [10] uses an
alternative approach of assigning each edge to a unique
machine and instead cutting vertices to achieve better
load balance for graphs with highly skewed vertex de-
gree distributions. PowerLyra [5] uses a hybrid approach
that distinguishes between high- and low-degree vertices.

Similarly for hypergraphs, the space of options is
broader than the two extremes of vertex-cut vs. edge-
cut. Using a bipartite representation, for example, a
graph-level vertex-cut partitioning approach would ef-
fectively cut both hypervertices and hyperedges. As
a concrete example, GraphX allows users to specify a
PartitionStrategy, which assigns each directed edge
to a partition based on its source id, destination id, or
both. In our implementation of the bipartite represen-
tation, edges are directed from hyperedges to hyperver-
tices. As a result, if we partition exclusively by source
(resp., destination) id, we are effectively cutting only hy-
pervertices (resp., hyperedges). If we partition by both,
then we cut both hyperedges and hypervertices, and the
distribution of these cuts is driven by the details of our
PartitionStrategy.

An interesting possibility is to base the partitioning
strategy on the relative size of hyperedge and hyperver-
tex attributes or degree/cardinality distributions. For ex-
ample, if hypervertex attributes are much larger than hy-
peredge attributes, then we can reduce network I/O by
cutting hyperedges rather than hypervertices. In an itera-
tive computing model like ours, it may even be worth-
while to adapt partitioning decisions across iterations,
dynamically repartitioning the hypergraph representation
based on run-time performance metrics.

5 Experimental Evaluation

To understand the performance implications of various
factors such as data and algorithm characteristics and
partitioning strategies, we implement a proof-of-concept
of our API using the GraphX framework in Apache
Spark, and carry out experiments on a shared 6-node
cluster consisting of machines with dual 6-core proces-
sors, 24GB RAM and 2TB disk. In our experiments, we
use a bipartite graph as the low-level representation of a
hypergraph. As inputs for our experiments, we use the
two publicly available datasets described in Table 1.

The DBLP dataset describes more than one million
publications, from which we use authorship information
to build a hypergraph model where vertices represent au-
thors and hyperedges represent collaborations between
authors. The full DBLP dataset yields a hypergraph with
roughly one million vertices and hyperedges, and its bi-
partite graph representation contains roughly 2.8 million
edges. A one-mode projection that uses an edge between
two authors to represent their coauthorship would con-
tain more than 21 million edges.

The Friendster dataset represents users of the Friend-
ster social networking site. In our hypergraph model,
vertices represent individual users, and hyperedges rep-
resent user-defined communities. Because membership
in these communities does not require the same com-
mitment as collaborating on a publication, this dataset
has very different characteristics from the DBLP dataset.
For one, it is much larger, containing nearly eight million
vertices and more than 1.6 million hyperedges. A bipar-
tite representation contains more than 23 million edges.
A one-mode projection of this dataset is so large that we
are unable to materialize it on our small cluster. A con-
servative lower bound on its size, computed by restrict-
ing our model to hyperedges with cardinality of 1,000 or
greater, is in excess of 15 billion, or roughly three orders
of magnitude larger than for the bipartite version. 5

Using these datasets, we run two versions of our hy-
pergraph PageRank algorithms for 30 iterations. The PR
algorithm computes ranks for both vertices and hyper-
edges, and the PR-Entropy algorithm also computes the
entropy of each hyperedge. The key difference is that, in
the PR-Entropy version, in order to compute entropy of
each hyperedge, messages from vertices to hyperedges
must be concatenated rather than summed, leading to a
higher volume of data movement.

Figures 2(a) and 2(b) show the execution time as
we process increasingly large subsets of the DBLP and
Friendster datasets, respectively. For DBLP, we generate
subsets by filtering away publications prior to a threshold
date, whereas for Friendster, we generate subsets by fil-
tering away hyperedges with cardinality below a thresh-
old value. For DBLP, we see that execution time grows
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Table 1: Datasets used in our experiments.
Dataset # Vertices # Hyperedges Max. Deg. Max. Card. # Bip. Edges # 1-mode Edges Max. 1-mode Deg.
DBLP 952,115 916,947 369 2,767 2,768,930 21,592,883 11,466
Friendster 7,944,949 1,620,991 1,700 9,299 23,479,217 > 15.1 billion > 843,000
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Figure 2: Execution time for 30 iterations of our hypergraph PageRank algorithms.

approximately linearly with the number of edges in the
underlying bipartite representation. The difference in al-
gorithm characteristics manifests as a slightly higher run-
time for the PR-Entropy algorithm due to its higher vol-
ume of communication. For the Friendster dataset, we
run into scalability limits due to limited disk space on
our cluster nodes, as Spark relies on disk to perform ex-
ternal sorting during the join operations that implement
data movement between hyperedges and vertices. Even
for the full Friendster dataset, however, we are able to
process at least 20 PageRank iterations using our hyper-
graph algorithms, while a one-mode projection alterna-
tive is too large to even materialize, let alone use as in-
put for iterative computation. As expected, we reach this
limit at smaller input sizes for the PR-Entropy algorithm,
due to its higher volume of communication.

Figure 2(c) illustrates the impact of partitioning strate-
gies on execution time when processing the DBLP
dataset (subset including publications since 2010). We
see that, for both algorithm variants, there is a slight ad-
vantage to cutting hyperedges as opposed to cutting ver-
tices, and that both of these strategies outperform a strat-
egy that cuts both vertices and hyperedges.

6 Related Work
There has been an explosion of graph computing systems
in recent years [4, 6, 15, 17, 18, 19, 22, 24], and along
with them, a great deal of work on performance evalua-
tion and optimization [10, 12, 23, 27]. In order to take
advantage of these recent advances, and to ultimately
produce a system that users can effectively integrate into
their broader workflows, we have biased our study to-
wards the opportunities and challenges of building on top
of such systems rather than starting from scratch. In prior
work [13], we have explored other issues surrounding
hypergraph computing, such as application-level model-

ing considerations and the need for characterization of
real-world hypergraphs. In this paper, on the other hand,
we have proposed a concrete programming interface and
explored some of the specific challenges that arise when
implementing this interface on existing systems. Hyper-
graphs have been studied for decades [1, 2] and have
been applied in diverse applications such as VLSI de-
sign [14]. Our hope is that scalable hypergraph comput-
ing systems will enable and encourage the development
of novel and useful hypergraph algorithms.

7 Conclusion
The rapid growth in large online social networks has
highlighted the need to analyze social structure and be-
havior at a massive scale. This has led to the develop-
ment of scalable graph processing systems, but because
social interaction takes place not just between pairs of
individuals, but within groups, we have argued that hy-
pergraphs are a more appropriate model for many appli-
cations. To enable users to work at this higher level of
abstraction, we need scalable hypergraph computing sys-
tems, and implementing such systems presents interest-
ing challenges and opportunities. In this paper, we have
described our first steps toward building a scalable hyper-
graph analysis framework based on the GraphX frame-
work in Apache Spark, and we have explored several im-
plementation issues through experiments with two real-
world datasets on a 6-node cluster.
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9 Discussion

Feedback: While feedback on higher-level issues re-
lated to algorithms and applications would be wel-
come, we expect to get feedback primarily on the
systems-level issues given the focus and expertise
of participants at this workshop. For instance, what
are the pros and cons of leveraging an existing
graph processing framework (such as GraphX or
GraphLab) vs. a more generic distributed process-
ing framework (such as Spark or Hadoop)? Would
a clean-slate design be better? What other kinds of
underlying representations or partitioning heuristics
would be useful to consider? What kind of schedul-
ing and communication primitives or policies would
be useful to support in such a system?

Controversy: We are examining a radically different
way of analyzing social interaction, and proposing
the development of a new kind of computational
framework to support it. It might be controversial
whether there is a need for such a radical approach
in the first place, and whether a new computational
model is required.

Discussion: This paper is likely to generate significant
discussion regarding the differences and similarities
between hypergraph and graph processing systems,
as well as the related systems-level issues (both
that can be applied from prior work, and those that
would have to be invented).

Open issues: We do not address a number of applica-
tion modeling and algorithm-level issues related to
use of hypergraphs in applications. We also do not
address programming model-level issues compre-
hensively (e.g., whether it is necessary to support
asynchronous computation) though we propose an
initial API.

Failure: This entire idea might fall apart if the algo-
rithms community and more broadly, application
developers, do not make sufficient progress in de-
veloping new hypergraph algorithms or applying
them to interesting real-world phenomena.
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Notes
1In this paper, we use “graph” to refer to a simple or dyadic graph.
2Scala traits are analogous to Java interfaces, and the object

keyword here is used to define a module namespace.
3To avoid ambiguity, we use “hypervertex” to denote a vertex within

a hypergraph.
4While not shown here, our interface provides a number of other

methods such as those for accessing hypervertex and hyperedge at-
tributes and for transforming the hypergraph in different ways.

5 An interesting note is that we carried out this computation by us-
ing our hypergraph compute method to compute the approximate set
(using a HyperLogLog) of vertices adjacent to each vertex.
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