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Abstract

Within the past decade, there have been a number of par-
allel programming models developed for data-intensive
(i.e., big data) applications. Typically, each model has
its own strengths in performance or programmability for
some kinds of applications but limitations for others. As
a result, multiple programming models are often com-
bined in a complimentary manner to exploit their mer-
its and hide their weaknesses. However, existing models
can only be loosely coupled due to their isolated runtime
systems.

In this paper, we present Transformer, the first sys-
tem that supports hybrid programming models for data-
intensive applications. Transformer has two unique con-
tributions.  First, Transformer offers a programming
abstraction in a unified runtime system for different
programming model implementations, such as Dryad,
Spark, Pregel, and PowerGraph. Second, Transformer
supports an efficient and transparent data sharing mech-
anism, which tightly integrates different programming
models in a single program. Experimental results on
Amazon’s EC2 cloud show that Transformer can flexi-
bly and efficiently support hybrid programming models
for data-intensive computing.

1 Introduction

Nowadays, data-intensive applications, such as spam de-
tection, web search, and friend recommendation, become
critically important in handling an increasing amount
of data produced everyday. Such applications usually
have multiple computation phases and share intermedi-
ate results across different phases. For example, a typ-
ical machine-learning application [8]] can consist of five
phases: data preprocessing (cleaning and normalization),
feature extraction, model training (e.g., classification, re-
gression, or ranking), model evaluation, and optimiza-
tion. Some phases require intensive relational algebraic

operations, while others may need graph analytics. An
internal phase needs to pass intermediate results to its
subsequent phases for further processing.

To support efficient data processing in large-scale data
centers, there exist a number of programming models,
such as MapReduce [7], Dryad [14], Pregel [16], and
Spark [24]. These programming models provide high-
level APIs, transparent fault tolerance, and scalable com-
putation. Their runtime systems handle intricate issues in
distributed computing, e.g., task scheduling, data com-
munication, resilience, and synchronization.

Programming systems based on existing programming
models can be categorized into Monolithic ones and
Same-Cluster-Sharing ones. The Monolithic systems
provide a single programming model and use a central-
ized scheduling algorithm for all jobs, e.g., Hadoop [2].
Such systems have limited applicability due to the re-
striction of using a single programming model. The
Same-Cluster-Sharing systems, on the other hand, de-
couple programming models from resource manage-
ments, allowing multiple programming models to collab-
orate on the same cluster. The example resource man-
agements are Mesos [13] and YARN [21]. While this
approach provides a method of combining multiple pro-
gramming models to develop complex applications, it
has several disadvantages. First, Same-Cluster-Sharing
systems partition code according to different models,
which puts extra burdens on software maintenance. Sec-
ond, they have poor programmability. Programmers need
to get familiar with all these models and design hybrid
code by continuously switching their coding among dif-
ferent models. Third, multiple models are loosely cou-
pled for collaboration, which can seriously degrade the
performance when, for example, they share data via a
slow distributed file system.

To address these issues, we propose and develop a
hybrid programming system, Transformer, which seam-
lessly integrates multiple existing models. There are two
unique contributions in Transformer.



e Transformer provides a programming abstraction:
Unified Data Space (UDS) to easily express and hy-
bridize common high-level programming models.

e Transformer provides an in-band data sharing
mechanism to tightly couple multiple programming
models for high performance.

To evaluate Transformer, we study two applications
running on a 50-node EC2 cluster. Experiments show
that Transformer eases the programming of end-to-end
data processing workflows. It avoids the complexity of
programming an application with multiple separate run-
time systems. Instead, programmers utilize a single run-
time system only, which improves programmability and
code maintenance. Moreover, with the help of efficient
in-band data sharing, Transformer achieves performance
better than or comparable to the manual combinations of
existing systems.

The rest of this paper is organized as follows. Sec-
tion 2 describes the importance of hybrid programming,
which motivates our work. Section 3 describes the de-
sign and implementation of Transformer. Section 4 stud-
ies two applications to evaluate Transformer. Section
5 reviews related work and distinguishes our approach.
Section 6 presents some conclusions and previews the
future work.

2 Hybrid Programming

There are many programming models developed by the
data-intensive computing community. These models
have different capabilities in handling different kinds
of computation. For example, distributed dataflow
frameworks, such as MapReduce [7], Dryad [14],
and Spark [24] are well suited for analyzing tabu-
lar data. Graph-parallel models, such as Pregel [16]
and PowerGraph [10] are designed for graph analysis.
MadLINQ [20] and Presto [22] are efficient for perform-
ing matrix computation. However, a real-world applica-
tion usually consists of multiple computation phases that
are not amenable to obtaining high performance within a
single programming model. For example, processing on
social network graphs can have two phases: page rank-
ing and value sorting. Graph-parallel models can obtain
high performance for the page ranking phase because
of their strengths in graph analysis. However, graph-
parallel models have poor support for the sorting compu-
tation. Instead, dataflow models have better performance
on the sorting computation, because they can perform
data parallelism via map and reduce on large datasets.
Thus, neither PowerGraph nor Hadoop efficiently per-
forms this two-phase graph computation. A possible so-
lution is to combine two jobs written by PowerGraph and
Hadoop, simply piping the data from one to the other.

This approach not only puts heavy burdens on program-
mers but also leads to performance degradation.

Unifying different programming models into a single
system is a promising approach for data analytics. In this
paper, we design and implement a general programming
system — Transformer. Transformer integrates different
programing models, including Dryad [14], Spark [24],
Pregel [[16]], and PowerGraph [10]). With the support of
Transformer, one can easily implement applications of
multiple phases with high performance.

3 Programming Model in Transformer

To integrate different programming models into one sin-
gle system, we introduce unified data space (UDS) as a
common substrate. UDS offers two capabilities for hy-
brid programming. First, UDS facilitates system pro-
grammers to easily express the existing programming
models. We will take MapReduce as an example to illus-
trate the implementation of a programming model on top
of UDS in the remaining section. Second, UDS provides
a memory-based data sharing mechanism for application
programmers, which not only tightly integrates different
programming models in a single program, but also does
not require modification to any program logic.

A Transformer program executes in single program
multiple data (SPMD) model. Listing 1 shows an exam-
ple of a hybrid program, which performs the pagerank
computation (lines 2-7) that is followed by the sort
computation (lines 9-19). From the high-level view, the
main function (lines 21-30) executes these two func-
tions sequentially. The rest of this section elaborates the
design and implementation of Transformer.

Listing 1: Hybridizing PowerGraph and Dryad computa-
tions in one program supported by Transformer.

// PowerGraph-based pagerank computation
func pagerank (input, output, ...) {
// Gather-Apply-Scatter interfaces

prJob = NewGraphCompute ("pagerank")
prdob.Execute (input, output,...)

}

// Dryad-based sort computation

func sort (input, output , ...) {
// dataflow interfaces

sortJob = NewDataflow("sort")
mapStage = NewStage ("map", ...)
mapStage.SetInput (input)

reduceStage = NewStage ("reduce", ...)
reduceStage.SetOutput (output)
sortJob.Shuffle (mapStage, reduceStage)
sortJob.Execute(...)

}

// hybridization

func main () {
input = "hdfs://dataset/input"

share = "cache://dataset/share"
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output "hdfs://dataset/output"
engine = NewEngine ()
engine.Start ()

pagerank (input, share, ...)

sort (share, output, ...)
engine.Stop ()

3.1 Unified Data Space

UDS stores all the data of a hybrid program in a four-
sphere data space: HDFS, File, Cache, and Pipe. Each
sphere structures data into the well-understood file sys-
tem concepts like tree structure, directories, and files.
Typically, a logically distributed dataset is partitioned
into a collection of physical data objects. Similar to a
file in file system, a data object is stored as a finite-
length sequence of bytes, and can only be referenced
by its unique name—uniform resource identifier (URI),
which exposes the network location (hostname-port pair)
the object stored. It is worth noting that the mapping
from a distributed dataset to UDS is a responsibility of
system programmers.

The HDFS sphere usually stores the input and out-
put datasets for a job. The File sphere mainly stores
temporary data in local disks (e.g., the map outputs in
MapReduce). Similar to the HDFS sphere, the Cache
sphere provides a distributed file system abstraction, but
it stores data across distributed memory among workers.
It reduces I/O operations. That is, if a consumer task is
placed on the producer task’s physical node, it can di-
rectly access the data object stored in the Cache sphere
without any data movement. The data object in the Pipe
sphere is a special object, which is shared between a pair
of tasks. Typically, a producer task writes data to the
pipe object and a consumer task reads data from the pipe
object. The Pipe sphere leads to pipeline parallelism. It
requires the producer and consumer run simultaneously;
otherwise the program may result in a deadlock.

UDS provides four spheres for system programmers
to balance the tradeoff between performance and relia-
bility. A novel feature of UDS is that data objects re-
siding in any sphere can be retrieved and stored by the
storage-agnostic data operations: read and write. By
hiding the low-level details (e.g., location lookup, ac-
cessing disk, memory management, and network com-
munication), storage agnosticism allows programmers to
think about what kind of data to access instead of how to
access the data.

Transformer organizes a parallel computation as a col-
lection of independent tasks, which communicate with
each other via UDS. A Transformer task is an instance
of function with input and output signatures, as well as
user-defined code. A signature specifies one or more ob-
ject URIs. Unlike typical tasks in MapReduce, a Trans-

former task works in a more restricted manner: it re-
trieves data objects from UDS, then performs computa-
tion, and finally stores data objects to UDS. The normal-
ized behavior of a task brings statelessness and location
independence, which offers much more freedom for the
task scheduler to place tasks for data locality and fault
tolerance. By considering the location of data objects,
the task scheduler may place a task into an appropriate
worker process with high data locality. When a task fails
during its execution on a worker process, the scheduler
can retry to launch it on another worker process for fault
recovery.

3.2 Hybridization and data sharing

Conceptually, a hybrid job, including multiple compu-
tations with different programming models, proceeds as
follows: a driver program orchestrates multiple compu-
tations (sequentially or concurrently). A model-specific
computation is initiated by specifying an input dataset
(as a seed) and an output dataset (not yet produced). The
master process launches a batch of independent tasks
across worker processes, and each task performs the
user-defined logic to process the data independently. Af-
ter completing the process, each task returns its metadata
about its output objects (added into the data space) to the
master process. The output objects may satisfy the data
dependence of another batch of tasks and activate their
executions.

In Transformer, data sharing is accomplished by pass-
ing the data references (i.e., object URIs) between tasks.
Traditionally, a dataset is shared via HDFS by offloading
data to external storage systems, which we call out-of-
band. To reduce the data movement overhead between
the worker processes and the service processes (e.g., the
data nodes in HDFS), application programmers may di-
rectly store data among the worker processes using the
cache sphere, a data-sharing mechanism that we call in-
band. Application programmers only need to specify a
designated parameter as the cache sphere (see share in
Lising 1) and do not need to modify any program logic.

3.3 Model Implementation

From a high-level perspective, the parallel computation
in a model is expressed by the customized composition
of independent tasks and communication patterns. As
an illustrative example, Figure 1| shows how the MapRe-
duce model is expressed on top of UDS. The MapReduce
model can be expressed by a two-stage dataflow: map
and reduce. In the map stage, map tasks (m0O and m1)
read data from the HDFS sphere of UDS, and output re-
sults to the cache sphere of UDS . The reduce tasks (r0
and r1) follow the same well-defined behavior as map
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Figure 1: Using UDS to express MapReduce program-
ming model
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Figure 2: Read/Write operation on different locations
(Workflow and buffering in Read/Write).

tasks: read-compute-write. Typically, Hadoop’s shuffle
operation materializes the intermediate data to the local
disks. In Figure [T} the output of map tasks is specified
by the cache sphere, requiring no program effort to im-
plement a memory-based shuffle.

3.4 Implementation Sketch of Transformer

The Transformer system is implemented in the Go [1]
language. We briefly sketch the implementation of UDS
operations.

The Transformer runtime handles the low-level details
of the data naming space, such as communication pro-
tocol, data transport, and memory management. All the
data transferring across nodes is through the TCP socket.
In UDS, the HDFS sphere is implemented by wrapping
the libhdfs C library using the cgo tool in Go, while
the other spheres are implemented in the native Go lan-

guage. Figure[2]shows how the data movement happens
between distributed nodes for the cache and file spheres.
Two data objects (cache and file) are first generated by
some task being executed on worker1 process () and @
operations). When a subsequent task is scheduled to exe-
cute on worker1 process, it may directly read the two data
objects from memory buffer (@) or local disk (Q)). For
a task being executed on other locations (e.g., worker2
in Figure [2)), reading a data object may incur overhead.
For the cache object, the operation 3) will trigger a net-
work communication to copy data from the remote buffer
in worker1 to the local buffer in worker2, and then read
data from the local memory buffer. For the file object, the
operation (©) replicates from remote data to local disk,
leading to disk and network overhead. Since the data
transport happens among workers, the master is not the
performance bottleneck. The current Transformer proto-
type implementation stores a cache data object entirely in
the memory buffer, and the system does not ensure that a
cache data object fit in the available memory of a single
node.

4 Case Studies

We evaluate the performance of Transformer with two
case studies. We compare it with Hadoop 1.2.1 and
Spark 1.2. The experiments are performed on an Ama-
zon EC2 cluster using 50 m3.xlarge nodes. We measure
the end-to-end execution times for all these experiments.

4.1 Machine Learning

This application consists of two phases of data transfor-
mation. The first phase leverages the principle compo-
nent analysis (PCA) algorithm [3]] to reduce the feature
dimension. The second phase utilizes logistic regression
(LR) [9] for classification. The dataset was syntheti-
cally generated and contains a series of text records rep-
resenting <label, feature vector> pairs. Each line begins
with a label that is followed by a feature vector with 100
double-precision floats. For comparison, we implement
PCA and LR using Hadoop and Spark, respectively. The
PCA is implemented by two Hadoop jobs for reusing a
third-party matrix library, while LR is implemented by
Spark as it is well suited for iterative computation. In
Transformer, PCA is developed with a Dryad-like model,
and LR is implemented by Dryad-like and Spark-like
models, labeled T-Dryad and T-Spark respectively.
Figure [3|compares the overall execution times of PCA
and a ten-iteration execution of the logistical regres-
sion algorithm using different systems. In the case of
HDFS sharing, the workflow consumes 5258 seconds
with Hadoop, 618 seconds with Hadoop+Spark, 921 sec-
onds with T-Spark, and 543 seconds with T-Dryad. It
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shows that our Spark implementation is slower than the
original Spark. T-Spark currently stores the records as
data objects in the cache sphere of UDS, requiring type
conversion from bytes to the Go objects on each itera-
tion, while Spark avoids this parsing overhead by storing
the records in memory directly as Java objects. In both T-
Spark and T-Dryad evaluations, the in-band mode shows
clearly better performance than that of the out-of-band
mode by 25% to 47%, respectively.

4.2 Graph Analysis

We evaluate a graph analysis application to compare
Transformer with GraphX [11]]. Figure ] compares the
end-to-end execution times of a ten-iteration execution
of PageRank followed by TopK on two social-network
graphs (twitter [5] and uk-2007 [4]]). We see that Trans-
former shows competing performance with GraphX, a
graph computing system using many optimizations (e.g.,
join elimination, vertex mirroring and delta updates).
Note that for the two graph datasets, the in-band sharing

scheme provides limited improvement over the out-of-
band approach. This happens simply because the inter-
mediate results generated by PageRank (i.e., collection
of vertex and its value) are relatively small in volume.

5 Related Works

Hybrid programming models. Many program-
ming models, such as MapReduce [7], Dryad [14],
FlumeJava [6], Spark [24], CIEL [18], Naiad [17],
DryadLINQ [23], and Pig [19], employ dataflow or its
variants for massive data processing. In contrast, Trans-
former recasts existing programming models into a range
of computations on a global data space, and makes it pos-
sible for hybridization. GraphX [11] is closest to Trans-
former in terms of incorporating diverse computations.
GraphX supports pre-defined graph parallel and data par-
allel operations on a common data structure (i.e., col-
lections). In contrast, Transformer supports user-defined
computations on the same physical dataset. Thus, Trans-
former offers much more flexibility in computation com-
position.

Efficient data sharing. Nectar [12] proposes to cache
the intermediate results of common computations to re-
duce redundant computations. Tachyon [15] is a dis-
tributed file system designed for fast and reliable data
sharing across jobs. In tachyon, data is stored in dis-
tributed memory, and the lost data can be reproduced
by lineage information. In contrast, in-band mechanism
in Transformer provides an efficient data sharing at the
intra-job level instead of the inter-job level.

6 Conclusions and Future Work

This paper presents a hybrid programming system for
big data applications, which supports good programma-
bility, competing or better performance, high portability,
and high productivity. Our future work consists of three
parts. First, we plan to integrate more existing program-
ming models in Transformer. Second, we plan to extend
Transformer with transparent fault tolerance for hybrid
programming. Third, we will further improve the perfor-
mance and scalability of hybrid programming in Trans-
former.
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