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Abstract

We present the design and initial evaluation of a resilient
operating system architecture that leverages HW archi-
tectures combining few resilient with many non-resilient
CPU cores. To this end, we build our system around a
Reliable Computing Base (RCB) consisting of those soft-
ware components that must work for reliable operation,
and run the RCB on the resilient cores. The remainder
of the system runs replicated on unreliable cores. Our
system’s RCB consists of an L4 microkernel, a runtime
environment and a replication manager. In this paper we
state and justify assumptions about the hardware archi-
tecture, motivate the corresponding software architecture
and evaluate communication mechanisms between the
RCB and the replicas.

1 Introduction

With every new processor generation used in general pur-
pose computers the number and complexity of functional
units increases, which is made possible by decreasing
structure sizes. The downside of this development is
that processors become more vulnerable to permanent
and transient hardware errors [7]. This trend is expected
to increase and poses a serious threat to future hardware
generations [16].

In this paper, we focus on transient faults caused by
single-event upsets (SEUs) [18], which are commonly
caused by particle strikes, e.g., cosmic radiation. An
SEU striking a transistor may result in a corresponding
register to change its state, which in turn may lead to er-
roneous behavior visible at the software level.

Researchers and computer system vendors introduced
various mechanisms to cope with SEUs. Hardware-level
approaches introduce dedicated hardware circuitry that
validates computations [2] and transistor timing [9], en-
hances data passing through the CPU with redundant sig-
natures [19], or performs lock-stepped execution of pro-
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cessing units [14]. Unfortunately, such approaches are
often too expensive (in terms of energy consumption,
production cost, or runtime overhead) to be employed in
general purpose computer systems.

Software-level solutions exploit application and de-
veloper knowledge to decrease the runtime overhead re-
quired by a specific fault tolerance strategy [24]. These
approaches are often built into a compiler [21], which re-
quires the applications’ source code to be available. Ap-
plicability of these strategies is limited, because many
applications either make use of third-party libraries (of-
ten only distributed in binary form) or are provided
through mobile app stores where users have no control
over the tools used for implementing these applications.
Furthermore, most of these solutions are only developed
for user-level software [10, 21, 22, 24], whereas the op-
erating system kernel and low-level services are implic-
itly assumed to work correctly. The few existing whole-
system solutions [5, 15] are prohibitively expensive for
general purpose computers.
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Figure 1: ASTEROID Resilient OS Architecture

In contrast, it is our goal to support reliable operation
of binary-only applications, to include operating system
services, and to use inexpensive, heterogeneous multi-
cores. We strive to design an operating system architec-
ture that continues correct execution in the presence of
transient hardware faults. We focus on SEUs affecting



functional units of the CPU, whereas we assume mem-
ory contents to be protected by hardware mechanisms,
such as Error-Correcting Codes (ECC) [18].

Our approach is based on low-overhead replicated ex-
ecution of processes, called redundant multithreading
(RMT) [20]. In contrast to previous approaches [22,24],
we implement RMT as an operating system service,
called Romain. In this paper we focus on the lower-level
part of the system: In order to reliably provide RMT, a
subset of software components always needs to function
correctly. We call this subset the Reliable Computing
Base (RCB) and want find out how to protect it against
SEUs. The overall architecture, called ASTEROID, is
depicted in Figure 1.

We briefly describe our implementation of RMT as an
OS service in Section 2. In Section 3 we review exist-
ing trends in processor architecture and reason that a het-
erogeneous architecture consisting of few resilient CPU
cores and many non-resilient ones appears a promising
way of protecting the RCB. In order to combine the AS-
TEROID design with such a hardware platform we re-
quire efficient signalling between CPUs. We evaluate
three different signalling implementations in Section 4.
Finally, we review the resulting system design and iden-
tify points in our system that still remain vulnerable to
SEUs in Section 5. We show that the software and hard-
ware components to address these issues already exist,
although nobody has yet combined them to provide fault-
tolerant execution.

2 Redundant Multithreading as an Oper-
ating System Service

We now briefly describe the current state of ASTEROID,
our resilient operating system shown in Figure 1. For a
more detailed description, please refer to [8]. ASTER-
OID splits the system into two layers: user applications
and the Reliable Computing Base. We detect hardware
errors that occur during the execution of user applica-
tions by transparently replicating those applications and
comparing their states before any state is externalized.
Our implementation, Romain, is based on the idea of re-
dundant multithreading (RMT) [20, 22,24].

A replicated application as depicted in Figure 2 is cre-
ated by instantiating a master process. The master pro-
cess then creates identical replicas of the application,
each running in a dedicated address space in order to
achieve isolation in the case of a faulting replica. Lever-
aging manycore systems, we schedule each replica on its
own physical CPU core so that replicas can execute inde-
pendently as long as they don’t interact with the outside
world.
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Figure 2: Replicated Application

Whenever a replica thread raises a CPU exception (the
most important ones being system calls and page faults),
the kernel migrates the thread from the replica to the
master address space. The faulting thread then waits for
all other replicas to do the same. At this point the repli-
cas have reached an identical state if no hardware fault
occurred. After comparing all replica states, one replica
handles the fault locally on its own CPU: page faults are
resolved directly within the master, system calls are redi-
rected to the underlying kernel. The result of this han-
dling is applied to all other replicas and thereafter each
replica moves back to its respective address space and
resumes execution. For later reference, we call this fault
handling mechanism Local Fault Handling.

ASTEROID is based on the L4/Fiasco.OC micro-
kernel and the L4 Runtime Environment (L4Re) [17].
Building on this design, we run traditional operating sys-
tem services, such as device drivers and protocol stacks
as user-space applications. This has the key advantage
that most OS services can be protected against SEUs by
employing replicated execution.

The RCB of our system comprises the microkernel,
a couple of L4Re services and the Romain replication
framework. Unfortunately, we cannot protect the RCB
against hardware errors using the RMT mechanism we
implemented for user applications. Hence, we need to
harden it using a different approach, which is the contri-
bution of this paper.

3 Protecting the RCB

The elements of the RCB are under our full control and
with their source code available, we could use compiler-
based solutions for protecting against hardware errors.
Techniques such as software-encoded processing [10]
claim to detect all kinds of erroneous deviations. How-
ever, these have only been developed and tested for user-
level software. In order to apply them to kernel code, we



expect that we’d have to pay special attention to asyn-
chronous activities, such as interrupt handlers. Further-
more, we cannot predict the performance impact these
techniques would have on kernel code, which is often
highly optimized for heavily used code paths. We ex-
plore a different direction for protecting the RCB: We
believe that protection can efficiently be achieved by re-
lying on hardware support.

Highly resilient applications in space and avionics
usually employ radiation-hardened hardware [3], which
is unfortunately too expensive to be available in con-
sumer electronics. In contrast, we propose a het-
erogeneous manycore hardware platform that is based
on already existing hardware components and consists
of a few resilient and many non-resilient cores. Re-
silient cores (ResCores) are specially designed to deal
with SEUs at the hardware level, whereas non-resilient
cores (NonResCores) are designed using the cheapest
possible implementation that fits the hardware vendors’
needs (e.g., in terms of area cost, energy usage etc.).

Splitting hardware into these two resilience classes al-
lows for flexibility and increased utilization: instead of
over-provisioning hardware resources in order to always
guarantee correct execution, our design allows to dynam-
ically assign cores to different purposes. A NonResCore
may be used to execute an application that was hardened
using compile-time encoding and does not require any
replication. Other NonResCores may be assigned to ex-
ecute an unprotected application in a replicated manner,
requiring a ResCore for coordination.

As OS researchers we don’t have the expertise to im-
plement the required hardware changes ourselves. We
don’t know whether these issues should be addressed by
replicating functional units, modifying the hardware pro-
duction process, or relying on alternative implementa-
tions of the same hardware feature. However, we observe
trends towards heterogeneous platforms in modern hard-
ware architectures and therefore believe that it is realistic
to expect the arrival of a ResCore hardware platform in
the mainstream market soon.

Back in 1999, Austin proposed the DIVA architec-
ture [2], which contained ‘checker cores’ built with a
larger structure size than other computational units on the
same chip. This design was never used in general pur-
pose hardware, though. However, today we are seeing
the widespread introduction of heterogeneous hardware
in general purpose systems:

o ARM recently introduced its big. LITTLE architec-
ture [1], which combines complex and less-complex
processors on a single chip. The purpose of this split
is to save energy by keeping the more complex core
switched off whenever possible. Nevertheless, we
can also see this split as a first step towards making
ResCores and NonResCores available.

e The Cell microarchitecture [12] combines one full-
fledged processor with eight vector processing
units, which can be used for non-arithmetic process-
ing as well. In Section 5 we will see that this mi-
croarchitecture has additional benefits with respect
to resilient computing.

e Researchers are investigating the use of general pur-
pose graphics processors (GPGPUs) at various lev-
els of the software stack. While this research fo-
cusses on the computational power provided by
GPGPUs, these findings may be generalized and ap-
ply to fault-tolerant systems as well.

Given these observations, we assume for the rest of this
paper that a heterogeneous many-core platform consist-
ing of ResCores and NonResCores will be available. We
now look at how to design a resilient OS around such an
architecture.

4 From ResCores to Reliability

The fundamental idea for protecting the RCB based on
ResCores is simple: all RCB code executes on ResCores,
whereas everything else runs on NonResCores. This idea
is not new. Split operating system architectures, such as
FlexSC [23] and Nix [4], demonstrated that splitting the
system into dedicated cores for handling certain classes
of work allows to efficiently utilize manycore systems.
However, their authors did not focus on resilience against
hardware faults.

The Romain replication framework allows for a natu-
ral split: replicas execute on NonResCores and CPU ex-
ceptions raised by replicas are handled by code running
on a ResCore. The interesting question is: How do we
efficiently switch between these cores? And, can we deal
with faults that occur while such a switch is in progress?

We implemented three alternatives for splitting Ro-
main: migration, split handling with synchronous noti-
fications, and shared-memory polling.

1. Migration (Figure 3.1): Instead of handling a CPU
exception locally on the faulting core, all replica
threads are migrated to a ResCore before compar-
ing their states and selecting a replica to handle the
fault. After successful fault handling and applying
the resulting state changes, the replicas are migrated
back to their NonResCores.

2. Split handling with synchronous notifications (Fig-
ure 3.2): The migration approach requires all
replica threads to be migrated, even though only
one actually performs any state comparison and
fault handling. As an alternative, we spawn a dedi-
cated handler thread on a resilient core. This thread
blocks waiting for notifications from replicas. If a
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Figure 3: Notification variants: 1) Replica thread (Rep)
is migrated from NonResCore to ResCore for fault han-
dling. 2) Rep thread sends a synchronous notification to
activate a handler thread on a ResCore. 3) Split handler
thread and replica poll on shared memory location for
activation.

replica raises a CPU exception, it notifies the han-
dler using the synchronous IPC mechanism pro-
vided by L4/Fiasco.OC. The replica then blocks
waiting for a reply.

The notification wakes up the handler thread, which
then waits for notifications from the other repli-
cas. Once these notifications arrived, the handler
thread performs state comparison and fault han-
dling, applies results to the replicas, and finally
sends wakeup notifications to the replicas.

3. Split handling with shared-memory polling (Fig-
ure 3.3): The split handling approach above still
requires synchronous notifications. In terms of reli-
ability, this means that the underlying kernel mech-
anism must work correctly at all times. Addition-
ally, FlexSC [23] demonstrated that asynchronous
calls through shared memory may lead to better sys-
tem call throughput and latency than synchronous
ones. Therefore, we implemented a third notifica-
tion mechanism that works similar to the previous
one. However, instead of using synchronous IPC,
the fault handler thread as well as the replicas await
notifications by polling a predefined memory loca-
tion to switch to a certain value.

We now compare these notification mechanisms to the
Local Fault Handling approach described in Section 2.
First, all three mechanisms provide fault-tolerant com-
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Figure 4: Replication runtime overhead for different no-
tification mechanisms. Overhead is calculated with re-
spect to single-threaded execution in Local Fault Han-
dling mode.

parison of replica states and handling of CPU exceptions
by executing the respective code on a ResCore. In con-
trast, local fault handling is unaware of the existence of
ResCores and hence cannot reliably handle exceptions.

To assess performance, we executed two programs
from the MiBench benchmark suite [13] using Romain!.
We first ran the benchmarks natively on top of the
L4/Fiasco.OC microkernel. Thereafter, we executed the
benchmarks with Romain in double (DMR) and triple
modular redundancy (TMR) using the four different no-
tification mechanisms. The test machine was a computer
with 12 physical Intel Core2 CPUs running at 2.6 GHz.
Hyperthreading was turned off. Replica threads as well
as the RCB exception handler thread were each pinned
to a dedicated CPU.

Figure 4 shows the overhead of our benchmarks rel-
ative to single-threaded execution. We see that in com-
parison to local handling (green bar), migrating threads
(red bar) or using synchronous notifications (yellow bar)
add substantial amounts of overhead. While these effects
could be seen as tolerable in DMR, TMR overhead for
synchronous IPC notifications is up to twice as high as
the overhead for local fault handling.

In contrast, polling a shared memory location (blue
bar) appears to be even faster than the local fault han-
dling mechanism. The reason for this observation is that
for local fault handling the participating threads need to
synchronize and decide who is going to perform the ac-
tual handling. In the case of the split handler thread, this
is not necessary, as only this dedicated thread is able to

IThe subset was selected by selecting those benchmarks that
showed the highest overheads in [8].



perform exception handling. This result is not surprising,
but in line with the observations of Soares’ FlexSC [23].

It needs to be noted that these numbers were measured
on an SMP architecture providing uniform memory ac-
cess and cache coherence. Modern multicore systems
often use a non-uniform memory hierarchy. Blagodurov
et al. showed that performing wrong memory placement
in such an architecture may substantially increase mem-
ory access latencies [6]. On such systems the benefit of
using shared memory polling may decrease.

Experimental architectures, such as the Intel Single
Chip Cloud Computer (SCC) [11], remove cache coher-
ence completely. In such an architecture, polling be-
comes impossible and we need to resort to one of the
other notification mechanisms. We draw the conclusion,
that our envisioned resilient hardware platform will re-
quire a fast inter-CPU messaging mechanism. Such a
feature, called Message Passing Buffers, already exists
in Intel’s SCC.

5 Hardware Requirements

We showed that the ASTEROID resilient system archi-
tecture can be mapped to a hardware platform providing
ResCores. However, even with such a system in place,
there remain points at which an SEU might remain un-
detected or cause havoc. These points reside at the tran-
sitions between non-reliable and reliable execution.

First, our whole system relies on CPU exceptions be-
ing triggered at the right point in time. An SEU might
lead a CPU to either fail triggering an exception or to
trigger a spurious exception. These kinds of errors will
be detected by our system: comparison with non-faulty
replicas will pinpoint the spurious exception. Using a
watchdog mechanism that forces CPUs to trigger an ex-
ception after a limited amount of time, failure to do so
can be detected as well.

Before notifying the exception handler, the replica
thread’s state needs to be stored somewhere in memory,
so that a separate exception handler thread is able to ac-
cess it. As a second potential error, the state may become
corrupted while writing it to memory. This will also be
detected by our architecture once replica states are com-
pared.

Third, any memory accesses performed while execut-
ing on a NonResCore may write to the wrong mem-
ory location, thereby overwriting either other replicas’
states or critical data of the Romain master. As described
in Section 2, we use address spaces to isolate replicas.
Hence, we require a correctly working MMU on every
NonResCore. However, only ResCores must be able to
configure the MMU of a NonResCore in order to prevent
an SEU from triggering page table entries to be modified.
If this is not easily possible, we alternatively imagine an

additional layer of memory protection that limits the ac-
cessibility of physical memory to certain cores.

Such feature already exists in today’s hardware: IOM-
MUs perform an additional translation between physi-
cal and device-physical addresses. Furthermore, Intel’s
SCC [11] allows configuring memory regions to be ac-
cessible only by a specific core. As another solution,
in the Cell microarchitecture [12], each core has private
memory that no other core can access. Such a design
might be extended to implement private memory on Non-
ResCores that can still be accessed by ResCores, so that
replica state stored in private memory is safe from fault-
ing replicas, but can still be read and modified by master
code.

6 Conclusion

In this paper we presented an overview of the ASTER-
OID operating system architecture providing transparent
redundant multithreading for user-level applications. We
pointed out that in order for this system to work, its Re-
liable Computing Base needs to be protected as well. As
a way of protecting the RCB, we proposed the idea of
structuring our OS on top of a heterogeneous hardware
platform that provides resilient cores to run RCB code
and cheap, non-resilient cores to run application code.
We evaluated three alternative methods for sending no-
tifications between application and RMT code and dis-
cussed the remaining weak spots that may still be vul-
nerable to SEUs.

Previous approaches tried to address SEUs by invent-
ing completely new hardware. In contrast, we identified
hardware features our OS needs to rely on: memory pro-
tection using MMUs and CPU-private memory, efficient
inter-CPU messaging, and the possibility to implement
a watchdog mechanism. These features already exist in
state-of-the-art computer architectures. Therefore, it is
feasible to expect them to be combined into a completely
fault-tolerant architecture.
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