
CoRD: A Collaborative Framework for Distributed Data Race Detection

Baris Kasikci, Cristian Zamfir, George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Modern concurrent software is riddled with data races
and these races constitute the source of many problems.
Data races are hard to detect accurately before software is
shipped and, once they cause failures in production, de-
velopers find it challenging to reproduce and debug them.

Ideally, all data races should be known before soft-
ware ships. Static data race detectors are fast, have few
false negatives, but unfortunately have many false pos-
itives. Conversely, dynamic data race detectors do not
have false positives, but have many false negatives and
incur high runtime overhead. There is no silver bullet
and, as a result, modern software still ships with numer-
ous data races.

We present CoRD, a collaborative distributed testing
framework that aims to combine the best of the two ap-
proaches: CoRD first statically detects races and then dy-
namically validates them via crowdsourced executions of
the program. Our initial results show that CoRD is more
effective than static or dynamic detectors alone, and it in-
troduces negligible runtime overhead.

1 Introduction

Data races are a common root cause for many
concurrency-related problems [20]. They caused the loss
of human lives [18] as well as material losses [27]. More-
over, practitioners report that it typically takes weeks,
sometimes even months, to diagnose and fix a data
race [9], which means that data races also waste signifi-
cant development resources.

Even though they have potentially catastrophic con-
sequences, data races are prevalent in modern software.
Running a state-of-the-art data race detector while load-
ing a web page in Firefox causes the detector to report
more than 1,000 unique data races [14]. The reason why
software riddled with races still works is that, data races
do not always lead to an observable harmful effect in
real applications (5%-24% according to [13, 14, 22, 28]).
This is because most data race bugs occur under thread
interleavings that are rarely encountered during the com-
mon execution case.

Ideally, programs should have no data races at all. For

instance, the new C and C++ standards allow the com-
piler to perform certain optimizations that may transform
seemingly benign data races into harmful ones [2]. The
question is then how to ensure that software does not ship
with any data races? This can be achieved by using data
race detection before software is shipped.

Data race detection can be broadly classified as either
static or dynamic. Static data race detectors [5, 28] ana-
lyze the program source code without executing it. They
scale to large code bases, providing results in a short
amount of time. For instance, RELAY can analyze and
report races in the Linux kernel (4 MLOC) in around 5
hours. Static race detectors typically have fewer false
negatives (i.e., do not miss real races) than dynamic race
detectors [23]. However, static race detectors tend to have
many false positives (i.e., produce reports that do not ac-
tually correspond to real races). For example, 84% of the
races reported by RELAY [28] are not true races.

Dynamic data race detectors typically do not have
false positives, but only detect data races in executions
they can directly observe, therefore they have many false
negatives. They also have high runtime overhead (e.g.,
200× in the case of Intel ThreadChecker [11] and up to
8.5× in the case of FastTrack [6]), because they typically
need to monitor all memory accesses and synchroniza-
tion primitives. Detectors that employ sampling [13] de-
crease runtime overhead at the expense of introducing
both false positives and false negatives. High runtime
overhead indirectly decreases the coverage of dynamic
detectors: they cannot be enabled in production, so they
are only used by developers to detect races in executions
of the program’s test suite.

Therefore, the use of data race detection is limited on
the one hand, by the abundance of false positives of static
race detectors and, on the other hand, by the large number
of false negatives and prohibitive overheads of dynamic
race detectors. The problem stems from how the two ap-
proaches analyze program paths: Static detectors cannot
obtain the full path context needed to determine the valid-
ity of the race, while dynamic detectors cannot perform
the full-program analysis needed to find all races. This is
why existing race detectors are rarely used [21].

We introduce CoRD, a collaborative framework for
data race detection that combines the benefits of static

1

and dynamic detectors: it has few false positives, few
false negatives, and incurs negligible runtime overhead.
CoRD detects data races using a static analysis pass with
few false negatives, and then it crowdsources the dynamic
validation of these data races in a full-path context on
many machines, using a collaborative distributed frame-
work. The validation step confirms real data races (true
positives) and identifies likely false positives. CoRD is
lightweight, and thus suitable for use in production soft-
ware. Additionally, CoRD explicitly increases the proba-
bility of manifestation of race-related failures for testing
purposes, thus helping developers to promptly classify
the consequences of real data races [14] and hopefully
getting them fixed before they affect a wider user popu-
lation.

In preliminary experiments, CoRD effectively detects
3 races that lead to deadlocks in SQLite and 4 races that
lead to crashes in Pbzip2, while incurring a maximum
runtime overhead of 1.6%.

2 The Case for Collaborative Race Detection

The collaborative race detection framework is a con-
crete instance of the SoftBorg information recycling vi-
sion [3], which argues that nodes running copies of the
same program P should collaborate in identifying and fix-
ing incorrect code in P, as well as construct proofs of the
correct code.

Rather than trying to automate testing using a single,
in-house testing infrastructure, SoftBorg advocates dis-
tributing the testing tasks among its participants in a way
that is efficient and minimally intrusive for the partici-
pants. If the community of cooperative nodes is large,
testing should be comprehensive and should amortize
the overhead across the participants. The testing results
should be more “meaningful” than in-house testing, be-
cause they result from actual program executions of the
participants.

SoftBorg leverages the observation that software users
have collectively, overwhelmingly more hardware than
any single software company. For instance, Google’s
Chrome Web browser runs on more than 300 million
computers [10], which exceeds by more than two orders
of magnitude the most optimistic estimates of how many
servers are housed in Google’s data centers [12]. There-
fore, leveraging end-users to perform testing offers sub-
stantial advantages.

In this paper, we present an initial attempt at material-
izing this vision for the case of distributed collaborative
data race detection. We describe an early-stage design
and prototype, along with promising preliminary results.
We also discuss our future research directions.

3 CoRD Design

CoRD’s high-level architecture is shown Figure 1:
The hive is a central program that performs data race de-
tection. Pods are daemons running at the end-users’ site,

and they monitor the executions of program P and relay
by-products of the execution to the hive.

We envision CoRD being used in the following way:
First, developers set up a hive service for their software.
The hive statically detects races in some program P and
produces an instrumented version of P. The users down-
load the instrumented version of P together with the pod.
Then, the hive instructs the various running instances of P
(by communicating with their pods) to explore both pos-
sible interleavings that a pair of racing memory accesses
can exhibit. We call these interleavings the primary and
the alternate. If the hive and the pod manage to orches-
trate P to follow both the primary and the alternate inter-
leaving, we say that the race is validated, because there
exists conclusive proof that it is a real race.

The pods automatically connect to the hive and report
the explored interleavings. The hive validates the races
based on these reports. Validation results are then in-
spected by developers, who eventually fix the validated
races and update the software. A new (instrumented) ver-
sion of the software is created, and the process repeats.

P

P

P

P P
pod

instrumented

program

Hive
validation

reports

potentially racing
memory accesses

Figure 1. CoRD general architecture

3.1 The Hive

The hive is set up and administered by the develop-
ers of an application. It can be deployed in a centralized
server or in the cloud, depending on the required compu-
tational power. The hive generates instrumented binary
executables, and makes them available to the users for
download (Figure 2): (step 1) the hive takes the program
source code as input and compiles it to LLVM bitcode;
(step 2) a static data race detector, operating on LLVM
bitcode, identifies pairs of potentially racing memory ac-
cess instructions; (step 3) the hive instruments the LLVM
bitcode with calls before and after the potentially racing
instructions. This instrumentation is used to orchestrate
the thread schedule at the end-user site.

The instrumentation is done for all the potentially rac-
ing accesses, however, the hive selectively activates it
on-demand when P runs, in different ways for different
end-user machines. Essentially, this activation mecha-
nism aims to validate as many races as possible by uni-
formly distributing validation tasks across the partici-
pants to CoRD. Finally, (step 4) the hive compiles the

2

Source

code Clang

compiler

LLVM

bitcode Race

detector21

Potential

races3 <i
11

, i
12

>

<i
21

, i
22

>

<i
31

, i
32

>

3

Instrumentation

compiler backend

Instrumented

native binary

4

Figure 2. CoRD hive architecture

instrumented LLVM binary to the specific architecture of
the end-user machine (e.g., x86, ARM).

CoRD’s static race detector uses an interprocedural,
flow-sensitive analysis that implements a static variant of
the popular lockset-based dynamic race detection algo-
rithm [25]. This algorithm tries to infer whether, for any
pair of accesses to a shared variable, of which at least
one is a write, the accesses can occur without the threads
holding a common lock. If this is the case, the algorithm
flags a race. Our algorithm is based on the algorithm used
in RacerX [5], modified to have fewer false negatives.

CoRD’s instrumentation compiler backend generates
lightweight instrumentation calls to the pod that allow
the pod to orchestrate the thread schedule on the user ma-
chine. More details follow in §3.4.

3.2 The Pod

Once a hive–pod connection is established, the hive
sends the pod a target race and the desired order of racing
accesses (i.e., the primary or alternate). The pod moni-
tors the instrumented binary and enforces the program to
follow the order of the racing accesses specified by the
hive. To achieve this at runtime, the pod intercepts the
instrumentation calls that were generated by the hive and
orchestrates program schedule (§3.4).

The pod then relays the information gathered during
schedule orchestration back to the hive for it to validate
races. The pod can send three types of reports: (1) sched-
ule enforced, (2) schedule not enforced, or (3) specifica-
tion violation (crash, deadlock, or assert). These reports
are used in race validation, which we detail below.

3.3 Race Validation

CoRD validates data races based on the reports re-
ceived from the pods. In this section, we detail how this
validation is performed.

3.3.1 Validating True Positives

CoRD confirms true positives (real data races) as follows:
if both the primary and the alternate schedule of a po-
tential data race can be enforced in the same execution

context, then it means that there is no mutual exclusion
between the two accesses. Thus this is a data race. How-
ever, this data race may not necessarily lead to a speci-
fication violation. The ability to confirm potential races
before reporting them is a key component of CoRD’s im-
proved detection accuracy.

3.3.2 Gathering Evidence for False Positives

CoRD cannot tell with certainty if a data race is a false
positive or not, but it uses two heuristics to report likely
false positives. The first heuristic monitors whether only
one ordering of the potentially racing accesses can be en-
forced. This is usually the case if the racing accesses are
properly synchronized. The static race detector flags such
accesses as races because it may not be aware of some
synchronization primitives. The second heuristic moni-
tors the purported racing memory accesses and, if they
do not access the same memory, the data race is deemed
a likely false positive.

CoRD leverages its large scale to increase the con-
fidence that a report is a potential false positive. The
more instances of a likely false positive race report are
reported to the hive as a result of different executions,
the higher the probability that the race report is actually
a false positive.

3.3.3 Reporting Specification Violations

CoRD also increases the likelihood of triggering race-
induced failures that violate the program specification
(e.g., crash, deadlock, or assert).

In the case of a crash, the pod catches the SIGSEGV
signal and submits the crash report to the hive. CoRD
takes a similar approach in the case of a hang or when
the program receives an unhandled SIGINT (e.g., the user
pressed Ctrl-C). In this case, CoRD prompts the user with
a dialog asking whether the program has failed to meet
expectations. If yes, the pod informs the hive that the
enforced schedule leads to a specification violation.

3.4 Schedule Orchestration

The pod attempts to enforce the instrumented binary
running at the end-user site to follow either the primary
or the alternate schedule, as instructed by the hive. If
the program follows the desired schedule by itself, with-
out the pod having to steer it, CoRD’s thread schedule
orchestration is idle and has virtually no overhead. How-
ever, if the program is about to exhibit the reverse sched-
ule (primary instead of alternate, or vice-versa), the or-
chestration kicks in to enforce the required order.

The case in which the orchestration takes over is
shown in Figure 3. Assume a program with two threads,
T1 and T2, and two racing accesses, r11 and r12. Let’s
further assume that the hive instructs the program to fol-
low the primary schedule of racing accesses, which in

3

P

Pod

target
schedule
r

11
 r

12

T1 T2

r
12

r
11

1

2
timeout of timed wait

timed wait on a condition variableto execute r
11

r11
 executed

3
r

12

Figure 3. Schedule orchestration

this case corresponds to the order r11 → r12 of racing
accesses, meaning that r11 executes before r12. Assume
that during execution, T1 is about to execute r12 before
r11. Since this is not the order desired by the hive, the or-
chestration preempts T1 for a configurable period of time
(using timed wait on a condition variable), allowing T2 to
get scheduled and execute r11 (step 1).

If T2 executes r11 (step 2), the instrumented code
signals (using a condition variable signal statement) T1 to
continue and execute r12 (step 3). Once r12 is executed,
the pod notifies the hive that the required schedule was
enforced.

On the other hand, if the timed wait timeouts as shown
in Figure 3, and T2 does not execute r11, T1 gets scheduled
back and r12 gets executed. This could mean two things:
(a) the timeout was too short for T2 to have a chance to
execute r11, or (b) the interleaving in question cannot be
enforced under any circumstances (perhaps because there
is some ordering constraint between the accesses such as
an ad-hoc synchronization [30], that the static race detec-
tor at the hive did not recognize). Either way, the pod no-
tifies the hive that the required order cannot be enforced.

When CoRD enforces a particular schedule, the upper
limit on the overhead is the timeout duration. Similarly,
if the schedule cannot be enforced, the overhead stems
from the unnecessary wait.

This constant upper bound on the timeout is key in
achieving low overhead. To preserve the low latency of
interactive applications, CoRD uses short timeouts of
less than 200 ms; for server applications, higher timeouts
can be configured by developers. It is also possible to
configure the value of the timeout depending on how
often the potentially racing accesses execute.

3.5 Incentives for Using CoRD

Today, many users experience the same concurrency
problems, and these problems go unnoticed. End users
may experience crashes, hangs, data loss, etc. while val-
idating the races, in cases in which they would not have
encountered such behavior. However, if one user encoun-
tered this problem, then many other users will not, there-
fore we sacrifice one user for the good of many.

To motivate users to participate, we envision using a
reward system for users who find true positives. Such

users can be allowed free upgrades and free product trials
if the software under test comes from a vendor, or they
can be awarded “badges of honor” in the case of open-
source software.

This system could work well for beta testers (Win-
dows 7 had more than 8 million beta testers [1]) and also
for regular users. We believe that CoRD’s low runtime
overhead is key in increasing adoption by regular users.

4 Preliminary Experimental Results

As a preliminary evaluation, we ran CoRD on two
real concurrent programs: the SQLite [26] embedded
database (used in Firefox, iOS, Chrome and Android)
and Pbzip2 [7] a parallel implementation of the popular
bzip2 file compressor. SQLite has around 100 KLOC and
Pbzip2 has around 2 KLOC. All experiments were run on
a 800 MHz 48 core AMD Opteron 6176 machine with
512 GB of RAM running Ubuntu Linux 11.04 with ker-
nel version 2.6.38-13. All time-related results represent
averages over 10 experiments.

4.1 Effectiveness of detection

CoRD first statically detected 88 potential races for
SQLite and 122 races for Pbzip2. The static race detec-
tion took 55.57 seconds for SQLite and 0.52 seconds for
Pbzip2, on average over the 10 runs.

Table 1 shows the results of data race detection.

Program SQLite Pbzip2

Potential races 88 122

Crashes 0 4
Deadlocks 3 0
No observable effect 0 1
Likely false positives 37 63
Not encountered 48 54

Table 1. Data race detection with CoRD. The “Potential

races” refers to races the races reported by the static race
detector. The next three categories correspond to true
positives (3.3.1):Crashes and Deadlocks refer to crashes
and deadlocks that occur in one of the primary or alter-
nate interleavings. Races in the “No observable effect”

category represent true races for which the execution of
the primary and alternate did not cause any observable
program failure (crash deadlock or fired assertion, in our
case).“Likely false positives” were explained in (3.3.2).
“Not encountered” races correspond to potential races
that were not encountered in our test runs.

In order to perform validation, we used a single test
case for SQLite that initializes the database and inserts
some items to it and subsequently removes them. We
used two test cases for Pbzip2: one that does compression
and another one that does decompression. CoRD man-
aged to uncover 3 races that cause a deadlock in SQLite, 4

4

races that cause a crash in Pbzip2, and 1 race that did not
have any observable effect. Prior work has reported 1 of
the races that cause a deadlock, 3 of the races that caused
a crash and the race with no observable effect [14]. To our
knowledge, the other races were not previously reported.

The large number of “Likely false positives” confirms
prior work that reports many false positives for static race
detection [28]. We believe that the large number of “Not

encountered“ races is due to the limited set of test cases
we used for our preliminary evaluation, which limits the
number of paths explored through a program.

4.2 Performance Evaluation

To evaluate the runtime performance overhead in-
curred by CoRD, we first measured the effect of the
instrumentation without performing any validation, and
compared this with native execution. We observed 0.91%
overhead for Pbzip2 and 0.99% overhead for SQLite.

Next, we enabled validation and measured the over-
head of CoRD for Pbzip2 and SQLite by only validating
a single race at a time. This case incurred at most 1.6%
overhead.

4.3 Efficiency Comparison to Other Detectors

For comparison, we performed pure dynamic race de-
tection for Pbzip2 and SQLite using Google’s Thread-
Sanitizer [16] while running the same test cases used by
CoRD. The average overhead ranged from 3,001% for
Pbzip2 to 972% for SQLite with the peak overhead being
4,200%. Note that we give ThreadSanitizer the benefit
of access to all executions that CoRD has access to. This
is probably overly generous, because dynamic race de-
tection is not crowd-sourced to multiple users. So one
would run ThreadSanitizer on fewer executions and ob-
tain lower coverage than shown here.

If we had performed pure static race detection, we
would have obtained the same total number of races for
Pbzip2 and SQLite. However, the classification in Ta-
ble 1 would not have been available, therefore develop-
ers would not have information on how to prioritize the
fixing of races. This would in turn impact the users, be-
cause it might take longer to remove the data races with
severe consequences. The benefit of tolerating the < 2%
overhead of CoRD is that race detection results are more
detailed and helpful.

4.4 Bug manifestation probability

Finally we evaluated how CoRD increases the prob-
ability that concurrency bugs manifest themselves. For
this, we ran the SQLite test case 10,000 times and never
encountered any deadlock. In contrast, CoRD caused
the occurrence of 3 deadlocks from a maximum of 176
executions.

5 Related Work

CoRD is inspired in part by Windows Error Reporting
(WER) [8], a large collaborative error reporting system.

WER collects information (memory dumps, call stacks,
etc.) after a crash, in order to prioritize potential bugs.
WER does not formulate any hypotheses regarding a po-
tential bug before encountering it. WER crowd sources
program executions and gathers reports after crashes or
hangs. Then, it formulates the hypothesis about a poten-
tial bug. This hypothesis has to be validated manually.

CoRD reverses this process: it formulates the hypoth-
esis prior to crowd sourcing (static race detection) and
then uses crowd sourcing for validation tasks instead of
executions. Moreover, in CoRD, validation is entirely au-
tomatic. Having a hypothesis together with automated
validation can potentially be more valuable: it will save
the developer the time-consuming detective work of con-
necting the hypothesis to the validation.

CoRD’s distributed and collaborative approach is in
part influenced by statistical bug isolation [19], which
transforms an assertion-dense program into several
programs with fewer assertions. Users execute these pro-
grams and report back the triggered assertions. Similarly,
AjaxScope [15] enables error-reporting, performance
profiling, and leak detection. AjaxScope uses on-the-fly
instrumentation of JavaScript code to distribute the
overhead across many users. CoRD distributes race
validation tasks among its participants, and increases the
chances of manifestation of data race-related failures.

Kivati [4] is a system that statically detects potential
atomicity violations and avoids the potential violations
at runtime. Kivati requires source code instrumentation
and a modified kernel. It’s runtime overhead can go up
to 35%. Similarly to Kivati, CoRD uses static analysis
to detect potential races. CoRD validates data races in a
distributed manner to reduce runtime overhead and does
not require a custom kernel. Moreover, CoRD can learn
from failing executions and has the potential to avoid
only known-to-be-harmful interleavings.

CTrigger [24] is a system that takes as input a trace
of program execution and performs an analysis of this
trace to identify accesses that are potentially involved in
an atomicity violation. Subsequently, it re-executes pro-
grams and injects delays between instructions to increase
the chances of triggering an atomicity violation. CTrig-
ger requires a recording infrastructure and performs of-
fline replay and analysis. Similarly, CoRD increases the
chances to encounter race-related problems. However,
CoRD does not rely on any execution recording and has
low runtime overhead.

6 Future Work

CoRD’s race detection does not rely on alias analysis,
and this potentially increases both the number of false
positives and false negatives in race detection. We plan
to use alias analysis to perform more accurate static race
detection.

We plan to explore a solution which involves distribut-
ing “fixes” back to the pods. It is possible to avoid cer-

5

tain interleavings in subsequent runs of the instrumented
binary by distributing a list of to-be-avoided schedules,
allowing the software to gain immunity against data race
bugs. CoRD can be used to derive the execution filters
used by LOOM [29] to avoid races at runtime.

Currently the assignment of potential data races to
pods is done randomly. This is inefficient, because the
hive may enable monitoring for a potential data race for a
user that never executes the racing memory accesses. In
future work, we intend to improve this by leveraging the
path sampling statistics gathered by the pods: each pod
can monitor which racing accesses are executed locally
and forward this information to the hive. The hive can
then make more informed assignment decisions of data
race reports to pods.

We are currently working on better ways to generate
the timeout values used for thread schedule orchestration.
One option is to derive the value of the timeout using
static analysis and estimating the time required for the
second racing access to occur [17]. Another option is to
try out different timeout values on different pods, so that
only few users are impacted by larger timeouts.

The general concept of a distributed collaborative
framework has privacy implications, although in the par-
ticular example of data race detection, the information
that is gathered from the pods is minimal. We are con-
sidering general ways to quantify the balance between
privacy and the amount of execution information that is
relayed from the pods to the hive.

Finally, we plan to extend the idea of collaborative in-
formation recycling to other types of bugs. We believe
that, with sufficiently specialized instrumentation, other
types of bugs can also be efficiently triggered.

7 Conclusion

We propose CoRD, a collaborative framework that
statically detects data races and then dynamically vali-
dates them by leveraging execution information from all
its participants. Our initial results show that CoRD is ef-
fective in detecting races and has low overhead, while
increasing the chances of manifestation of race-related
failures which enables better testing and validation.

Acknowledgments

We thank Coverity for their support regarding their
static analysis tool.

References

[1] A history of Windows. http://windows.microsoft.

com/en-us/windows/history.
[2] H.-J. Boehm. How to miscompile programs with "benign" data

races. In USENIX Workshop on Hot Topics in Parallelism, 2011.
[3] G. Candea. Exterminating bugs via collective information recy-

cling. In HOTDEP, 2011.
[4] L. Chew and D. Lie. Kivati: fast detection and prevention of atom-

icity violations. In ACM EuroSys European Conf. on Computer
Systems, 2010.

[5] D. Engler and K. Ashcraft. RacerX: Effective, static detection of
race conditions and deadlocks. In Symp. on Operating Systems
Principles, 2003.

[6] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise
dynamic race detection. In PLDI, 2009.

[7] J. Gilchrist. Parallel BZIP2. http://compression.ca/

pbzip2.
[8] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,

G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in
the (very) large: Ten years of implementation and experience. In
Symp. on Operating Systems Principles, 2009.

[9] P. Godefroid and N. Nagappan. Concurrency at Microsoft – An
exploratory survey. In CAV Workshop on Exploiting Concurrency
Efficiently and Correctly, 2008.

[10] Google. Google chrome blog. http://chrome.blogspot.
ch/2012_06_01_archive.html.

[11] Intel Corp. Parallel Inspector. http://

software.intel.com/en-us/articles/

intel-parallel-inspector.
[12] James Pearn. How many servers does google have? https:

//plus.google.com/114250946512808775436/

posts/VaQu9sNxJuY.
[13] S. B. John Erickson, Madanlal Musuvathi and K. Olynyk. Effec-

tive data-race detection for the kernel. In Symp. on Operating Sys.
Design and Implem., 2010.

[14] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data race
bugs: Telling the difference with portend. In Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating
Systems, 2012.

[15] E. Kiciman and B. Livshits. Ajaxscope: a platform for remotely
monitoring the client-side behavior of web 2.0 applications. In
Symp. on Operating Systems Principles, 2007.

[16] T. I. Konstantin Serebryany. ThreadSanitizer - data race detection
in practice. In Workshop on Binary Instrumentation and Applica-
tions, 2009.

[17] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state
merging in symbolic execution. In PLDI, 2012.

[18] N. G. Leveson and C. S. Turner. An investigation of the Therac-25
accidents. IEEE Computer, July 1993.

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Intl. Conf. on Programming
Language Design and Implem., 2005.

[20] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes –
a comprehensive study on real world concurrency bug character-
istics. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2008.

[21] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: ef-
fective sampling for lightweight data-race detection. In Intl. Conf.
on Programming Language Design and Implem., 2009.

[22] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using re-
play analysis. Intl. Conf. on Programming Language Design and
Implem., 2007.

[23] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detec-
tion. In Symp. on Principles and Practice of Paralle Computing,
2003.

[24] S. Park, S. Lu, and Y. Zhou. Ctrigger: exposing atomicity viola-
tion bugs from their hiding places. In ASPLOS, 2009.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: a dynamic data race detector for multithreaded pro-
grams. ACM Transactions on Computer Systems, 15(4), 1997.

[26] SQLite. http://www.sqlite.org/, 2010.
[27] The Associated Press. General Electric acknowledges North-

eastern blackout bug. http://www.securityfocus.com/
news/8032.

[28] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static race detec-
tion on millions of lines of code. In Symp. on the Foundations of
Software Eng., 2007.

[29] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications
with execution filters. In Symp. on Operating Sys. Design and
Implem., 2010.

[30] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad-hoc syn-
chronization considered harmful. In Symp. on Operating Sys. De-
sign and Implem., 2010.

6

