
-OVERIFY: Optimizing Programs for Fast Verification
Jonas Wagner Volodymyr Kuznetsov George Candea

School of Computer and Communication Sciences
École polytechnique fédérale de Lausanne (EPFL), Switzerland

Abstract
Developers rely on automated testing and verification
tools to gain confidence in their software. The input to
such tools is often generated by compilers that have been
designed to generate code that runs fast, not code that
can be verified easily and quickly. This makes the verifi-
cation tool’s task unnecessarily hard.

We propose that compilers support a new kind of
switch, -OVERIFY, that generates code optimized for the
needs of verification tools. We implemented this idea for
one class of verification (symbolic execution) and found
that, when run on the Coreutils suite of UNIX utilities, it
reduces verification time by up to 95×.

1 Introduction
Automated program verification tools are essential to
writing good quality software. They find bugs and are
crucial in safety-critical workflows. For example, for
a bounded input size, symbolic execution engines like
KLEE [4] and Cloud9 [3] can verify the absence of bugs
in systems software like Coreutils, Apache, and Mem-
cached; the SAGE [2] tool found many security vulnera-
bilities in Microsoft Office and Windows. Unfortunately,
verification tools are not used widely in practice, because
they are considered too slow and imprecise.

Many verification tools, including the ones mentioned
above, verify compiled programs. The observation un-
derlying the work presented in this paper is that verifi-
cation complexity could be significantly reduced if only
a program was compiled specifically for verification.
Building on this point, we argue that compilers should
have an -OVERIFY option, which optimizes for fast and
precise verification of the compiled code.

This paper shows how the requirements of verification
differ from those of fast execution on a CPU. We identify
program transformations that reduce verification com-
plexity, and others that increase it. We also present ideas
for new transformations that, although not commonly
performed by today’s compilers, would be of great ben-
efit to verification tools. In this way, we hope to make
verification an integral part of the software build chain.

-OVERIFY is a step toward enabling wide-spread use
of verification tools: it gets developers the verification re-
sults faster, is easy to integrate into existing build chains
and, since it uses time-tested compiler technology, it gen-
erates reliable verification results.

int wc(unsigned char *str, int any) {
int res = 0;
int new_word = 1;

for (unsigned char *p = str; *p; ++p) {
if (isspace(*p) ||

(any && !isalpha(*p))) {
new_word = 1;

} else {
if (new_word) {
++res;
new_word = 0;

}
}

}

return res;
}

Listing 1: Count words in a string; they are separated by
whitespace or, if any 6=0, by non-alphabetic characters.

Motivating example: The example in Listing 1, a
function that counts words in a string, illustrates the ef-
fect of compiler transformations on program analysis.

This simple function is challenging to analyze for sev-
eral reasons: It contains an input-dependent loop whose
number of iterations cannot be statically predicted. In-
side the loop, the control flow branches on the type of
the current input character. This leads to an explosion
in the number of possible paths—there are O(3 length(str))
paths through this function. Finally, wc calls the external
library functions isspace and isalpha, whose implemen-
tations further complicate the analysis of wc.

We exhaustively tested all paths through wc for inputs
up to 10 characters long using KLEE [4], and Table 1
shows the results for four different compiler settings.
Aggressive optimizations can dramatically reduce veri-
fication time. At level -O2, the reduction comes mostly
from algebraic simplifications and removal of redundant
operations, which lead to a reduced number of instruc-
tions to interpret in KLEE. The number of explored paths
remains the same as for -O0, indicating that -O2 does not
fundamentally change the program’s structure.

At level -O3, the compiler unswitches the loop, i.e.,
the loop-invariant condition any 6=0 is moved out of the
loop, and simplified copies of the loop body are emit-
ted for any = 0 and any 6= 0, respectively. This enables
algebraic simplification of the branch condition, which
in turn reduces the number of paths to O(2 length(str)) and
thus reduces verification time. The price for this reduc-
tion is an increase in the size of the compiled program,
due to the duplicated loop body.

1

Optimization -O0 -O2 -O3 -OVERIFY

tverify [msec] 13,126 8,079 736 49
tcompile [msec] 38 42 43 44

trun [msec] 3,318 704 694 1,827
instructions 896,853 480,229 37,829 312

paths 30,537 30,537 2,045 11

Table 1: Using symbolic execution to exhaustively ex-
plore all paths in the code of Listing 1 for strings of up
to 10 characters: time to verify (tverify), time to compile
(tcompile), and time to run on a text with 108 words (trun).

Compiling the program using -OVERIFY goes beyond
the optimizations performed by -O3, and completely re-
moves all branches from the loop (see Listing 2). This
reduces the number of paths to O(length(str)), and sym-
bolic execution time decreases by 15×.

A traditional compiler would not perform this opti-
mization, because the cost of executing a branch on a
CPU is so small that it is cheaper to perform a branch that
skips some instructions than to unconditionally execute
the entire loop body. Indeed, when actually executed,
the branch-free version takes 2.5× as long as the -O3
branching version (Table 1). This illustrates the conflict-
ing requirements of fast execution and fast verification.

int sp = isspace(*p) != 0;
sp |= (any != 0) & !isalpha(*p);
res += ~sp & new_word;
new_word = sp;

Listing 2: Branch-free version of wc’s loop body.

2 The Case for -OVERIFY
One usually thinks about a compiler as a tool that trans-
lates programs into the code that a CPU can execute.
While doing this translation, the compiler transforms
programs to make them execute as quickly as possible,
taking into account CPU properties like instruction costs,
pipeline architecture, or caching behavior.

Today, the compiler output is consumed in a number
of ways beyond its original purpose of executing on a
CPU. Here, we target verification tools that consume the
compiler’s output, either in its final binary form or in an
intermediate representation, such as LLVM bitcode [13].
What such tools expect from a compiler is different from,
and sometimes contradictory to, the requirements im-
posed by execution performance considerations.

2.1 Compiling for Program Verification
The time to verify a program is dominated by the number
of branches it has, the overall number of loop iterations,
memory accesses, and various arithmetic artifacts.

The precision of the analysis can also depend on the

program structure, e.g., on the number of control-flow
points or the kinds of operations the program performs.

Verification tools can often exploit high-level knowl-
edge of the program, like information about types of vari-
ables or about the program’s use of the standard library.

Compilers affect all these aspects, and can make pro-
grams more verification-friendly using techniques de-
scribed in Section 3. Does this mean that it becomes
possible to verify systems that previously were out of
reach for verification tools? For simple verification tools
that employ coarse-grained abstractions, the answer is
yes: compiler transformations can increase their preci-
sion and allow them to prove more facts about a program.
A more complex and precise tool will be able to verify
any semantically equivalent version of a program. Yet
how much information it has to infer, and hence its run-
ning time, depends on the way a program is presented to
it. This explains the speedups we report in Section 4.

2.2 -OVERIFY Belongs in the Compiler
Why perform verification optimizations inside compil-
ers? Why not let every verification tool transform source
code using its own specialized transformations?

Making -OVERIFY part of a compiler has three key
advantages: First, compilers are in a unique position in
the build chain. They have access to the most high-level
form of a program (its source code) and control all steps
until the program is in the low-level intermediate form
that is to be analyzed. Second, the program needs to be
compiled anyway, and so -OVERIFY gains access to a
wealth of information, like call graphs and alias analysis
results, at no additional cost. Third, with -OVERIFY, ver-
ification tools need not be aware of complex build chains,
and need not re-implement common transformations.

We do not advocate a monolithic approach in which
compilers and verifiers are tightly coupled. Instead,
we want to put to more effective use the services that
a compiler offers, and reduce the amount of informa-
tion lost during compilation. This opens new questions
for the systems community, spanning the entire process
from software development to verification: At what lev-
els should verification be performed? What abstrac-
tions should compilers export, so that clients can express
their needs and customize the build process? What data
should be preserved across the different program trans-
formation steps, and in what format? How can we guar-
antee the correctness of program transformations?

2.3 Using -OVERIFY in Practice
Developers usually create different build configurations
for software systems. During development, a program
is compiled with debug information, assertions, and pos-
sibly reduced optimization to aid testing and debugging.
At release time, the program is compiled with the highest

2

KLEE

-O3

-DNDEBUG Release

-g -Wall

-Overify

Debug &

develop

Automated

analysisSAGE

BLAST
FindBugs

Bug reports

Analysis results

Figure 3: Adding -OVERIFY to an existing build chain,
to enable fast automated program analysis and testing.

optimization level. Our proposed -OVERIFY option adds
a third build configuration, aimed at automated testing
and verification. This process is illustrated in Figure 3.

An -OVERIFY-enabled compiler can be directly lever-
aged by a number of program analysis tools. We built
a prototype that can generate special binaries optimized
for analysis using the S2E system [5] or SAGE tool [11],
which perform symbolic execution on x86 binaries. Al-
ternatively, it can generate LLVM IR bitcode optimized
for analysis by tools like KLEE and its descendants [4,
15, 3]. We expect the ideas in this paper to apply broadly
to many other tools, such as FindBugs for Java [10], or
Microsoft Pex [18] for .NET.

-OVERIFY makes it possible to use verification-
specific optimizations with minimal changes to a build
chain, lowering the entry barrier to the use of verification
tools available today. We envision future project creation
wizards and build systems creating -OVERIFY config-
urations by default, thus encouraging wide adoption of
powerful verification tools, which in turn can help build
better software and improve developer productivity.

Verifying a verification-optimized version of the pro-
gram and then shipping a performance-optimized version
means that end-users get not exactly what was tested and
verified. However, -OVERIFY relies on time-tested com-
piler transformations that are anyway used (perhaps dif-
ferently) in the rest of the build chain, and this offers
confidence in the equivalence of the verified and shipped
versions. Programs that contain undefined behavior face
the largest risk. For example, a function that returns the
address of a local variable might behave differently when
the function is inlined. Compilers can often, but not al-
ways, detect such cases and warn the developers.

3 A Design for -OVERIFY
While a compiled program must be semantically equiva-
lent to its source code representation, a compiler still has
a lot of room for optimizations. In Table 2 we show the

various options a typical compiler could offer today to
-OVERIFY, as well as options it does not offer.

-OVERIFY modifies the compilation process in four
complementary ways: (1) it selects a set of compiler
passes suitable for verification tools, and it inhibits com-
piler passes that would increase verification complex-
ity; (2) it adjusts cost values and parameters (such as
the maximum size of a function to inline) to optimize
compilation for fast verification, not fast execution; (3) it
causes more metadata to be preserved in the program;
and (4) it links the program with a specialized version of
the C standard library optimized for verification.

We now give a few examples of the large body of
possible program transformations and illustrate the effect
they have on verification complexity.

Simplifying control flow. Program verification often
becomes drastically easier if the program’s control flow
is simplified by a compiler. An optimization called jump
threading checks whether a conditional branch jumps to
a location where another condition is subsumed by the
first one; if yes, the first branch is redirected correspond-
ingly, turning two jumps into one. Another example is
loop unswitching, as seen in Section 1.

These are especially important for verification tools
that reason about multiple execution paths through a pro-
gram (either individually or grouped in some way). For
such tools, the complexity of verifying a program de-
pends on the number of possible execution paths through
it, which in turn grows exponentially with the number of
conditional branches and the number of possible loop it-
erations. As a result, branches and loops have a much
higher cost for verification than for normal execution.

Control flow can be further simplified by transforming
conditionally executed side-effect-free statements into
speculative branch-free versions. This is a standard
transformation done when saving one branch instruction
outweighs the cost of speculation (e.g., GCC converts
if (test) x = 0; into x &= –(test == 0);). When using
-OVERIFY, this simplification is pursued more aggres-
sively, because the cost of a branch is higher.

Restructuring the program. Data-flow based verifi-
cation tools reason about programs at the granularity of
program locations. If multiple paths lead to one loca-
tion, merging the path information can lose precision.
Unswitching a loop can improve precision, because such
information merging now occurs only once, after the
loop, instead of after every iteration. Similarly, loop un-
rolling and function inlining increase the number of pro-
gram locations and can thus increase precision.

Instruction simplification. Standard simplifications,
such as copy propagation and constant folding, are
good for execution speed, but can be even better for
verification. Consider a tool that reasons about value

3

Transformation Verification Execution Available
Constant propagation/folding, arithmetic simplifications + + 3

Remove/split memory accesses + + 3

Simplify control flow: jump threading, loop unswitching + +/− 3

Restructure the program: function inlining, loop unrolling +/− +/− 3

Improve cache behavior, register allocation, instruction scheduling − + 3

Program annotations: types, alias information, loop trip counts + − few
Generate runtime checks + − some

Table 2: Compiler optimizations and their impact (positive +, or negative −) on Verification time and/or Execution
time. The last column shows to what degree the optimizations are readily available in today’s compilers.

ranges for variables: When encountering code such as
x = input(); y = x; x -= y; the tool might think that x could
have any value. Yet standard simplifications can turn this
code into the equivalent but easier version input(); x=0.

Memory accesses complicate the data-flow graph of a
program, requiring verification tools to analyze which
accesses may correspond to the same memory location
vs. which cannot (alias analysis). The complexity of this
analysis typically grows exponentially with the number
of related memory accesses.

A compiler can easily help by converting values that
reside in memory to register values, and by splitting large
objects into independent smaller objects, thereby reduc-
ing the opportunities for memory access aliasing.

Program annotations. The output of today’s compil-
ers does not preserve all information present in the source
code of the program, such as high level types or the sepa-
ration of a program into modules. Compilers also do not
keep information computed during compilation, such as
alias information, variable ranges, loop invariants, or trip
counts. This information however is priceless for veri-
fication tools, and could be easily preserved in the form
of program metadata. Some of these are available to-
day, e.g., the Clang compiler [6] can annotate memory
accesses with types.

Runtime checks. Recent versions of Clang and GCC
can emit run-time checks for various forms of illegal be-
havior, transforming these various failures into run-time
crashes. This makes verification simpler, as tools now
only need to check for one type of failure (i.e., crashes).

CPU-specific optimizations. To generate code that ex-
ecutes fast, compilers must optimize for the target CPU’s
cache structure and pipeline: keep loops small (to avoid
instruction cache misses), pad objects (to keep them
aligned in memory), and reorder instructions (to reduce
pipeline stalls and to improve branch prediction).

All these issues are irrelevant to many classes of veri-
fication tools, and some of these optimizations can even
slow down verification. Thus, they are omitted under the

-OVERIFY switch. This offers the further benefit of con-
siderably more freedom in generating code.

Library-level changes. For programs that use the
C/C++ standard library, the analysis effort depends sig-
nificantly on the complexity of library functions. This is
why some tools, such as KLEE and KLOVER [15], ship
with a custom version of the C/C++ standard library.

As part of -OVERIFY, we are currently developing a
version of libC that is tailored to the needs of program
analysis in general, and thus reusable for many tools.
This library provides versions of the standard functions
designed to minimize the analysis costs outlined in Sec-
tion 2.1. These simplifications entail high-level reason-
ing and semantic understanding of the code that is be-
yond what modern compilers can do automatically.

Functions in this C library contain run-time checks to
verify their preconditions. Such checks are often absent
or disabled in production code. For testing and verifica-
tion, these checks improve the tools’ ability to find bugs,
and they also lead to better error reports, because bugs
are found closer to their root cause.

Does -OVERIFY generalize? One could argue that
each verification tool requires its own specialized ver-
sion of -OVERIFY. Yet the idea behind -OVERIFY gen-
eralizes, and we expect that developers of verification
tools can readily decide—intuitively and based on our
examples—which optimizations would be advantageous.
Compilers can help them by providing access to built-
in heuristics (e.g., to decide when a function should be
inlined), as well as heuristics specialized for -OVERIFY
(e.g., heuristics for estimating when speculative execu-
tion would reduce analysis time [12]).

4 Prototype and Early Results
We implemented a prototype, called -OSYMBEX, that
makes verification easier for symbolic execution tools
like SAGE, KLEE, and others. These tools analyze pro-
grams one path at a time. They treat program inputs as
symbolic, i.e., they assume inputs can have any value (up
to a bounded size). As it interprets the program, such

4

Optimization -O0 -O3 -OSYMBEX

functions inlined 0 7,746 16,505
loops unswitched 0 377 3,022

loops unrolled 0 1,615 3,299
branches converted 0 959 5,405

Table 3: Compiling Coreutils with different options.

a tool keeps track of all the symbolic expressions com-
puted by the program. At conditional branches, a con-
straint solver is invoked to check whether the symbolic
condition could be true, false, or both. In the latter case,
the tool explores both paths independently, adding the
branch condition (or its negation, respectively) as a con-
straint on the inputs for the current path.

The performance of symbolic execution tools is de-
termined by the number of paths to explore and by the
complexity of input-dependent branch conditions. Our
prototype -OSYMBEX reduces both, thereby improving
the performance of symbolic execution tools without re-
quiring the tools themselves to be modified.

We built -OSYMBEX on top of the LLVM compiler
infrastructure. Compared to -O3, -OSYMBEX: (1) con-
siders the cost of a branch to be higher than on a CPU, to
avoid branches through speculative execution and loop
unswitching; (2) removes loops from the program when-
ever possible, even if this increases the program size; and
(3) aggressively inlines functions in order to benefit from
simplifications due to function specialization. Table 3
shows how these changes affect the number of program
transformations performed by the compiler.

We evaluated -OSYMBEX on real systems code: we
ran it on the Coreutils 6.10 suite of UNIX utilities, in
essence repeating the case-study from [4].

Figure 4 shows the effect -OSYMBEX has on the veri-
fication of Coreutils. For each of the 93 tested programs,
we measured how long it takes to compile and analyze
all paths in KLEE, using 2 to 10 bytes of symbolic input.
We did this with -O0, -O3, and -OSYMBEX, respectively.
We kept all experiments where KLEE terminates within
one hour on at least one of the three versions.

On average, -OSYMBEX reduces overall compilation
and analysis time by 58% compared to -O3, and by 63%
over -O0. The maximum benefit is a 95× reduction in
total time (right side of Figure 4). The verification of 6
programs runs out of time with -O3 (and 11 with -O0),
but completes with -OSYMBEX. In a few cases, -O3 out-
performs -OSYMBEX, because it takes longer to com-
pile with -OSYMBEX than -O3; this effect vanishes in
longer experiments. We verified that indeed all bugs dis-
covered by KLEE with -O0 and -O3 are also found with
-OSYMBEX.

Index of Coreutils tools
0

500

1000

1500

2000

2500

3000

3500

A
n
a
ly

si
s

ti
m

e
 [

se
co

n
d
s]

Analysis time for the fastest of the two

Time gained with -O3 over -OVERIFY

Time gained with -OVERIFY over -O3

Analysis time, as sum of:

Figure 4: Time to compile and test Coreutils; each bar
represents one experiment. Blue (sorted on the right) rep-
resents time gained by using -OVERIFY over -O3; red
(on the left) shows when -O3 is faster than -OVERIFY;
yellow shows the time of whichever one is fastest.

5 Related Work

The KLEE [4] symbolic execution tool is one of the
success stories of applying symbolic execution to sys-
tems software. This success was partly due to using an
adapted C library based on uClibc and a symbolic file
system model. Simplifications of the model and library
made symbolic execution tractable. Some successors of
KLEE continued using specific optimizations: The au-
thors of KLEE-FP report that aggressive speculative exe-
cution improved symbolic execution performance [8]. A
number of C++ library functions have been re-written for
the KLOVER tool in order to achieve the same goal [15].

Several verification tools use CIL [17] to preprocess
C code and thus benefit from some compiler transforma-
tions. Some recent tools are more closely integrated into
compilers, such as Microsoft’s Verifying C Compiler [7],
the LLVM-based tools UFO [1] and LLBMC [16], and
the GCC plugin Predator [9]. -OVERIFY shares with
them the leveraging of the compiler, but remains mod-
ular and applicable to a variety of verification methods.

Programs can be compiled to Boogie [14], a spe-
cialized intermediate language for verification. This
makes them even easier to verify than compiling with
-OVERIFY, but they lose their ability to be executed.

6 Conclusion

Starting from the observation that compiling a program
to run on a CPU has different requirements than compil-
ing the program for verification, we propose adding an
-OVERIFY switch to compilers. This switch applies op-
timizations specifically geared toward fast verification.
With a preliminary prototype we were able to reduce ver-
ification time by up to 95× and by 58% on average.

5

References

[1] A. Albarghouthi, Y. Li, A. Gurfinkel, and
M. Chechik. UFO: A framework for abstraction-
and interpolation-based software verification. In
Intl. Conf. on Computer Aided Verification, 2012.

[2] E. Bounimova, P. Godefroid, and D. Molnar. Bil-
lions and billions of constraints: Whitebox fuzz
testing in production. Technical Report MSR-TR-
2012-55, Microsoft Research, 2012.

[3] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Par-
allel symbolic execution for automated real-world
software testing. In ACM EuroSys European Conf.
on Computer Systems, 2011.

[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
Unassisted and automatic generation of high-
coverage tests for complex systems programs. In
Symp. on Operating Sys. Design and Implem.,
2008.

[5] V. Chipounov, V. Kuznetsov, and G. Candea. S2E:
A platform for in-vivo multi-path analysis of soft-
ware systems. In Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating
Systems, 2011.

[6] The Clang compiler. http://clang.llvm.org/.
[7] E. Cohen, M. Dahlweid, M. A. Hillebrand,

D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for veri-
fying concurrent C. In Theorem Proving in Higher
Order Logics, 2009.

[8] P. Collingbourne, C. Cadar, and P. Kelly. Symbolic
crosschecking of floating-point and SIMD code. In
ACM EuroSys European Conf. on Computer Sys-
tems, 2011.

[9] K. Dudka, P. Müller, P. Peringer, and T. Vojnar.
Predator: a verification tool for programs with dy-
namic linked data structures. In Intl. Conf. on Tools
and Algorithms for the Construction and Analysis
of Systems, 2012.

[10] Findbugs – find bugs in java programs. http://
findbugs.sourceforge.net/.

[11] P. Godefroid, M. Y. Levin, and D. Molnar. Auto-
mated whitebox fuzz testing. In Network and Dis-
tributed System Security Symp., 2008.

[12] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea.
Efficient state merging in symbolic execution. In
Intl. Conf. on Programming Language Design and
Implem., 2012.

[13] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and trans-
formation. In Intl. Symp. on Code Generation and
Optimization, 2004.

[14] K. R. M. Leino and P. Rümmer. A polymorphic in-
termediate verification language: Design and logi-

cal encoding. In Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, 2010.

[15] G. Li, I. Ghosh, and S. Rajan. KLOVER: A sym-
bolic execution and automatic test generation tool
for C++ programs. In Intl. Conf. on Computer
Aided Verification, 2011.

[16] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded
model checking of C and C++ programs using a
compiler IR. Verified Software: Theories, Tools,
Experiments, 2012.

[17] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis
and transformation of C programs. In Intl. Conf. on
Compiler Construction, 2002.

[18] N. Tillmann and J. De Halleux. Pex – white box
test generation for .NET. Tests and Proofs, 2008.

6

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/

	Introduction
	The Case for -Overify
	Compiling for Program Verification
	-Overify Belongs in the Compiler
	Using -Overify in Practice

	A Design for -Overify
	Prototype and Early Results
	Related Work
	Conclusion

