
Durability Semantics for Lock-based Multithreaded Programs

Dhruva R. Chakrabarti
Hewlett-Packard Laboratories, USA

dhruva.chakrabarti@hp.com

Hans-J. Boehm
Hewlett-Packard Laboratories, USA

hans.boehm@hp.com

Abstract

Non-volatile storage connected as memory (NVRAM)
offers promising opportunities for simplifying and ac-
celerating manipulation of persistent data. Load and
store latency is potentially comparable to that of ordinary
memory. The challenge is to ensure that the persisted
data remains consistent if a failure occurs during exe-
cution, especially in a multithreaded programming envi-
ronment. In this paper, we provide semantics for identi-
fying a globally consistent state for a lock-based multi-
threaded program. We show how to conveniently ensure
that programs are returned to such a globally consistent
state after a crash. We discuss challenges and opportuni-
ties along the way, and explain why adding durability to
transactional programs may be less expensive.

1 Introduction

Applications that need to take advantage of the par-
allelism available on modern multicore computers are
most commonly written using threads and locks. This
programming model, though low-level and often error-
prone, is well-established, and quite general.

Transactional memory (TM) [9, 16] attempts to raise
the abstraction level by borrowing the idea of transac-
tions from databases and incorporating them into parallel
programs. A program transaction is a block of code that
appears to execute indivisibly. A programmer is only re-
quired to specify the code that should be part of the block
thus transferring the onus of synchronizing shared mem-
ory references to the implementation. This simplifies the
construction of modular parallel programs.

New non-volatile memory (NVRAM) technologies
such as memristors [15] and phase change memory
(PCM) [10] provide an interesting twist to programming
since they allow CPU stores to persist data directly at
DRAM-like speed. Data in NVRAM lives beyond the lifetime
of the creating process. The programmer is able to per-

sist data reliably through CPU store instructions and re-
trieve them using CPU load instructions. This model re-
moves the frequent need to maintain both an in-memory
object format and a separate persistent file format, to-
gether with the substantial amounts of code needed to
keep them consistent. Data structures persist in NVRAM
as they are created and modified and the evolved state
can be reused when an application is restarted. But since
hardware and software failures cannot be ignored, this
model requires that it be possible to identify and persist
program states that are consistent and this is no easy task
for multithreaded programs.

Transactional memory (TM), as the name suggests, dif-
fers from database transactions in that it stores data in
(volatile) memory as opposed to a durable medium such
as a hard disk. Consequently, TM provides Atomicity,
Consistency, and Isolation (ACI) but no durability. How-
ever, recent work explored adding durability to TM in the
context of NVRAM and Flash [8, 18, 13].

Durable TM is clearly a very attractive model for
NVRAM. But TM, even in its original form, has at this point
not been widely adopted. Aside from performance is-
sues, there is a non-trivial effort required to convert lock-
based programs to ones based on TM [6]. Additionally,
some constructs, such as condition wait, arguably do not
lend themselves well to the TM paradigm. Consequently,
lock-based multithreaded programs will continue to be
popular even when TM is adopted. As a confirmation
of this trend, the draft specification of TM constructs for
C++ [16] requires the co-existence of locks with transac-
tions.

So, to take advantage of NVRAM-based data reuse
in general multithreaded programs, durability semantics
should be added to lock-based programs. But durable
data has to be consistent as well, otherwise it is not
reusable. Data structures mutated by lock-based pro-
grams are trivially consistent at normal program termi-
nation. However, this is not adequate in the presence
of NVRAM once failures are taken into consideration. We



need some guarantee that data structures are consistent,
even if a failure occurs at an inopportune moment of ex-
ecution. Currently there is no well-established notion of
what this means or how to achieve it. In the absence of
NVRAM, it does not matter. But the emergence of NVRAM
changes the fundamental assumptions and opens up new
opportunities if we can capture intermediate consistent
states.

This paper explores appropriate semantics that would
be required for lock-based programs in the context of
NVRAM and sketches an implementation route. Section
2 presents our programming model and elaborates on the
properties we want. Section 3 presents results obtained
while persisting data structures in a PARSEC [5] kernel
and a widely used caching system. The goal is to under-
stand the overheads and any effects on scalability. We
then present some related work and conclude.

2 System Assumptions and Programming
Model

NVRAM devices are expected to be connected as memory
and accessed using regular CPU loads and stores. The
result is fast persistence of program objects. Potentially
in-memory data structures that are already maintained by
the application can be reused directly. But even in the
presence of NVRAM, there will be volatile buffers and
caches in the memory hierarchy, simply because of the
performance advantages they provide. This implies that
during program execution, some of the state may reside
in volatile structures and the rest in NVRAM. Low-level
interfaces such as memory fences and cache-line flushes
can be used to ensure that certain data is forced out of
volatile structures and into NVRAM at appropriate program
points.

In our programming model, programmers use contain-
ers called persistent regions (PR) [3, 18, 8] for identifying
persistent data. A PR consists of an identifier and a list of
contiguous virtual address ranges. Every PR has at least
one entry point called a root. A root stores the start ad-
dress of a set of connected persistent objects. A root of a
PR lives within that PR and is hence persistent; it provides
a way to traverse the set of connected objects reachable
from it1. In a quiescent state (such as the one reached
at successful program termination or immediately after a
failure), any data within a PR that is not reachable from
any of its roots is assumed to be garbage and reclaimed.
Data not in a PR is considered logically transient.

We assume a fail-stop or crash-recovery model. Pro-
gram state in persistent regions survives a tolerated fail-

1A program traversing a PR needs to know the layout of objects
within it, e.g. by including a header file that describes the objects.

pr = find_or_create_persistent_region(nm);

persistent_data = get_root_pointer(pr);

if (persistent_data) {

// restart code

} else {

// initialize persistent_data

}

// use persistent_data

Figure 1: Structure of an NVRAM Program

ure,2 other program state does not. After a failure, per-
sistent regions should contain a consistent program state,
which can be used to recover the data when the applica-
tion is restarted. This state must be consistent in spite of
the fact that contents of machine registers, caches, and
DRAM memory regions have disappeared.

Applications will normally be structured as in Fig-
ure 1. Data within a PR is allocated by using a special
malloc-like interface that maps NVRAM physical pages di-
rectly onto the address space of a process. The pro-
grammer adds restart code that runs when an applica-
tion starts and detects whether a prior data structure ver-
sion is already available in NVRAM. Proper use of consis-
tency mechanisms ensures that if a data structure exists,
then it is consistent; this property enables restart from an
evolved state, leading to saved computation, and poten-
tially avoiding loss of data, such as user input, read by
the application.

2.1 Treating unlocked program points as
consistent

Program data structures must satisfy invariants that hold
in consistent states. Programs that are written using
atomic sections (or transactions) [9], as opposed to locks,
typically mutate these data structures and temporarily vi-
olate invariants only within those sections — so the in-
variants hold at the start and end of every (outermost)
atomic section as well.

Existing lock-based applications generally satisfy a
similar property. They also already indicate when impor-
tant data structures are in a consistent state. In order to
ensure thread-safety, they acquire locks to form critical
sections (CS) in which data structures are modified and
thus temporarily inconsistent. This is typically required
to ensure the absence of data races.3

2We assume that the hardware defines the notion of “tolerated fail-
ure”, and that it includes at least power failures. Clearly some failures,
e.g. a direct hit by a large meteorite, are not tolerated.

3Our technique, like the underlying programming language, expects
the input program to be free of data races. In the presence of data
races, the program state identified as consistent may not be what the
programmer intended. We expect the consequences to be similar to the



As in the transactional case, we assume that data struc-
tures are inconsistent only in critical sections, and hence
treat lock operations as indicators of consistent program
points. We will call program points at which the execut-
ing thread holds no locks thread-consistent. If no locks
are held by any thread, all data structures should be in
a consistent state. This assumption doesn’t hold, for ex-
ample, if the client implements its own mutexes on top
of the system-provided ones. At that point we no longer
recognize critical sections, and thus no longer guaran-
tee consistency in spite of the absence of data races.
Programmer-inserted annotations, indicating the appro-
priate synchronization operations, may be helpful in that
context.

Our assumption above is mildly restrictive, and it may
take some programmer effort to ensure that it holds. For
example, data accessed by only a single thread will typi-
cally not be protected by a lock, and thus may be incon-
sistent outside of a critical section. This can be addressed
by introducing a “dummy” critical section around such
updates, or by introducing an additional language con-
struct for such dummy critical sections.

The durability semantics of critical sections differ
from the transactional case for two primary reasons:
Locks do not necessarily nest perfectly, and the seman-
tics of nested critical sections are very different from
simply ignoring the inner critical section. We will see
in the next sections that neither inhibits the approach,
though the latter does add significant implementation ex-
pense over the transactional case.

2.2 Outermost critical sections are failure-
atomic

What is the unit of durability of a lock-based program?
Consider a dynamic execution trace A1A2...An of a single
thread t, where Ai refers to an instruction executed. A
section of this trace comprising Ai...A j forms an outer-
most critical section (OCS) if the following hold:

• The point just before Ai is thread-consistent, i.e. t
holds no locks there.

• Ai acquires a lock.

• A j releases a lock, not necessarily the one acquired
in Ai.

• The point after A j is again thread-consistent.

Thus, in the above trace, two dynamically occurring
thread-consistent program points are separated by (and
adjacent to) an OCS. Locks do not have to nest perfectly
for an OCS to be identified. For example, hand-over-hand

existing concurrent execution hazards caused by data races.

x, y are persistent and initially x=y=0

T1 T2

1: lock(l1) 4: lock(l2)

2: y = x 5: lock(l1)

3: unlock(l1) 6: x = 1

7: unlock(l1)

8: <T1 executes here>

9: ...

10: unlock(l2)

Figure 2: An example program: Outermost critical sec-
tions are failure-atomic and can have happens-before re-
lations among them.

locking poses no problem. We ensure that each OCS is
failure atomic: If any updates performed within an OCS
are visible after a failure, then all of them will be. We
do not treat the point after a non-OCS critical section as
thread-consistent, since updates of invariants may be in
progress in an outer one.

It may often be the case that invariants that matter are
indeed maintained at boundaries or even within arbitrary
critical sections, but there is no way to automatically ver-
ify that — we believe that identifying an OCS as the unit
of failure-atomicity provides a conservative abstraction
that allows persisting consistent data without any addi-
tional effort on the part of the programmer. Providing
failure-atomicity for critical sections at a finer granu-
larity appears to be intractable since the association be-
tween a shared datum and the corresponding protecting
lock cannot be automatically inferred in the general case.

2.3 Persistence of one outermost critical
section may depend on another

Semantics of nested critical sections are different from
those of nested atomic sections. While isolation is im-
plicit at the granularity of individual critical sections,
we are providing durability or failure-atomicity at the
OCS-granularity (Section 2.2), an apparent mismatch. It
follows that even if updates within an inner CS (say C)
within a given OCS are exposed to another thread, those
updates within the inner CS may have to be rolled back if
for some reason the corresponding OCS fails to complete
or has to be rolled back. If that happens, any update of
a persistent location, dependent on a change made by C
and executed by another thread, must also be rolled back.
These cross-thread constraints should be identified by the
underlying implementation. Note that our model pre-
serves the pessimistic nature of lock-based programs, so
any roll-back happens only during recovery after abnor-
mal program termination, unlike the transactional model.

Consider the program in figure 2 with 2 threads, T1
and T2. There are 2 OCSes: o1 in lines 1-3 in T1 and o2



in lines 4-10 in T2. Consider the indicated dynamic inter-
leaving where o1 executes in full between the statements
in lines 7 and 9. However, if the program crashes after
o1 has completed but before T2 can finish executing line
9, some of the updates in T2 may be incomplete. By the
reasoning in Section 2.2, T2 has to be failure-atomic and
hence the update in line 6 must not be visible in persis-
tent memory. In order to preserve a globally consistent
state in persistent memory, the effects of updates made
to persistent locations in o1 must not be visible either —
otherwise, after recovery, the persistent state will have
values (x=0, y=1) that cannot be obtained in a failure-
free execution. This constraint arises because there is a
happens-before (hb) dependency, in the sense of e.g. [11]
or [7], between o2 and o1.

An OCS o1 dynamically happens before another OCS
o2 if there is a release operation in o1 that happens before
an acquire operation in o2. It follows that, if one OCS dy-
namically happens before another, the effects of the lat-
ter are visible in persistent memory only if the effects of
the former are. Two concurrently executing OCSes may
each depend on the results of inner critical sections in
the other, resulting in a cyclic hb-relation among OCSes
— in such a case, the effects of all of the constituent
OCSes must be visible in NVRAM if the effects of any one
of them are. We believe that these are the right properties
to maintain after crash recovery since they are the ones a
newly created thread, playing by the proper synchroniza-
tion rules, usually relies on.

2.4 Relationship to ACID semantics

Comparison of our proposed semantics to transactional
ACID semantics is unavoidable. We do not change any
of the ACI semantics of a CS or an OCS in any way. Up-
dates to shared locations are exposed to threads exactly
as before. Isolation is provided by holding locks and it
remains the responsibility of the programmer to follow
proper synchronization disciplines. Consistency tends to
be a function of the application and we do not change
that. However, the data visible in NVRAM after a restart
may be a conservative approximation of what the pro-
grammer intended, but should preserve consistency.

The only semantics we add is failure-atomicity or
durability, but only at the level of an OCS and only for
memory locations that are persistent, i.e. those within
a PR. There is no change in privatization and publication
semantics as far as thread visibility is concerned. We add
publication safety for durability: If the effects of an OCS
are visible in NVRAM after a failure, then the effects of all
updates to persistent data appearing before that OCS (in-
cluding those at thread-consistent points) must also ap-
pear to be visible in NVRAM. Since OCSes become persis-
tent atomically, a similar guarantee implicitly holds for

x, y, m, p, and q are shared and persistent.

t is local, ready is shared. Both are transient.

Initially x = y = m = p = q = t = ready = 0

T0 T1 T2

a1: lock(l1) b11: lock(l2) d21: lock(l3)

a2: t = ready b12: p = q d22: lock(l2)

a3: unlock(l1) b13: unlock(l2) d23: q = 1

4: if (t) 14: x = 1 d24: unlock(l2)

5: y = x c15: lock(l1) d25: m = 1

c16: ready = 1 d26: unlock(l3)

c17: unlock(l1)

Figure 3: Example showing why all hb-relations must be
tracked: Happens-before relations between references to
persistent locations are often imposed by synchronizing
through critical sections that contain references to only
transient data.

all critical sections. Publication safety has its costs that
are discussed in more detail in Section 2.7.2.

2.5 What about I/O operations?
In order to support our durability model for lock-based
programs, it should be possible to buffer an I/O operation
in case it needs to be rolled back. This may be achieved
by reflecting the semantics of I/O operations in NVRAM
and playing them in the current order at an appropriate
time. I/O in a transactional setting is a sticky issue [17]
and our situation is no different.

2.6 Sketch of an implementation
We log writes to persistent memory locations as well as
happens-before relations between synchronization oper-
ations. Capturing happens-before relations between lock
releases and acquires is sufficient to maintain the neces-
sary dependences between OCSes. The logs are kept in
NVRAM so that in the event of a crash, the recovery phase
has enough information to reconstruct a consistent state
of the persistent data according to the properties outlined
in Sections 2.2 and 2.3. Memory fences and cache line
flushes at appropriate program points are added automat-
ically to ensure that the log is failure-resilient and can
be relied on after a crash. Depending on the dynamic
program state and its consistency properties, unnecessary
log entries are removed.

2.7 Pitfalls, optimizations
2.7.1 hb-relationships of all synchronization opera-

tions must be captured

In our model, all lock acquires and releases must be an-
alyzed for dynamic happens-before relations, including



those for critical sections not containing any updates to
persistent memory. Figure 3 illustrates such a scenario.
We have numbered the lines and labeled the 4 OCSes
with the letters a through d. Since a hb-relation (induced
by synchronizing on l1) must exist from the write to x in
line 14 (T1) to any read from x in line 5 (T0), there are no
data races in the program. For the purpose of this exam-
ple, assume that ready is a transient flag, so OCS a and
OCS c do not update any persistent data. We assert that,
in spite of that, the appropriate hb-relation between such
OCSes needs to be captured. Consider the interleaved
execution: lines 21-24 (T2), lines 11-17 (T1), lines 1-5
(T0), followed by a program crash. If all hb-relations are
captured, OCS d hb OCS b hb OCS c hb OCS a. On re-
covery, OCS d will be rolled back and since OCSes a-c
transitively depend on OCS d, all persistent updates in
Figure 3 will be rolled back and the resulting snapshot
in NVRAM will be rendered consistent. But if only hb-
relations among OCSes containing updates to persistent
locations were captured (i.e. OCS d hb OCS b) for failure-
atomicity purposes, OCS a will not be rolled back. This
implies that the update to y on line 5 will not be rolled
back either leading to an inconsistent state (y = 1, with
other persistent variables zero) in NVRAM, something that
cannot be obtained in a failure-free execution.

As figure 3 shows, hb-relations between references
to persistent locations is often imposed by synchroniz-
ing through critical sections that contain references to
only transient data. This requires that all synchroniza-
tion operations be tracked for hb-relations. Note that the
situation is different for transactional programs, poten-
tially leading to performance tradeoffs. The effects of
updates within an atomic section can be made durable
atomically along with the commit. Consequently, the ef-
fects of a committed atomic section never need rolling
back. In contrast, the effects of a completed OCS may be
rolled back during recovery if, for example, the program
crashes during execution of another OCS that happens be-
fore it (see Section 2.3). To ensure precise identification
of such OCSes that need rolling back, explicit happens-
before relations must be maintained in lock-based pro-
grams, unlike transactional ones.

2.7.2 Optimizations for thread-consistent updates

Unlike atomic sections that provide ACID transactional
guarantees, a cross-thread hb-relation may stem from a
lock release operation that is dynamically within an OCS.
The OCS may expose effects of updates to other threads
by releasing a lock before the OCS is finished. Conse-
quently, as we saw in earlier sections, the effects of a
completed OCS may have to be rolled back if another OCS
executed by another thread, that it depends on, can be
rolled back. Consider Figure 3 again with the same in-

terleaving discussed earlier. If OCS d can be rolled back,
all the other OCSes have to be rolled back as well. This
requires that the effects of updates in lines 5 and 14 be
rolled back as well.

Further analysis can be used to determine whether log-
ging can be elided for an update to a persistent location
outside an OCS such as those in lines 5 and 14:4 If an
OCS o1 in thread T1 dynamically happens before another
another OCS o2 in thread T2, then any write to a persis-
tent location, executed by T2 outside an OCS and exe-
cuted after o2 in program order, will have to be logged
unless it can be proved that o1 cannot be rolled back.
Generally speaking, an OCS cannot be rolled back if it
has completed and every OCS that happens before it has
completed successfully. As an example, the above con-
dition would determine that, for the interleaving consid-
ered earlier in Figure 3, the updates in lines 5 and 14 will
have to be logged. But for another interleaving such as
lines 21-25, 11-13, line 26, lines 14-17, lines 1-5, the up-
dates in lines 5 and 14 do not have to be logged. We be-
lieve that this optimization may be very effective in dras-
tically reducing the overhead of logging in many applica-
tions where many updates to persistent locations happen
outside OCSes.

This is another scenario where the performance trade-
offs are different for lock-based and transactional pro-
grams. Since a committed transaction never needs rolling
back, any non-transactional update to a persistent loca-
tion does not need to be logged5. However, that may not
be the case for lock-based programs and even when such
logging can be elided, it is based on dynamic checking
(as outlined above) which has its own cost.

3 Initial experimental results

3.1 Methodology

We developed a prototype implementation of a persistent
memory manager, a logging infrastructure, a consistency
and recovery manager, and compiler support for inserting
calls to the relevant runtime libraries. In order to take ad-
vantage of NVRAM durability, a program needs to create a
PR and use a special allocator to add data to a PR. The rest
is programmer-oblivious with the compiler automatically
inserting instrumentation for synchronization operations
and updates to persistent locations and the runtime creat-
ing and manipulating logs to ensure consistency.
DRAM was used for simulating NVRAM since their ac-

cess latencies are expected to be comparable. Linux

4All updates to persistent locations within OCSes have to be invari-
ably logged, identical to updates within ACID transactions.

5A non-transactional update may still have to be flushed out of
cache.



tmpfs [14] was used for “persisting” data and logs. Al-
though data on tmpfs does not persist past a system shut-
down, it otherwise provides a directly mapped, byte-
addressable persistent (across process shutdowns) mem-
ory. We successfully performed crash-recovery testing of
these programs but a more extensive testbed is required
for full correctness testing. All experiments were per-
formed on a Red Hat Linux Intel(R) quad-core Xeon(R)
E7330 machine with 4 sockets running at 2.4GHz. Re-
sults are averages over 3 runs.

In general, we found that NVRAM-based programs us-
ing our consistency model are 2 to 3 orders of magnitude
faster than programs persisting data on disks through
mmap. However, this depends on the workload and the
amount of data persisted. Keeping the above number
as context, our goal is to understand the cost of adding
durability to a program that starts off with transient data
structures. To this end, we report results for 2 pro-
grams. For both, we show that our model is useful by
enabling transitions from one consistent state to another.
In addition, we present runtimes for 4 configurations –
orig: the original program that uses transient data struc-
tures, nvram: the persistent version, nvram noflush:
the persistent version without cache line flushes, and
nvram noflush opt: same as the previous but with the
optimization from Section 2.7.2 applied. The 3rd and 4th

configurations primarily indicate the cost of logging and
consistency maintenance for enforcing failure-atomicity
of lock-based code; more elaborate description of the
cost of flushing processor caches is outside the scope of
this paper and is discussed elsewhere [4]. In addition,
note that optimizations that reduce the cost of logging
and cache flushing are likely as our implementation and
NVRAM hardware evolve.

3.2 Persisting the hash table of a dedupli-
cation benchmark

We added durability support to dedup, a deduplication
kernel that is part of PARSEC 1.0 [5]. This program
removes duplicate chunks of repeating data, mimicking
compression techniques used in backup storage systems.
The program breaks the input stream into chunks that are
processed in parallel in a pipelined fashion. A number
of stages are employed where each stage fetches items
from its queue, processes the items, and puts them in the
queue for the next stage. We focus on the stage that com-
putes a hash value for a unique chunk and builds a global
database of chunks indexed with the hash values.

We take the central hashtable data structure in dedup
and make it durable in NVRAM. It is useful to have a persis-
tent version of the hashtable since it acts as a cache of the
unique key-value pairs and would enable a quick restart
in the event of a server crash. We examined a number

of synchronized regions to ensure that they conformed
to the model we described in this paper. All of them
did. For example, the routine ChunkProcess computes
the hash of a chunk, acquires a lock for the correspond-
ing hashtable bucket, and performs one of the follow-
ing while holding the above lock. If it is a cache miss,
the unique key is inserted into the hashtable and a cor-
responding item is inserted into the queue for the com-
press thread. If it is a cache hit, the existing hashtable
metadata is updated and a corresponding item is inserted
into the queue for the write thread. Since the queues are
multithreaded as well, the enqueue operation acquires a
queue-specific lock leading to an outer critical section
(OCS) with an inner critical section. Using OCS bound-
aries for globally consistent states ensures that both the
hashtable and the relevant queue are properly updated.

4 

6 

8 

10 

12 

14 

16 

1 2 4 8 

R
u

n
ti

m
e

s 
(s

e
co

n
d

s)
 

Number of threads 

orig nvram nvram_noflush nvram_noflush_opt 

Figure 4: Cost of adding durability to dedup

Running dedup using the input simlarge, we found (at
a thread count of 4) 260K OCSes and 4K inner critical
sections dynamically. 900K stores to persistent loca-
tions were tracked out of which 857K were inside OCSes.
1.4M log entries were created. Figure 4 shows the run-
times for different thread counts for the above input. Per-
sisting data structures in a consistent, reusable manner is
useful but does not come for free. At a thread count of
4, the NVRAM version is 63% slower than the transient
version. If we ignore cache flushing6, this number drops
to 46%. As stores outside OCSes need not be tracked
for this workload, the overhead drops further to 33%. In
spite of the overheads, dedup continues to scale.

3.3 A persistent version of memcached

Memcached [1] is a main memory key-value cache used
in cloud and web workloads. It is typically used by front-
end services to cache key-value pairs so that expensive

6Cost of cache flushing cannot be ignored but will likely be lower
in NVRAM-enabled architectures.



trips to the back-end databases are minimized. In the
current incarnation, the cache is transient; so all of the
cached information is lost in the event of a failure. But
it would be nice to have the cache available across sys-
tem restarts. Though the current architecture of mem-
cached would have to change to accommodate a persis-
tent cache7, we explored the adequacy of our model for
the existing codebase.

Memcached has a few key data structures. There is a
hashtable for the key-value pairs. There are least recently
used (LRU) lists (heads and tails) to determine eviction
order from the cache when it is full. A slab-allocation
based memory manager is used for efficiency purposes.
We persist all of the above data structures. In addition
to the cache, persisting the LRU lists and the slab alloca-
tor information allow maintenance of eviction order and
memory management information across server crashes.

While manipulating the hash table entries or the LRU
lists, memcached always holds a global cache lock. At
the boundaries of the resulting critical sections, the pro-
gram state is always consistent. During some operations
in slab management, the global cache lock and a global
slab lock are held leading to an OCS with an inner CS.
Like before, data structures are kept consistent at OCS
boundaries.

We collected results by starting memcached with 4
threads and performing a series of sets and gets. Statis-
tics showed that 4M OCSes and 600K inner critical sec-
tions were executed dynamically. 22M stores to persis-
tent locations were tracked and 3M of them were inside
OCSes. 30M log entries were created. The transient orig-
inal version finished in 17 seconds. The nvram version
took 55 seconds, i.e. 3.2x time as the original. Ignor-
ing the cache flushes, the time dropped to 38 seconds,
or 2.2x. Optimizing logging for persistent stores outside
OCSes brings down the time to 28 seconds, or 1.6x. We
expect that further tuning of our code will reduce logging
overhead further.

3.4 Summary of results
We showed that providing failure-atomicity for lock-
based programs helps persist a consistent snapshot that
is reusable. This property does not come for free but
the overheads need not be prohibitive either. There are
some fundamental challenges such as tracking changes
and getting the updates out of volatile buffers and caches;
our initial results provide an idea of the costs but we be-
lieve substantial optimizations are possible. If logging
can be eliminated outside critical sections, data can be
made durable more efficiently. But this can only be done

7Depending on the use case, an old cache may cause problems. But
a persistent cache does have benefits. See the section titled Persistent
Storage in [2].

based on dynamic analysis for general lock-based pro-
grams.8 The situation is different for atomic sections
where committed updates need not be undone, indicating
that atomic-section-based programs may provide dura-
bility more efficiently than their lock-based counterparts.

4 Related work

Transparent user-level checkpointing of the entire pro-
cess state has been explored [12]. The model is different
from ours; it does allow a more transparent application
restart, at the expense of what appear to be substantial
open implementation challenges, and probably tolerance
for a reduced set of failures. For example, we expect that
our approach will tolerate a significant set of software
failures, though clearly not all of them.

Systems such as Mnemosyne [18] and NV-heaps [8]
built consistency mechanisms on top of persistent re-
gions and durable transactions. Our work aims to provide
similar semantic guarantees for lock-based programs.
The problem of providing meaningful semantics for safe
re-execution of multithreaded programs has been looked
at earlier [19]. A checkpointing mechanism was devel-
oped for Concurrent ML using a language abstraction
called stabilizers. In contrast, our technique provides
failure-atomic semantics that lead to a globally consis-
tent state and all of this is done without any annotations
from the programmer. In general, it appears to us that us-
ing constructs like stabilizers can be error-prone without
global knowledge of the dynamic nature of the program.

5 Conclusions

We explored failure-atomic semantics for lock-based
programs. We showed how that can be used to reason
about a globally consistent snapshot that can in turn be
used for persisting consistent states. This has a signifi-
cant impact on programming with non-volatile memory.
We implemented a prototype and presented initial results
that show the viability of our approach in addition to
pointing out overheads in the system.

6 Acknowledgments

This work benefited from discussions with many peo-
ple including Pramod Joisha and Prith Banerjee. Com-
ments from the anonymous reviewers on an earlier ver-
sion helped improve the paper.

8We are also exploring weaker semantic guarantees that may enable
this to be done statically. It is not yet clear whether that is a practical
alternative.



References
[1] Memcached: a distributed memory object caching system. At

http://memcached.org.
[2] Memcached: what is this thing? At

http://code.google.com/p/memcached/wiki/NewOverview.
[3] ATKINSON, M. P., DAYNES, L., JORDAN, M. J., PRINTEZIS,

T., AND SPENCE, S. An Orthogonally Persistent Java. ACM
SIGMOD Record 25, 4 (Dec 1996), 68–75.

[4] BHANDARI, K., CHAKRABARTI, D. R., AND BOEHM, H.-J.
Implications of CPU Caching on Byte-addressable Non-Volatile
Memory Programming. Technical Report HPL-2012-236, HP
Labs, 2012.

[5] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The PAR-
SEC Benchmark Suite: Characterization and Architectural Impli-
cations. Technical Report TR-811-08, Princeton University, Jan.
2008.

[6] BLUNDELL, C., LEWIS, E. C., AND MARTIN, M. M. K. De-
constructing transactional semantics: The subtleties of atomic-
ity. In Workshop on Duplicating, Deconstructing, and Debunking
(WDDD) (2005).

[7] BOEHM, H.-J., AND ADVE, S. Foundations of the C++ Con-
currency Memory Model. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion (2008), pp. 68–78.

[8] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. NV-Heaps:
Making persistent objects fast and safe with next-generation, non-
volatile memories. In ASPLOS ’11: Proc. of the 16th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (Mar 2011), pp. 105–117.

[9] LARUS, J., AND RAJWAR, R. Transactional Memory. Morgan
and Claypool Publishers, 2007.

[10] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Archi-
tecting phase change memory as a scalable dram alternative. In
ISCA ’09: Proc. of the 36th International Symposium on Com-
puter Architecture (Jun 2009), pp. 2–13.

[11] MANSON, J., PUGH, W., AND ADVE, S. The Java Memory
Model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (2005).

[12] RIEKER, M., ANSEL, J., AND COOPERMAN, G. Transparent
user-level checkpointing for the native posix thread library for
linux. In PDPTA ’06: Proc. of the International Conference on
Parallel and Distributed Processing Techniques and Applications
(Jun 2006), pp. 492–498.

[13] SAXENA, M., SHAH, M., HARIZOPOULOS, S., SWIFT, M.,
AND MERCHANT, A. Hathi: Durable transactions for memory
using flash. In DaMoN: Proceedings of 8th ACM/SIGMOD In-
ternational Workshop on Data Management on New Hardware
(2012).

[14] SNYDER, P. tmpfs: A virtual memory file system. In Autumn
European Unix Users’ Group Conference (1990).

[15] STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND
WILLIAMS, R. S. The missing memristor found. Nature 453
(2008), 80–83.

[16] TRANSACTIONAL MEMORY SPECIFICATION DRAFT-
ING GROUP. Draft specification of transactional
language constructs for C++, Feb 2012. At
https://sites.google.com/site/tmforcplusplus.

[17] VOLOS, H., TACK, A. J., GOYAL, N., SWIFT, M. M., AND
WELC, A. xcalls: safe i/o in memory transactions. In EuroSys
(2009), pp. 247–260.

[18] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight persistent memory. In ASPLOS ’11: Proc. of
the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems (Mar 2011),
pp. 91–103.

[19] ZIAREK, L., SCHATZ, P., AND JAGANNATHAN, S. Modular
Checkpointing for Atomicity. Electr. Notes Theor. Comput. Sci.
174, 9 (2007), 85–115.


