
Efficient QoS for Multi-Tiered Storage Systems

Ahmed Elnably
Rice University

Hui Wang
Rice University

Ajay Gulati
VMware Inc.

Peter Varman
Rice University

Abstract
Multi-tiered storage systems using tiers of SSD and tra-
ditional hard disk is one of the fastest growing trends
in the storage industry. Although using multiple tiers
provides a flexible trade-off in terms of IOPS perfor-
mance and storage capacity, we believe that providing
performance isolation and QoS guarantees among vari-
ous clients, gets significantly more challenging in such
environments. Existing solutions focus mainly on either
disk-based or SSD-based storage backends. In particular,
the notion of IO cost that is used by existing solutions
gets very hard to estimate or use.

In this paper, we first argue that providing QoS in
multi-tiered systems is quite challenging and existing so-
lutions aren’t good enough for such cases. To handle
their drawbacks, we use a model of storage QoS called as
reward scheduling and a corresponding algorithm, which
favors the clients whose IOs are less costly on the back-
end storage array for reasons such as better locality, read-
mostly sequentiality, smaller working set as compared
to SSD allocation etc. This allows for higher efficiency
of the underlying system while providing desirable per-
formance isolation. These results are validated using a
simulation-based modeling of a multi-tiered storage sys-
tem. We make a case that QoS in multi-tiered storage is
an open problem and hope to encourage future research
in this area.

1 Introduction

This paper raises issues that arise in providing QoS
in multi-tiered storage architectures, and presents a
resource allocation model and scheduling framework
suited for this situation. Two major trends motivate this
work. The first is the growth in virtualized data centers
and public clouds hosted on shared physical resources.
In these cases, paying customers increasingly insist on
receiving certain performance SLAs in terms of CPU,

memory and IO resource allocation similar to what they
would experience in a dedicated infrastructure. However,
as we argue below, existing QoS models for storage do
not address this need adequately.

The second driver is the rapid spread of multi-tiered
storage systems that employ aggressive SSD-based tier-
ing or caching within storage devices that are central-
ized [2–5], or created using local storage from virtual-
ized hosts [1]. These solutions boost performance while
lowering cost, but complicate the (already complex) stor-
age resource allocation problem significantly by requir-
ing the management of heterogeneous devices. Storage
QoS needs to be aware of the massive performance dif-
ferences across tiers in order to provide performance iso-
lation while maintaining high efficiency of the underly-
ing devices.

In this paper we discuss how the significant differences
in speed between SSD and disk accesses makes tradi-
tional proportional-share resource allocation models un-
suitable in meeting client’s expectations. The key chal-
lenge is that existing IO schedulers rely on some notion
of IO cost to do accounting for IOs for future schedul-
ing. Estimating this cost is critical and also hard in such
multi-tiered systems. To some extent, this problem is
present even in traditional storage systems where hard
disks have different service times for random vs. sequen-
tial IOs and SSDs have the same issue for read vs. write
IOs. In case of multi-tiered systems this problem be-
comes quite acute and needs further attention.

We adapt a QoS performance model called reward
allocation that was proposed in [8, 9] as an approach
to handle this situation. The idea behind our proposed
reward-based QoS model is to explicitly favor applica-
tions that make more efficient use of the resources, rather
than use the gains from one application to subsidize the
performance of under-performing applications. The sub-
sidy model exemplified by proportional sharing is cur-
rently the most common solution for resource allocation
in storage systems (see Section 2).

1

HDs

Client 1

Client 2

Scheduler

SSDs

.

.

.

Client n

Scheduler

Figure 1: Reward Scheduler for Multi-Tiered Storage

In this paper, we examine how well a black-box stor-
age model using only the measured response times at the
host is able to provide reward discrimination. Our aim
is not to present a final solution that works under all cir-
cumstances, but rather to create a discussion on the effect
of tiered storage and application expectations on the re-
quired QoS directions for future storage systems.

The rest of the paper is organized as follows. In Sec-
tion 2 we motivate and define our problem, and compare
it with existing approaches. In Section 3 we describe our
reward scheduling algorithm. We present simulation re-
sults in Section 4, and conclude in Section 5.

2 Overview

Figure 1 shows a schematic model of our tiered-storage
architecture. Client requests are directed to the storage
array. Within the array, the requests are sent to the queue
of either the SSD or hard disk (HD) tier, from where they
are served based on the array’s scheduling priorities. The
scheduler uses proportional share scheduling to choose
which request to dispatch to the array next.

We motivate our reward QoS model using an exam-
ple. Consider two clients A and B with equal weights.
For the base case we consider the situation where all ac-
cesses are from HD tier, with an average service time of
10ms. A single hard disk system in this case provides
an aggregate throughput of 100 IOs/sec (IOPS), equally
shared between the two clients. Now consider what hap-
pens when the hit ratio of A in to SSD tier increases from
0 to 2/3. Assume that an SSD access takes 50µs. The
system completes IOs at the rate of 6 IOs every 40ms or
150 IOPS. Each client receives 75 IOPS.

We argue that proportional sharing as described above
is not ideal for either the client or the system. With
proportional sharing the throughputs of both clients in-
creases when the hit ratio of client A improves. How-
ever, A does not experience the same increase in IOPS
that it would have on a dedicated infrastructure. In a ded-
icated system (with sole access to the HD and SSD), its

IOPS performance will increase 300% when its hit ratio
increases to 2/3. In the shared infrastructure its IOPS in-
creases by a paltry 50%. With additional clients sharing
the system the performance improvement will be even
smaller. In a pay-for-services situation, the fact that A is
actually subsidizing the improved performance of B may
be considered unfair (A may be paying for SSD use, or
have development costs for cache friendliness). In some
cases, B may also object to receiving additional IOPS if
they cost extra.

The reward allocation model [8, 9] emulates a client’s
performance profile when running on a dedicated infras-
tructure. In this example, the increased IOPS result-
ing from A’s better hit ratio will all be directed to A,
while B’s allocation will remain unchanged. Further-
more, since the resources are directed towards the more
efficient client, the system throughput will be higher. The
reward allocation model will modify the ratio in which A
and B are served, from 1 : 1 to 3 : 1, increasing the overall
system throughput to 200 IOPS. Furthermore, B contin-
ues to receive 50 IOPS, while A triples its throughput
to 150 IOPS (as it would expect when its SSD hit ratio
increases to 2/3).

2.1 Related Work

There has been substantial work towards proportional
share scheduling for network IO and CPU alloca-
tion [10], [24], [7]. These schemes have since been ex-
tended to handle the constraints and requirements of stor-
age and IO scheduling [11–14, 17, 21, 23, 25, 27]. Reser-
vation and limit controls for storage servers were intro-
duced in [13, 16, 26]. These models provide strict pro-
portional allocation based on static shares (possibly sub-
ject to reservation and limit constraints). In contrast, our
work suggests changing shares to adapt to the behavior of
the workload, rewarding well-behaved clients by targeted
allocation rather than simply distributing the gains over
all workloads. This characteristic is a desirable property
of multi-tiered storage systems, where changes in access
locality (and hit ratio) can drastically alter an applica-
tion’s profile in different execution phases.

The reward allocation model in [8] dealt with sequen-
tial IOs in a multi-tiered system. The model in [9] allows
parallel operations and uses the measured hit ratio of the
SSD to do reward scheduling. However, such hit ratio
information is generally not available at the host level.

A number of papers have proposed time-quanta based
IO allocation [6, 18–20, 22, 23].The motivation in these
schemes is to isolate fast sequential IOs from slower ran-
dom IOs [19, 22, 23] or segregate slow SSD writes from
faster reads [18]; however, we target multi-tiered stor-
age in this paper. Time-quantum based approaches can
be seen as a complementary method to our tag-based

2

scheduling approach. The major issue with time quanta
based allocation is the latency jitter caused by waiting for
all remaining clients to finish their allocated quantum be-
fore scheduling pending requests. This also reduces the
overall concurrency at the storage device causing lower
throughput. In contrast, the method in this paper is a fine-
grained allocation where client requests are interleaved
at the level of individual requests, preventing the latency
jitter.

Algorithm 1: Basic Reward Scheduling Algorithm
RequestArrival (request r, client j, time t)

if Task j Queue empty then
Add j to set of active clients A ;
sTag j = max(sTag j , t);
Add r to queue of task j with tag sTag j;

else
Add r to queue of task j with timestamp t;

ScheduleRequest ()
Dispatch request with min j{sTag j: j ∈A };

AdjustTags (time t)
minTag = min j{sTag j: j ∈A };
∆ = minTag - t;
∀ j ∈A : sTag j = sTag j−∆;

RequestCompletion (task j, time t)
Φ̄ j = UpdateResponseTime(j, Φ j);
Remove completed request from queue;
sTag j = sTag j + Φ̄ j/ω j;
AdjustTags(t);
if Task j Queue empty then

Remove j from set of active clients A ;
ScheduleRequest();

3 Reward Scheduling Algorithm

Each client i is assigned a weight ωi to represent its rel-
ative priority. The reward scheduling algorithm main-
tains a queue per client and a tag for each client queue.
When invoked, the scheduler dispatches the request with
the smallest tag to the storage array. A high level descrip-
tion of the algorithm is shown in Algorithm 1.

In order to do IO cost accounting, the scheduler main-
tains a running average of the response times of the
last N (a configurable parameter) requests of each client.
Since the storage system is treated as a black box, the re-
sponse times is the elapsed time between the dispatched
time and the time the request completes.

When a request from client j completes service, proce-
dure RequestCompletion is invoked. The running
average response time of client j, Φ̄ j is updated to in-
clude the completed request using function UpdateRe-
sponseTime(). This average is used to compute the
next value of sTag j by incrementing its current value by

Φ̄ j/ω j. Thus tags of successive requests of the client are
spaced by an amount that is proportional to the average
response time over the last N requests, and inversely pro-
portional to the static weight of the client. In this way,
clients who complete requests faster are given priority
over those with slower requests, as are clients with higher
static weights.

Procedure RequestArrival adds the request to the
queue; if it is the only request it assigns it a starting tag
equal to the larger of the current time or the last tag value
for this client. The AdjustTags procedure is needed
to synchronize the tags of requests already in the system
with newly arriving requests. This is the same synchro-
nization mechanism used in [12, 13].

4 Preliminary Evaluation

We experimented with two different setups: (1)
Simulation-based and (2) Linux-based real system. In
first, we created a simulation model of a multi-tiered stor-
age system using Yacsim [15] simulation environment.
We created a system with 1 HD and 1 SSD. We used a
simple SSD model and compared the qualitative behav-
ior to a storage system consisting of a single HD and a
single SSD device. We used SSD read time to be expo-
nentially distributed with a mean of 200µsec. For the
HD the service time is exponentially distributed with a
mean of 10 ms.

We also implemented a prototype on Linux by inter-
posing a reward scheduler in the IO path in user space.
The micro-benchmarks are made to access storage de-
vices through this user-space process. Requests are
dispatched to the underlying storage devices using our
scheduler. Raw IO is performed to eliminate the in-
fluence of buffer caching. We present two experiments
showing different aspects of reward scheduling.

Hit Ratio Variation: In this experiment, we used two
workloads and varied the hit-ratio in SSD tier of one of
the workloads while keeping the other workload’s hit ra-
tio at 100%. We also varied the weights of the workloads
to three different values. Each workload is issuing 100%
random read request with a backlog of 100 requests at all
times. Table 1 and 2 show the results using our Linux-
based testbed and simulation-based storage system.

Note that the actual achieved ratio in terms of IOPS
is different than the weights for different hit-ratio values.
This is due to the reward scheduling nature of our algo-
rithm. One can also verify that the IOPS-ratios obtained
in various cases are similar to the latency-ratios of dif-
ferent workloads. For example, when hit-ratio = 0.2, the
latency of the workload B = 0.8×10 + 0.2×0.2 = 8.04
ms, and the latency of workload A is 0.2 ms. In this case
the actual ratio of IOPS is close to 40.2. Similar compu-
tation can be performed for other cases as well.

3

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

Time (s)

T
hr

ou
gh

pu
t (

IO
P

S
)

Workload 1
Workload 2

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

Time (s)

T
hr

ou
gh

pu
t (

IO
P

S
)

Workload 1
Workload 2

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

Time (s)

T
hr

ou
gh

pu
t (

IO
P

S
)

Workload 1
Workload 2

(a) Simulation for reward scheduling (b) Reward scheduling (c) CFQ scheduling

Figure 2: Workload 1 changes hit ratio from 0.6 to 0.9 from time 200s to 400s.

Weights hit-ratio(A:B) IOPS (A) IOPS (B) IOPS-ratio (A/B)
1:1 1 : 0.2 3106 75 41.4

1 : 0.5 3055 129 23.7
1 : 0.75 2816 295 9.6
1 : 1 2000 2033 0.98

1:2 1 : 0.2 2501 80 31.2
1 : 0.5 2459 139 17.7
1 : 0.75 2257 311 7.3
1 : 1 1358 2682 0.51

2:1 1 : 0.2 3359 72 46.6
1 : 0.5 3251 125 26
1 : 0.75 3047 277 11
1 : 1 2689 1347 2.0

Table 1: Linux-based test: IOPS observed by two work-
loads when hit-ratio of workload B is varied from 0.2 to
1 and it is kept fixed at 1 for workload A.

Weights hit-ratio(A:B) IOPS (A) IOPS (B) IOPS-ratio (A/B)
1:1 1 : 0.2 4923 122 40

1 : 0.5 4841 193 25
1 : 0.75 4612 373 12
1 : 1 2474 2474 1.0

1:2 1 : 0.2 4917 124 40
1 : 0.5 4836 198 24
1 : 0.75 4538 400 11
1 : 1 1599 3350 0.48

2:1 1 : 0.2 4931 116 42
1 : 0.5 4862 173 28
1 : 0.75 4704 326 14
1 : 1 3350 1599 2.1

Table 2: Simulation-based test: IOPS observed by two
workloads when hit-ratio of workload B is varied from
0.2 to 1 and it is kept fixed at 1 for workload A.

Next we compared the behavior of Reward scheduling
and Linux CFQ scheduling. The storage server includes
a 1TB SCSI hard disk and 80GB SSD. Two continuously
backlogged workloads issued random read requests to
the hard disk or the SSD, based on the hit ratio. Each
workload had a weight of 0.5. Workload 2 had a fixed hit
ratio of 0.4 throughout the experiment. The hit ratio of
workload 1 is 0.6 from time 0 to time 200s, which then
increases to 0.9 from time 200s to 400s, and then comes
back to 0.6 after that.

Figures 2 (a) and (b) show the performance of re-
ward scheduling using simulation and Linux-based se-
tups respectively. Here, workload 1 gets much higher

throughput during 200 to 400 second interval and work-
load 2 sees no appreciable change in performance. Fig-
ure 2 (c) shows the performance of Linux CFQ schedul-
ing. In time interval (200-400 seconds), both workloads
get more throughput as the system capacity increases due
to the higher hit ratio of workload 1. The additional ca-
pacity is shared by both workloads. As can be seen, re-
ward scheduling allocates all excess capacity to work-
load 1, while a fair scheduler tries to equalize the IOs
subject to hit ratio constraints. The overall throughput
of CFQ scheduler is lower, as is the amount obtained by
workload 1.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

Time (s)

T
hr

ou
gh

pu
t (

IO
P

S
)

Workload 1
Workload 2

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

Time (s)

T
hr

ou
gh

pu
t (

IO
P

S
)

Workload 1
Workload 2

(a) Queue Length = 1 (b) Queue Length = 8

Figure 3: Workload 1 changes read ratio from 0.5 to 1
after 5 seconds.

Read/Write Ratio Variation: In this experiment we
used only the SSD as the storage device (i.e. hit ratio =
100%) and varied the read write (RW) ratio. Both work-
loads have equal weights and RW ratio equal to 0.5. At
time t = 5 seconds, workload 1’s RW ratio changes to
1.0. Figure 3 (a) shows the behavior of the two work-
loads when the disk queue was set to 1.

We then increased the disk queue length and Fig-
ure 3 (b) shows the allocation when the disk queue was
set to 8. We see that workload 2 got some of the gains and
the gain of workload 1 reduced compared to (a). The rea-
son is because the estimator gets diluted as the Q length
gets larger, since all of them include the fixed portion of
the delay introduced by queuing the requests in the disk
queue. This shows the caveats in using average latency
as the estimator. We are looking at better estimators that
would work more robustly in different situations.

4

5 Discussion and Open Issues

In this paper we discuss why traditional proportional-
share scheduling may be inadequate in shared multi-
tiered storage systems, where the access times can vary
drastically due to different tiers and workloads phases.
The reward scheduling model allocates resources to
clients based on their dynamic behavior and emulates
their performance as if they were run in isolation. For
each client, we allocate IOPS based on its average re-
sponse time and overall weight.

One key open issue is teasing apart queuing delay or
a component of it from the response time. Array ven-
dors can get service times with much better accuracy,
since they control the underlying tiers and have relatively
smaller queue depth per device. Doing it from outside
the array will show some differentiation but not enough
in cases of large queue depths.

We are also investigating the relationship between re-
ward scheduling and keeping a queue size per client.
Thus for each finished request, only the corresponding
queue can issue an extra request. Having static queue
sizes won’t work, but one can try to make them dynamic
by using a control equation like PARDA [11]. Also the
behavior of a workload is dependent on the hit-ratio of
other workloads. We are looking to reduce this interfer-
ence as part of future work. We are also investigating
if reward scheduling can introduce any feedback loop
where a workload can keep on getting higher hit rate due
to the preference given by the scheduler.

We hope that the research community will pay more
attention to the QoS problem in multi-tiered systems,
which are rapidly becoming ubiquitous. Another very
relevant variant of this problem is to provide strict la-
tency and IOPS guarantees in such systems by com-
bining techniques for block placement across tiers and
scheduling per tier. Doing admission control of work-
loads in such systems also remains an open and challeng-
ing problem that will require better modeling techniques.

References
[1] Nutanix complete cluster: The new virtualized datacenter build-

ing block. http://www.nutanix.com/resources.html, 2011.

[2] EMC: Fully automate storage tiering.
http://www.emc.com/about/glossary/fast.htm, 2012.

[3] NetApp: Flash cache. http://www.netapp.com/us/products/storage-
systems/flash-cache/, 2012.

[4] Nimble storage. http://www.nimblestorage.com, 2012.

[5] Tintri: Vm aware storage. http://www.tintri.com, 2012.

[6] BRUNO, J., BRUSTOLONI, J., GABBER, E., OZDEN, B., AND
SILBERSCHATZ, A. Disk scheduling with quality of service
guarantees. In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems (1999), pp. 400–405.

[7] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair-queuing algorithm. In ACM SIGCOMM
(1989), pp. 1–12.

[8] ELNABLY, A., DU, K., AND VARMAN, P. Reward scheduling
for qos in cloud applications. In 12th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (2012).

[9] ELNABLY, A., AND VARMAN, P. Application-sensitive qos
scheduling in storage servers. In ACM Symposium on Parallelism
in Algorithms and Architecture (2012).

[10] GOYAL, P., VIN, H. M., AND CHEN, H. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switch-
ing networks. In IEEE/ACM Transactions on Networking (1997).

[11] GULATI, A., AHMAD, I., AND WALDSPURGER, C. PARDA:
Proportional Allocation of Resources for Distributed Storage Ac-
cess. In In Usenix FAST ’09 (2009).

[12] GULATI, A., MERCHANT, A., AND VARMAN, P. J. pclock: An
arrival curve based approach for qos in shared storage systems.
In ACM SIGMETRICS (2007).

[13] GULATI, A., MERCHANT, A., AND VARMAN, P. J. mClock:
Handling throughput variability for hypervisor IO scheduling. In
USENIX OSDI (2010).

[14] JIN, W., CHASE, J. S., AND KAUR, J. Interposed proportional
sharing for a storage service utility. In ACM Sigmetrics (2004).

[15] JUMP, J. R. Yacsim reference manual.
http://oucsace.cs.ohiou.edu/~avinashk/classes/ee690/yac.ps.

[16] KARLSSON, M., KARAMANOLIS, C., AND ZHU, X. Triage:
Performance differentiation for storage systems using adaptive
control. Trans. Storage (2005), 457–480.

[17] LUMB, C. R., SCHINDLER, J., GANGER, G. R., NAGLE, D. F.,
AND RIEDEL, E. Towards higher disk head utilization: extracting
free bandwidth from busy disk drives. In Usenix OSDI (2000).

[18] PARK, S., AND SHEN, K. Fios: A fair, efficient flash i/o sched-
uler. In FAST (2012).

[19] POVZNER, A., KALDEWEY, T., BRANDT, S., GOLDING, R.,
WONG, T. M., AND MALTZAHN, C. Efficient guaranteed disk
request scheduling with fahrrad. In ACM EuroSys (2008).

[20] SHAKSHOBER, D. J. Choosing an I/O Scheduler for Red Hat
Enterprise Linux 4 and the 2.6 Kernel. In In Red Hat magazine
(June 2005).

[21] SHENOY, P. J., AND VIN, H. M. Cello: a disk scheduling frame-
work for next generation operating systems. In ACM SIGMET-
RICS (1998).

[22] VALENTE, P., AND CHECCONI, F. High Throughput Disk
Scheduling with Fair Bandwidth Distribution. In IEEE Trans-
actions on Computers (2010), no. 9, pp. 1172–1186.

[23] WACHS, M., ABD-EL-MALEK, M., THERESKA, E., AND
GANGER, G. Argon:Performance Insulation for Shared Storage
Servers. In In Usenix FAST ’07 (2007).

[24] WALDSPURGER, C. A., AND WEIHL, W. E. Lottery schedul-
ing: flexible proportional-share resource management. In Usenix
OSDI (1994).

[25] WIJAYARATNE, R., AND REDDY, A. L. N. Integrated QoS man-
agement for disk I/O. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems (1999).

[26] WONG, T., GOLDERING, R., LIN, C., AND BECKER-SZENDY,
R. Zygaria: Storage performance as managed resource. In Proc.
of RTAS (April 2006).

[27] ZHANG, J., SUBRAMANIAM, A., WANG, Q., RISKA, A., AND
RIEDEL, E. Storage performance virtualization via throughput
and latency control. Trans. Storage (August 2006), 283–308.

5

