
LoadIQ: Learning to Identify Workload Phases from a Live Storage Trace

Pankaj Pipada, Achintya Kundu, K. Gopinath, Chiranjib Bhattacharyya
Indian Institute of Science∗

Sai Susarla, P. C. Nagesh
NetApp†

Abstract

Storage infrastructure in large-scale cloud data cen-
ter environments must support applications with diverse,
time-varying data access patterns while observing the
quality of service. Deeper storage hierarchies induced
by solid state and rotating media are enabling new stor-
age management tradeoffs that do not apply uniformly to
all application phases at all times. To meet service level
requirements in such heterogeneous application phases,
storage management needs to be phase-aware and adap-
tive, i.e., to identify specific storage access patterns of
applications as they occur and customize their handling
accordingly.

This paper presents LoadIQ, a novel, versatile, adap-
tive, application phase detector for networked (file and
block) storage systems. In a live deployment, LoadIQ
analyzes traces and emits phase labels learnt on the fly by
using Support Vector Machines(SVM), a state of the art
classifier. Such labels could be used to generate alerts or
to trigger phase-specific system tuning. Our results show
that LoadIQ is able to identify workload phases (such as
in TPC-DS) with accuracy > 93%.

1 Introduction

The efficiency of a storage system can be improved
through adaptive storage management if access to high-
level workload information is possible. For instance,
it can trigger system optimizations suited for specific
workloads or phases[2] as they occur. It can also be used
to alert the administrator when rare anomalous workload
behaviors recur and need attention for troubleshooting.

A storage administrator or management system can
easily optimize storage resources for an application if
it has the same behavior throughout its execution. But
long running applications typically go through multiple
distinct phases[6, 12] (for example, a computation phase
followed by a checkpoint phase). Detecting these phase
transitions within an application has been problematic.

In this paper, we focus on building a robust, real-
time application phase identification facility for shared
storage systems enabling various use cases. To sup-
port adaptive storage management in complex virtualized
data centers, an application phase identification engine
needs to have the following properties:

• Dependable: it should accurately discriminate
among known classes of workload phases prefer-
ably with quantifiable confidence, as well as be able
to flag unknown workload phases as such.

• Extensible: To be useful in dynamic environments,
it should support augmenting new phase types as
well as newly discovered criteria for discriminating
among them. It should be easy to incorporate new
expert knowledge as it becomes available.

• Automated: It should identify phases in near real-
time to support online adaptation, where manual in-
tervention is impractical.

• Robust: It should be robust against inevitable flux
in real-world workload patterns due to variations in
intensity, time spread and client-side or network en-
vironment.

A non-intrusive way to observe the workloads is to an-
alyze the packet traces of networked storage protocols
(such as NFS, CIFS, FCP, iSCSI, and HTTP). By de-
tecting application phase transitions, we show that these
traces can be a rich and dependable source of contextual
information for storage systems to use for managing an
application in its life cycle.

Packet traces of these protocols have various features
such as access offsets, opcode sequences, etc. These fea-
tures can be used to describe a workload. SVM is a
widely used classification technique that relies on kernel
functions to encode similarity between a pair of obser-
vations. These Kernel functions help in elegantly com-
bining such multiple trace features. We adapt SVMs for



trace analysis and add iterative self-correction capability
to handle untrained patterns so as to meet the require-
ments listed above (except quantifiable confidence).

A key contribution of this paper is Online phase label-
ing with self-correction. We demonstrate how to build
a tool to track workload phase shifts in real-time (ev-
ery minute) from a live trace feed while annotating it us-
ing the above methodology. This tool automatically im-
proves its ability to recognize previously untrained work-
loads over time. This is essential for real-world deploy-
ability, as it is impractical to pre-learn all workload pat-
terns out there.

The rest of the paper is organized as follows. Section 2
describes the related work in trace analysis and classifi-
cation, placing LoadIQ in context to prior work. Sec-
tion 3 summarizes the mathematical theory behind our
SVM based classification methodology and discusses our
similarity computation methods. Section 4 presents our
results for detecting phases in applications. Finally, we
conclude in Section 5.

2 Related Work

Techniques to optimize storage management for ap-
plications can be broadly classified as static vs. dy-
namic. Dynamic techniques react to dynamic system
events and IO characteristics. For example, BORG[2]
reorders block layout dynamically to convert temporal
locality in data access into spatial locality for reducing
disk head seeks to improve latency. Static techniques de-
ploy recommended best practice storage configurations
for specific application types determined offline by rig-
orous analysis and experience. Most production storage
systems take this approach, while employing some dy-
namism based on heuristics.

Machine Learning techniques such as HMMs have
been used in the past to to dynamically drive prefetch-
ing and caching decisions[8]. Also, there is a substantial
body of work[7, 5, 1] where file system trace analysis
has been attempted to get aggregate information about
systems and to understand the usage patterns of storage
over time. As we focus on extracting specific patterns
present within an application, gross analysis of the sys-
tem is not useful.

Reverse-engineering a network trace to discover the
application that created it is difficult due to numerous
non-deterministic factors[11, 4]. Even though specific
heuristics could be employed to separate phases in a
specific application, we construct a generic technique
which can work for a variety of applications and is ro-
bust against variations in environment and configuration.

It has been shown that there is a strong correlation
between high-level application context and the IO pat-
terns generated[9, 13]. Our approach exploits this corre-
lation in IO patterns hidden in traces to infer the applica-

tion context at run time. Previous attempts at identifying
workloads[11] use request type sequence for classifica-
tion. This limits the applicability of the work in VM
environments where most requests are reads and writes
only. Other information in network traces such as off-
sets can be useful when analyzing traces in such environ-
ments (also in SAN and database workloads). Detecting
phases within an application is also not attempted. In
this paper, we use trace features such as offsets and ap-
ply state of art Machine Learning tools[10] to overcome
previous limitations for detecting application phases.

3 Methodology
A network trace contains heterogeneous information

such as opcodes, offsets, etc. In this paper, we use this
information to identify various phases in the applica-
tion using a classification paradigm. Support Vector ma-
chines (SVMs)[10] are currently the state of art classi-
fiers which perform well on real world problems. Given
current advances in multiple kernel learning, SVMs pro-
vide provide an excellent way of combining multiple
sources of information. Even though we have used a
single feature for analysis in this paper, the framework
provided can be extended to use multiple trace features.

SVMs interact with data through kernel functions[10].
A kernel function is a measure of similarity between a
pair of objects; here, these are NFS traces. In the next
subsection we describe our kernel computation method.
We describe how classification is done and then show
how online self-correction is attempted.

3.1 Kernel computation using Offset Histograms

To use read/write offset fields of the NFS trace for
classification we require a similarity measure computed
on these fields. We extract offset fields from the NFS
trace’s READ and WRITE requests and compute a his-
togram out of the absolute difference between each suc-
cessive offset fields (i.e, offset shift). We quantize the
offset shifts into their nearest bin sizes in powers of 2,
i.e., sizes of 21, 22, 23, . . . bytes. After constructing the
histogram from offset shifts, we normalize it to eliminate
unwanted effects due to different trace lengths.

Given two histograms H1 and H2, a similarity score is
computed as follows:

S(H1,H2) = c−
L

∑
i=1

[H1(i)−H2(i)]2

H1(i)+H2(i)

where L is the number of bins and c is a constant (actu-
ally, it is the average similarity across all training traces).
Note that summation is over all bins where either of the
histograms has non-zero value. Given a similarity score
between any two traces, a similarity matrix is constructed
across all the representative traces.

For a similarity measure to be a kernel function, the
similarity matrix should be positive semidefinite (psd).

2



new trace

offset
histogram
generator

similarity
computation

engines

training sets
Classifier 1

Classifier 2

Classifier k-1

Classifier-k

Maj-
ority

Voting

Figure 1: Block diagram for m types of workload classification. Num-
ber of classifiers k = 1

2 m(m−1).

In our application we construct a psd kernel matrix by
setting the negative eigen-values of the similarity matrix
to zero[3].

3.2 Binary Classification

Consider a binary classification problem where only 2
kinds of application workloads, with labels +1 and −1,
generate the traces. With each trace x we associate a
label y ∈ {+1,−1} to represent its class. Now the work-
load identification problem can be formally stated as:
given a trace x, infer the value of y.

Assume a training set consisting of representative
traces from each class is given. Let x1 . . .xn be the train-
ing traces with known class labels y1 . . .yn. Using this
training set we compute the Kernel, K(·, ·), as explained
in Section 3.1.

Given a new trace x, the SVM classifier function f
produces a classification score as:

f (x) = b+
n

∑
i=1

αi yi K(xi,x),

where the coefficients α1, . . . ,αn and the bias term b are
found by an SVM training algorithm. Now, the decision
value ŷ is calculated as:

ŷ =

{
+1 if f (x)> 0,
−1 otherwise, (1)

3.3 Multi-class Classification

Consider multi-class classification as shown in Fig-
ure 1. The similarity computation engine computes the
Kernel matrix using the training sets for m workload
classes. With m > 2, the binary classification scheme
can be extended by creating one classifier for every pair
of classes for a total of 1

2 m(m− 1) classifiers. Given a
set of representative traces from each class, a classifier
can be found for every pair of classes by treating the
representative traces from one class as positive type and
the representative traces from the other class as negative

type. Let f(i, j) , 1 ≤ i < j ≤ m, be the decision function
when class-i is considered as positive class and class- j
as negative. Let t be a chosen non-negative number. In
order to predict the workload class for a trace x, compute
all the decision values { f(i, j)(x) |1≤ i< j≤m} and cor-
responding vote ŷ(i, j) as

ŷ(i, j) =
{

i if f(i, j)(x)> t,
j if f(i, j)(x)≤−t, (2)

Based on all the ŷ(i, j) values we calculate the number of
votes in favor of each class and we classify the trace x
to the class which gets maximum number of votes. Here
we set threshold t = 0.

We would also like to identify traces that do not be-
long to the m trained classes. To do so, we choose a
suitable threshold t > 0 and classify a trace x to class
i ∈ {1,2, . . . ,m} if and only if number of votes in its fa-
vor is exactly m− 1; otherwise we declare its class as
unknown.

3.4 Online Self-correction

To improve LoadIQ’s ability to classify untrained
workloads as unknown, in an online deployment, over
time, we collect trace snippets that the SVM based multi-
class classifier flags as ‘unknown’. We label them with a
special “unknown” class label and re-train LoadIQ aug-
mented with this class and re-classify past snippets to see
if any of them join this class. As Section 4.1 shows, this
works well in practice as it exploits LoadIQ’s ability to
distinguish workloads with explicitly identified features.

4 Evaluation
Several enterprise-class applications have distinct

phases of behavior that require specific storage optimiza-
tions not applicable at all times. However, as these
phases may occur aperiodically, it is cumbersome to
manually schedule their storage-level optimizations. In
this section, we test LoadIQ to detect such application
phase boundaries to enable phase specific storage opti-
mizations. First, we use LoadIQ to identify the distinct
phases of TPC-DS benchmark on PostgreSQL database.
We show that LoadIQ is able to distinguish between var-
ious phases with high accuracy. We also demonstrate the
self correction ability of LoadIQ using unknown class.
We then use LoadIQ to perform online labeling of a pro-
duction OLAP workload. This experiment demonstrates
how recurrence of special/anomalous workload behavior
can be spotted by administrators using LoadIQ.

4.1 Distinguishing Phases in a Large-scale
Database Workload

A typical database workload consists of four phases:
The load phase populates the database tables. We use
the PostgreSQL COPY commands for this. The indexing

3



Figure 2: Accuracy of identifying DB Workload phases when fully
trained using all offsets in a trace vs. only write offsets. Write offsets
yield consistently better accuracy, so we switch to them for subsequent
experiments.

phase creates various desired indexes on the tables after
load and also in response to the administrator requests.
In the query phase, the database serves client queries.
We choose from 99 different TPC-DS query templates to
issue these queries. Finally, the maintenance phase gets
triggered by a database engine periodically or on demand
for clean up.

In our experimental setup, the database runs inside a
guest VM with 4GB RAM whose image resides on an
NFS server. The VM’s host machine is an 8-core Xeon-
5520 with 8GB RAM. We use the TPC-DS dataset gen-
erator to populate the database with a 2GB dataset, which
results in a 3.5x bloat in size on disk.

Training: For training LoadIQ, we collect traces
while the database goes through various phases and la-
bel each trace with its phase name, manually. Just for
training, we collect load phase traces when generating
TPC-DS datasets of size 1, 2, 3 and 5GB. During index-
ing phase, we create three types of indexes: B-tree, GIN,
Hash. For maintenance phase, we run PostgreSQL’s
VACUUM and ANALYZE commands. To generate a
query phase trace, we run a random mix of queries se-
lected from all the 99 TPC-DS query templates in 100
concurrent connections. We divide the traces collected
into 60-second snippets, generate read-write histograms
for each to be used in building the SVM model.

Results: Figure 2 shows the classification accuracy
when LoadIQ is trained to identify all classes. The accu-
racy is better (> 84%) when write offset shift histogram
was used instead of combined offset histogram (70%)
as the discriminating feature for classification. LoadIQ
also flagged the remaining traces as “unknown” instead
of confusing them as another known class.

Figure 3 shows how classification accuracy for un-
known workloads starts off very low, but improves
rapidly with re-training. When LoadIQ was trained to
detect three out of four phases and tested with the fourth
phase, it correctly labeled only about 17-43% of the

Figure 3: Accuracy of identifying DB Workload phases from write off-
sets when partially trained. Re-training iteratively improves accuracy
for untrained phases.

Figure 4: Detecting User-identified phases in an Enterprise-class
OLAP application: LoadIQ can be trained to spot hash table accesses
and streaming IO bursts.

traces as unknown, and misclassified the rest of them.
Thus LoadIQ’s core SVM engine is able to only dis-
tinguish among known classes. However, with just two
rounds of re-training as explained in Section 3.4, LoadIQ
is able to flag more than 80% of untrained single work-
loads correctly as unknown. The improvement is not as
dramatic when LoadIQ encounters a mix of multiple un-
trained workloads.

4.2 Live Labeling of a Production OLAP Workload

In this section, we demonstrate how an administrator
can use LoadIQ to automate detecting the recurrence of
special/anomalous workload behaviors in a production
environment simply by pointing out a few time windows
when they occurred in the past. For this experiment, we
run a production enterprise data warehousing application
in a 10-node cluster configured to use a SAN backend.
The application’s data is spread over 50 LUNs each of
size 20GB. We capture the post-host-cache SCSI request
trace on all LUNs - 188K reads and 250K writes per LUN
spread over 56 minutes. Figure 4 shows a scatter plot of
the reads issued on one such LUN.

4



Figure 5: Enterprise-class OLAP application: With a little extra user
annotation, LoadIQ spots slow interleaved sequential IO as well.

The admin identifies three lumps of points in the 16-
18GB region during the 6-20 min. interval, and rec-
ognizes them as accesses to a growing hash table. He
also sees lumps of near-vertical lines (e.g., 2-4 and 8-10
mins.) and identifies them as sequential IO bursts.

We use LoadIQ to identify hash table accesses (la-
beled Hash table) and sequential IO bursts (labeled Seq
IO) from the trace, after training it with a few initial 1-
minute trace snippets for each class shown in Figure 4
as impulses. The figure shows how LoadIQ labeled the
trace as a square wave with labels on the left in italics.
It identifies all the hash table accesses and the fast se-
quential IO bursts accurately, except during the 40th and
50th minutes. It classified the concurrent sequential IOs
(slanted lines) during 20-40 minute period as random IO,
because their offset shifts look similar to random IO.

Next, the admin labels four extra snippets in the 20-
40 min. interval as sequential IO and re-trains LoadIQ.
Figure 5 shows that LoadIQ identifies sequential IO as
such correctly while continuing to identify hash table ac-
cesses.

Live Labeling To evaluate whether the same labeling
can be done online at real-time, we feed the live SCSI
trace of the above workload to LoadIQ running on a sep-
arate host (8-core Xeon-5520 with 8GB RAM), in 60-
second chunks. LoadIQ emits the same labels as before,
every minute within 4 seconds. The retraining step takes
about 4 seconds. Thus, LoadIQ can detect a workload
shift within minutes.

5 Discussion and Conclusions
In this paper, we present LoadIQ, a machine-learning-

based tool for identifying various phases in an applica-
tion, from its live storage trace, at accuracy > 93% in
many cases. Also, if LoadIQ classifies a workload as
‘unknown’, it is very unlikely to be a known workload.
However, LoadIQ’s accuracy at flagging untrained work-
loads as unknown is poor without retraining. This is be-
cause it has no reference to know what an ‘unknown’

workload looks like. LoadIQ’s iterative self-correction
alleviates this problem by learning to identify untrained
workloads, as long as their patterns do not shift too
rapidly.

For LoadIQ to be truly dependable in real deploy-
ments, it needs a quantifiable confidence measure of its
classification output. That is an area of future work.
Also, further study is needed to assess how variable
concurrency and caching at client-level affects LoadIQ’s
ability to identify various application phases.

References
[1] E. Anderson. Capture, conversion and analysis of an intense nfs

workload. In Proceedings of the Seventh USENIX Conference on
File and Storage Technologies (FAST 2009), Feb. 2009.

[2] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis. Borg: Block-reorganization for
self-optimizing storage systems. In M. I. Seltzer and R. Wheeler,
editors, FAST, pages 183–196. USENIX, 2009.

[3] Y. Chen, M. R. Gupta, and B. Recht. Learning kernels from
indefinite similarities. In International Conference on Machine
Learning. 2009.

[4] D. Ellard. Trace-based analyses and optimizations for net-
work storage servers. PhD thesis, Cambridge, MA, USA, 2004.
Adviser-Margo I. Seltzer.

[5] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS trac-
ing of email and research workloads. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (FAST03),
pages 203–216, 2003.

[6] D. Gu and C. Verbrugge. A survey of phase analysis: Techniques,
evaluation and applications. Technical report, Citeseer, 2006.

[7] A. Leung, S. Pasupathy, G. Goodson, and E. Miller. Measurement
and analysis of large-scale file system workloads. In Proceedings
of the USENIX 2008 Annual Technical Conference, June 2008.

[8] T. Madhyastha and D. Reed. Input/output access pattern clas-
sification using hidden markov models. In Workshop on In-
put/Output in Parallel and Distributed Systems, Nov. 1997.

[9] A. Riska and E. Riedel. Disk drive level workload characteri-
zation. In Proceedings of the USENIX 2006 Annual Technical
Conference, June 2006.

[10] B. Schölkopf and A. J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond
(Adaptive Computation and Machine Learning). The MIT Press,
2001.

[11] N. Yadwadkar, C. Bhattacharyya, K. Gopinath, T. Niranjan, and
S. Susarla. Discovery of application workloads from network file
traces. In Proceedings of the Eighth USENIX Conference on File
and Storage Technologies (FAST 2010), Feb. 2010.

[12] J. Zhang, M. Yousif, R. Carpenter, and R. Figueiredo. Applica-
tion resource demand phase analysis and prediction in support of
dynamic resource provisioning. In Fourth International Confer-
ence on Autonomic Computing, 2007., pages 12–12, 2007.

[13] X. Zhang, A. Riska, and E. Riedel. Characterization of the e-
commerce storage subsystem workload. In QEST, pages 297–
306. IEEE Computer Society, 2008.

5


