
Dynamic Interval Polling and Pipelined Post I/O Processing for
Low-Latency Storage Class Memory

Dong In Shin, †Young Jin Yu, †Hyeong S. Kim, Jae Woo Choi,
Do Yung Jung, †Heon Y. Yeom

Taejin Infotech, †Seoul National University, Korea

Abstract

Emerging non-volatile memory technologies as a disk
drive replacement raise some issues of software stack and
interfaces, which have not been considered in disk-based
storage systems. In this work, we present new coopera-
tive schemes including software and hardware to address
performance issues with deploying storage-class mem-
ory technologies as a storage device. First, we propose a
new polling scheme called dynamic interval polling to
avoid the unnecessary polls and reduce the burden on
storage system bus. Second, we propose a pipelined
execution between storage device and host OS called
pipelined post I/O processing. By extending vendor-
specific I/O interfaces between software and hardware,
we can improve the responsiveness of I/O requests with
no sacrifice of throughput.

1 Introduction

The widening performance gap between main memory
and storage devices over the past decades has limited
the ability to improve overall performance of large-scale,
high-performance computers. Several non-volatile mem-
ory technologies complement this performance gap be-
tween memory and storage. Deployment of storage-class
memory (SCM) as a disk drive replacement and a scal-
able main memory alternative requires analyzing its im-
pact on overall computer systems including the existing
software stack and interfaces.

Communicating with devices via polling is known
to be more efficient than interrupt-based approach in
the low-latency devices including storage-class mem-
ory (SCM) as well as high-speed network. When the
interrupt-based processing is used for the thousands of
packets or requests per second, the overall system per-
formance degrades significantly due to the interrupt over-
head. Spinning reduces this delay significantly by busy-
waiting rather than sleeping, which removes the context

switch overhead and the associated delay [1, 3, 12].
Several new issues which have not been considered be-

fore arise when applying polling-based approach to the
low-latency storage-class memory. The first thing is a
polling interval. At first sight, shorter polling interval
seems to improve the responsiveness. However, since de-
vice polling is a process which reads from I/O memory
register, this leads to data transfer between host memory
and the device register. Therefore, a short interval be-
tween polls imposes a heavy burden on the storage chan-
nel. Naive fixed interval polling can degrade I/O perfor-
mance resulting in poorer performance compared with
interrupt based approach. Another thing we consider is
a shortened gap between memory and a storage device.
Memory access time, which was a negligible fraction in
disk-based storage system, has become substantial in the
overall I/O performance for the low-latency SCM device
whose response time is only a few microseconds.

In this paper, we present our collaborative work in the
level of software and hardware to address some perfor-
mance issues with deploying the advanced memory tech-
nology as a storage device. First, we studied the rela-
tionship between the polling interval and the responsive-
ness on the high-performance storage channel like PCI-
Express. We propose a new polling scheme called dy-
namic interval polling, which adjusts the polling inter-
val dynamically based on the response time prediction of
the SCM device. By using dynamic interval polling, we
can avoid unnecessary polls and thus reduce the burden
on storage system bus.

Next, we reviewed the software storage stack consid-
ering the shortened gap of delay between memory and
the new storage device. In modern disk drives, it is
well-known that a request coalescing scheme can im-
prove the device throughput significantly. However, this
batch-style I/O degrades request latency due to the host-
device interfaces: A single completion ack via hard-
ware interrupt is given only after all merged requests are
completed. The coalesced signal also makes the mem-

ory operations for each completed request to be seri-
alized. Those memory operations include unmapping
DMA memory, updating memory to notify I/O comple-
tion, and freeing memory. We call those memory op-
erations as post-I/O processing. Compared to the low-
latency of the SCM devices, the serialized memory oper-
ation time becomes no longer a negligible amount.

To reduce the latency under the coalescing scheme
with little or no sacrifice of throughput, we propose
pipelined post I/O processing, which enables both an
I/O processing in storage device and the following post
memory operations in host OS to be executed simultane-
ously. For this, we propose a new I/O interfaces called
page-unit I/O completion acknowledgement. This en-
ables the device controller to notify an I/O completion
per page via a special I/O memory register rather than
sends an I/O completion event after all merged requests
are handled. Our polling-based device driver is also ex-
tended to monitor the completion of each page segment
and execute the memory operations for the page even be-
fore the I/O requests is completely serviced.

We evaluate I/O performance using our DRAM SSD
which emulates the next generation phase change mem-
ory. We run FIO benchmark under multi-threaded con-
figurations to evaluate the overall performance improve-
ments. The results show that the proposed solutions
improve IOPS about 20% for 4 KB block read, corre-
sponding to 50,000 IOPS. To evaluate the performance
gain on full workloads with realistic mixed I/O, we mea-
sure OLTP performance using BenchmarkSQL tool over
PostgreSQL database. Our approach increases mixed
read/write performance in terms of tpmC by 15% and
achieves much higher peak throughput at higher load.

As our contribution, we expect that new I/O interfaces
as well as the proposed software techniques will lead
to better design of future host controller interfaces and
drivers [6]. In the following section, we give a brief ex-
planation about the motivation for our work. Next, we
explain a dynamic interval polling technique. In section
4, we propose a pipelined post I/O processing scheme
using a page-unit I/O completion acknowledge as a new
block I/O interface. Performance evaluation is presented
in section 5.

2 Motivation

Deploying new memory technology as a storage device
involves new strategies of design for the software and I/O
interfaces. Communicating with low-latency devices via
polling is one of the strategies proven to be more effi-
cient than the existing interrupt-based approach. In this
section, we focus on new features of storage class mem-
ory different from disk-based storage.

One of major differences between SCM device and

disk storage is how to access the media to store and fetch
data. By the electrical signals similar to load and store
in main memory, data access in SCM does not involve
any physical movement in disk-based storage including
the head seeking and the platter rotating. Since data ac-
cess latency in SCM is 3-4 orders of magnitude less than
that in disk-based storage, storage using SCM can signif-
icantly narrow the performance gap with DRAM.

Another important feature of SCM is a predictability
of response time. Due to its mechanical nature, the hard
disk has a non-uniform access latency, which make it
hard to predict its response time precisely. On the con-
trary, SCM itself has a uniform access latency, which is
independent of access pattern [5]. There are some is-
sues related to predictability in SCM performance, which
arise from employing SCM as an I/O device; queue-
ing, buffering, overwriting, and array architecture [4].
Although these issues contribute unpredictability in the
delay, some new features on memory access can make
SCM more predictable storage device than others. For
example, in phase-change memory (PCM), a leading
candidate among SCM technologies as a disk drive re-
placement as well as a scalable DRAM alternative, the
memory element can be switched more quickly and at the
level of single bits without needing to first erase an en-
tire block of cells. Due to the fact that PCM allows over-
writing and requires no garbage collection, unlike flash
SSD, this allows for a much simpler wear-leveling tech-
niques, which can improve predictability in SCM perfor-
mance [9, 10].

Our analysis for SCM features raises some questions
to the existing storage system stack as follows: Could
we predict the completion events and avoid the unneces-
sary polling rather than by simply spinning? Would there
be any inefficient execution in software storage stack
which has a significant impact on I/O performance un-
der a shortened gap between memory and SCM device?
In next sections, we present our collaborative work in
the level of software and hardware to address these ques-
tions.

3 Dynamic Interval Polling

3.1 Fixed Interval Polling
Device polling is more efficient than interrupt in the low-
latency storage device like phase-change memory. When
applying polling-based approach to the low-latency de-
vice, we found that polling interval is directly related to
the response time of I/O requests. At first, we simply be-
lieved that the shorter polling interval would ensure the
lower response time. However, experimental result was
against our expectation as depicted in Fig 1. The main
reason is that device polling itself is a process which

2

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9 10

L
at

en
cy

 (
us

ec
)

Interval (usec)

fixed interval polling
interrupt

Figure 1: SCM device latency with increased polling in-
terval for 4 KB read request. We measured the latency
using our DRAM SSD which serves as a model of future
SCMs.

reads from I/O memory register. In Linux, for exam-
ple, this is done by ioread32() system call which incurs
DMA transfer from the device register to the host mem-
ory. Therefore, frequent polling may incur contention
with the transferred data between them. As a result, a
very short interval between polls imposes a heavy bur-
den on the storage channel. Naive fixed interval polling
can even degrade I/O performance resulting in inferior
performance compared with interrupt based approach as
shown in Fig. 1.

3.2 Dynamic Interval Polling using Re-
sponse Time Prediction

To address the problem of the fixed interval polling, we
propose a new polling scheme called dynamic interval
polling. By adjusting the intervals between polls, we re-
duce the unnecessary polling and avoid the channel con-
tention with the transferred data between host and device.
As a result, the device responsiveness can be improved
over the naive fixed interval polling.

To apply our polling scheme to an existing polling-
based software driver, we divided the working cycle of
the driver into two phases as follows. During an ini-
tial sampling phase, the driver runs in the fixed interval
polling mode; it measures the device response times and
classifies the measured times according to request type
and size. After the sampling phase, the driver runs in the
dynamic interval polling mode. According to the type
and size of the issued I/O request, the driver calculates
the predicted finish time and waits without polling un-
til the time has come. No context switch occurs during
polling.

To make this polling scheme feasible, it is crucial to
achieve a highly accurate prediction. For this, we use

Temporal merged
pages

t1 t2 t3 t4 t5 t6 t7 t8 t9

I/O Completion

Ack

Time

Temporal merged
pages

t1 t2 t3 t4 t5 t6 t7 t8 t9

Page-unit I/O

Completion Ack

Time

Software

driver

FPGA

Controller

Software

driver

FPGA

Controller

I/O Processing Post I/O Processing

Figure 2: The pipelined post I/O processing using page-
unit I/O completion ack

a nano-second resolution timer in modern Linux kernel,
which is used to both measure the delay and correct the
prediction error. We use a feedback loop-based polling
approach. If the estimated poll is earlier than the device
notification, we perform polls recursively with a very
short interval as much as a few dozens of nano-seconds
α . Then, we correct the estimated delay as much as the
margin of error. On the contrary, when the estimated poll
detects the I/O completion at a time, we decrease the es-
timation value as much as α .

4 Pipelined Post I/O Processing

We reviewed the existing software storage stack consid-
ering the shortened gap between memory and the SCM
device. Disk performance is measured by bandwidth and
access time. Device polling as new interfaces of new
storage device achieved a significant performance gain
in terms of the latency [12]. To improve the bandwidth,
we proposed new software merging scheme called tem-
poral merge in our previous work [13]. This combines
multiple block requests into one I/O request regardless of
their spatial adjacency in disk address space.

We found that temporal merge improves through-
put significantly within SCM device as the existing
back/front merging scheme within disk-based storages.
However, these I/O batching schemes limit the request
latency due to the interfaces between host and storage
device. To reduce the interrupt overhead, disk drive can
withhold the interrupt with the completed messages un-
til it gathers many of them to send at once [7]. Request
latency is increased as much as the additional delay in-
curred by waiting for the interrupt. Similarly, for the
temporally merged pages, a completion message is given
only after their I/O is completed.

Besides, the memory operations for each completed

3

Figure 3: Our DRAM-based SSD JetspeedTMhardware
used to emulate PCM device connected with PCI Express
Gen2 x4 channel

request are serialized after waiting for all merged re-
quests to be done. These memory operations include
freeing memory regions mapped for DMA transfer, up-
dating memory regions to notify I/O completion, and
freeing memory regions allocated for I/O and the coa-
lescing. We call these memory operations after I/O as a
post I/O processing. Due to the shortened performance
gap between memory and SCM device, the serialized
memory access time becomes no longer a negligible frac-
tion.

We present our cooperative work in the level of soft-
ware and SCM hardware called pipelined post I/O pro-
cessing. This allows the I/O processing in the device
and the post I/O processing in the host run in parallel.
As a result, this can reduce the latency of each request
for the batched I/O with no or little sacrifice of band-
width. To enable this pipelined execution, we propose
new I/O interfaces called page-unit I/O completion ac-
knowledge. This allows the device controller notify an
I/O completion per page rather than send an I/O com-
pletion event after all merged requests are handled. For
this, we extended our vendor-specific I/O interfaces and
added a special I/O memory register to support the page-
unit I/O completion acknowledge.

Fig. 2 exemplifies our scheme applied to handling
temporal merged requests. We can apply this scheme
to the general merging with spatial adjacency and the re-
quest queuing likewise. The two timelines show an I/O
completion model which signals when all page segments
are handled (the top timeline) and each page segment is
handled using the page-unit I/O completion ack (the bot-
tom timeline) respectively. Page 1 in the top spends as
much as (t5− t1) for its device latency, whereas the page
in the bottom spends only (t2− t1) for this. For all the
pages in the figure, we obtain the performance gain in
terms of the device latency as much as 6T if the I/O pro-
cessing time for a single page is T .

5 Performance Evaluation

We implemented our schemes in our vendor-specific
DRAM-based SSD as shown in Fig. 3 and device driver

 0

 50

 100

 150

 200

 250

 300

 350

 400

sequential
write

sequential
read

random
write

random
read

IO
PS

 (
x1

00
0)

fixed interval + serialized post I/O
dynamic interval + pipeline post I/O

Figure 4: Scaling of storage I/Os per second (IOPS) with
dynamic interval polling and pipelined post I/O process-
ing schemes. We run fio benchmark with 16 threads.

running on a Linux 2.6.32 kernel. To emulate the future
SCM storage device based on phase-change memory on
our DRAM SSD, we imposed delay time as much as the
performance gap between DRAM and PCM at the FPGA
level as described in [8]. PCM overwrite (RESET of the
cell is required before SET) is distinguished from clean
write through a bitmap maintained in a device driver and
PCM cell state is propagated via our customized host-
device interfaces. We used PCI Express Gen2 x4 as our
storage channel. Other issues on PCM including array
architecture, wearing-out effect and queueing with a spe-
cific priority rule (we used FIFO command queue) are
beyond of this paper. The target machine has two Xeon
E5630 2.53 GHz quad core CPUs (total 16 cores) and 16
GB of RAM as it main memory.

We used the FIO benchmark to measure the perfor-
mance impact of our schemes in terms of I/Os per sec-
ond (IOPS). We ran the benchmark performing sequen-
tial read/write, random read/write under 16 threads and
synchronous I/O configurations. Figure 4 shows the fio
results in terms of IOPS. We compare our new schemes,
dynamic interval polling and pipelined post I/O process-
ing, to the existing fixed interval polling and serialized
post I/O processing. Temporal merging approach is ap-
plied to both cases. We set one microsecond as its polling
interval in the fixed interval polling scheme; The best
performance was obtained by this polling interval. Both
schemes we propose result in higher IOPS than the ex-
isting scheme as much as 10% in sequential and ran-
dom write cases, corresponding to about 20,000 IOPS.
The graph shows that the performance gain is doubled
in read cases, corresponding to about 50,000 IOPS. The
different rates of improvement results from that freeing
memory regions mapped for DMA transfer and allocated
for temporal merge in our device driver spend more CPU
time handling read requests than write requests. In or-

4

 0

 10000

 20000

 30000

 40000

 50000

4 8 16 32

tp
m

C

the number of terminals

fixed interval + serialized post I/O
dynamic interval + pipeline post I/O

Figure 5: BenchmarkSQL OLTP performance result.

der to evaluate the effect of the page-unit I/O completion
ack on bandwidth, we measure the number of pages in
a coalesced I/O request. The number of those pages is
increased from 6.4 to 7.5 in average. Our experimental
results show our schemes improve the responsiveness of
I/O requests and device throughput totally.

We used BenchmarkSQL tool, a TPC-C like bench-
mark, to evaluate the performance gain of our approach
on full workloads with more realistic mixed I/O. We
ran the benchmark on PostgreSQL database and utilized
Linux EXT3 as its underlying filesystem. The graph in
Fig. 5 shows the scaled tpmC with the increasing num-
ber of terminals. We find that our solutions improves the
overall performance by 15% and achieves much higher
peak throughput (up to 43,000 tpmC) at more higher
load. However, there is no performance benefit at lower
load (four terminals in the graph) due to little or no
chance of temporal merge. The improved throughput
on highly parallel workloads is a result of both the in-
creased number of temporally coalesced I/O requests by
pipelined memory operations and the shortened response
time by the new polling scheme.

6 Conclusion and Future work

In this paper, our cooperative work explores software
storage stack optimizations and new I/O interfaces in
the ultra-low latency device using next-generation NVM
technologies. Our conclusion is that simple changes in
the existing storage software stack and I/O interfaces
provide significant performance gain in terms of latency
as well as throughput. Therefore, for system researchers,
a deliberate review of the overall storage subsystem is
required over the emerging SCM devices.

Although our implementations are based on the exist-
ing block layer for practical use, our work is indepen-
dent of this layer and thus can be applied to various de-

signs and implementations which focus on eliminating
software stack overhead [1,3,11,12]. We will extend our
work from block layer interfaces to kernel-bypassing in-
terfaces considering the byte-addressable features of the
future SCM devices [4]. Finally, we will also keep ex-
tending the I/O interfaces and the specialized function-
ality in hardware considering not only performance but
also data manipulation like content-based chunking [2].

References
[1] AMEEN, A., CAULFIELD, ADRIAN M., MOLLOV, T. I.,

GUPTA, R. K., AND SWANSON, S. Onyx: A protoype phase-
change memory storage array. In Proceedings of the 3rd USENIX
HotStorage’11 (2011), pp. 1–5.

[2] BHATOTIA, P., RODRIGUES, R., AND VERMA, A. Shredder:
Gpu-accelerated incremental storage and computation. In Pro-
ceedings of the 10th USENIX conference on File and Storage
Technologies (Berkeley, CA, USA, 2012), FAST’12, USENIX
Association, pp. 14–14.

[3] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I.,
GUPTA, R. K., AND SWANSON, S. Moneta: A high-
performance storage array architecture for next-generation, non-
volatile memories. In Proceedings of the 2010 43rd Annual
IEEE/ACM MICRO’10 (2010), pp. 385–395.

[4] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better i/o through byte-
addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles (New
York, NY, USA, 2009), SOSP ’09, ACM, pp. 133–146.

[5] FREITAS, R. F., AND WILCKE, W. W. Storage-class memory:
the next storage system technology. IBM J. Res. Dev. 52, 4 (July
2008), 439–447.

[6] HUFFMAN, A. Nvm express revision 1.0c. Tech. rep., Intel Cor-
poration, 2012.

[7] INTEL, AND SEAGATE. Serial ata native command queueing.
Joint whitepaper, Intel Corp. and Seagate Technology, 2003.

[8] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Architect-
ing phase change memory as a scalable dram alternative. ISCA
’09, pp. 2–13.

[9] QURESHI, M. K., SRINIVASAN, V., AND RIVERS, J. A. Scal-
able high performance main memory system using phase-change
memory technology. In Proceedings of the 36th annual ISCA’09
(2009), pp. 24–33.

[10] SEONG, N. H., WOO, D. H., AND LEE, H.-H. S. Secu-
rity refresh: prevent malicious wear-out and increase durability
for phase-change memory with dynamically randomized address
mapping. In Proceedings of the 37th annual international sym-
posium on Computer architecture (New York, NY, USA, 2010),
ISCA ’10, ACM, pp. 383–394.

[11] SEPPANEN, E., O’KEEFE, M., AND LILJA, D. High perfor-
mance solid state storage under linux. In Mass Storage Systems
and Technologies (MSST’10), pp. 1 –12.

[12] YANG, J., MINTURN, D. B., AND HADY, F. When poll is better
than interrupt. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies, USENIX Association.

[13] YU, Y. J., SHIN, D. I., SHIN, W., SONG, N. Y., EOM, H., AND
YEOM, H. Y. Exploiting peak device throughput from random
access workload. In Proceedings of the 4th USENIX conference
on Hot Topics in Storage and File Systems (Berkeley, CA, USA,
2012), HotStorage’12, USENIX Association, pp. 7–7.

5

