
Enabling Automated, Rich, and Versatile Data Management
for Android Apps with BlueMountain

Sharath Chandrashekhara, Kyle Marcus, Rakesh G. M. Subramanya, Hrishikesh S. Karve,
Karthik Dantu, Steven Y. Ko

Department of Computer Science and Engineering
University at Buffalo, The State University of New York

Email: {sc296, kmarcus2, rakeshgu, hkarve, kdantu, stevko}@buffalo.edu

Abstract
Today’s mobile apps often leverage cloud services to
manage their own data as well as user data, enabling
many desired features such as backup and sharing.
However, this comes at a cost; developers have to manu-
ally craft their logic and potentially repeat a similar pro-
cess for different cloud providers. In addition, users are
restricted to the design choices made by developers; for
example, once a developer releases an app that uses a
particular cloud service, it is impossible for a user to
later customize the app and choose a different service.

In this paper, we explore the design space of an app
instrumentation tool that automatically integrates cloud
storage services for Android apps. Our goal is to al-
low developers to treat all storage operations as local
operations, and automatically enable cloud features cus-
tomized for individual needs of users and developers.
We discuss various scenarios that can benefit from such
an automated tool, challenges associated with the devel-
opment of it, and our ideas to address these challenges.

1 Introduction
A unique aspect of current mobile app development is
integrated data management which leverages both local
and cloud storage. This integration enables rich forms
of interaction such as backup and sharing across various
devices belonging to one or more users. However, this
richness comes at a cost; developers are presented with
several design choices such as which cloud providers to
use and what kinds of consistency to guarantee. De-
velopers also need to decide which of these decisions
should be configurable by their users, and the users in
turn are constrained by the decisions of the developers.
These challenges are mostly tangential to app logic, and
developers need to repeat a similar process for differ-
ent apps, taking precious developer resources away from
core app development.

Further, cloud storage services provide their own
APIs that are not compatible with each other in their in-
terfaces and semantics. As a result, choosing a particular
cloud service binds an app and its data interaction to the

semantics of the API provided by the cloud service. In
addition, if a developer wants to leverage multiple cloud
services or migrate from one to another, she needs to
learn and understand the semantics for each cloud ser-
vice provider that she wants to leverage. This might
involve reasoning about different consistency models
offered by various providers and manually tailoring to
them, which is a challenging process.

In order to address these problems, we propose to take
the burden off app developers; we aim to reduce the de-
velopment effort involved in learning, customizing, and
adapting to different semantics and interfaces of various
cloud providers, and allow developers to focus instead
on their app logic. Our key idea is automatically virtu-
alizing storage operations in a mobile app. We perform
this by statically analyzing an app binary, and augment-
ing the storage calls with richer forms of data interac-
tion. Ultimately, we aim to allow developers to treat all
storage operations as local storage operations, and not
concern themselves with any particular cloud service,
including APIs and semantics.

To achieve our goal, we are developing BlueMoun-
tain, a framework that automatically integrates cloud
storage services with Android apps. BlueMountain
decompiles an Android app, correctly identifies all
storage-related code points to instrument, and enables
cloud service integration automatically. This instru-
mentation has several interesting challenges to address,
which we discuss in this paper.

In the remainder of this paper, we first discuss a few
scenarios that can benefit from our approach (Section 2).
We then discuss the challenges and ideas for BlueMoun-
tain (Section 3) as well as our prototype (Section 4). We
describe the related work in Section 5. Lastly, we dis-
cuss our future work and conclusions in Section 6.

2 Motivation
As mentioned in Section 1, our key insight into enabling
richer data management for mobile apps is storage vir-
tualization. In this section, we will motivate its bene-
fits through specific use cases where such virtualization
would greatly simplify mobile app development.



2.1 Use Case 1: Private Corporate Cloud

Bob, an Android app developer, has built Awe-
someNotes, a corporate note taking app. Bob under-
stands the need of reliability for this app and spends
much development time to make sure AwesomeNotes
backs up all user data on a server. Paranoid Inc. and
Stealthy Inc. are two big corporate houses who are inter-
ested in using AwesomeNotes but are concerned about
their proprietary notes being transferred out to the pub-
lic Internet and stored on a third-party server. Paranoid
Inc. and Stealthy Inc. have their own cloud where they
prefer to securely store their data. So they ask Bob for
a custom version of AwesomeNotes that backs up data
to their private cloud. This requires Bob to create and
maintain different apps for each corporate house, and
spend time to understand custom settings for each po-
tential client. Similarly, Paranoid Inc. and Stealthy Inc.
have to do this for each and every app they are using.
They have to share their cloud backup APIs and ask the
developers to design customized apps for their settings.

Our storage virtualization approach could greatly
simplify this customization process. For example, it
could allow Bob to write his app as if it only uses local
storage; it could then take the app binary and automati-
cally instrument the app so that it could use a cloud ser-
vice. This automation could adapt to different (private)
cloud services without requiring Bob to go through the
same process of manual customization repeatedly.

This automation could also allow Bob to easily add
new cloud storage features. For example, suppose Bob
wants to add a new feature in AwesomeNotes that would
allow people to collaborate and edit notes simultane-
ously. Our automated storage virtualization could make
this process as easy as running the app through our tool
once again with a different set of configuration parame-
ters, specifying various requirements for the new feature
such as cloud providers to use and consistency guaran-
tees.

2.2 Use Case 2: Alternative to Cloud APIs

EasyBox is a new cloud storage company. Like all ma-
jor cloud storage companies, EasyBox is working on re-
leasing its API libraries for different platforms so that
app developers can use them as a backup option in mo-
bile apps. These API libraries provide basic support for
uploading and downloading files, leaving all the logic of
dealing with backup logic (e.g., diffs, consistency guar-
antees) to app developers.

EasyBox could benefit from our automated storage
virtualization approach; they could release an EasyBox
compiler instead of API libraries, i.e., instead of ask-
ing developers to download and use their API libraries,
EasyBox could simply provide a Web-based tool that
automatically instruments each app to use their cloud

service. Bob the Android developer now could develop
an app using just local storage and upload the binary
to EasyBox, which would return a new version of the
app capable of using EasyBox as a backup service. This
would increase his productivity significantly.

2.3 Use Case 3: Closed Group Sharing

Paranoid Inc., the large company mentioned earlier, is
using an internal app throughout the company called
MeetingScheduler. Marvin, a neurotic manager, has cer-
tain preferences for the app, such as the set of resources
to use, the maximum time a meeting should be held,
specific dietary restrictions for food orders, and certain
rooms in which he would like his team meetings to be
held. MeetingScheduler allows its users to set these
preferences inside the app and Marvin wants everyone
in his group to use the same settings that he uses. Be-
ing fickle minded, Marvin changes these settings often,
causing everyone in his group to also change their set-
tings frequently. To simplify this process, he asks the
developers of MeetingScheduler to design a customized
version so that all the settings can be shared among a
closed group of users. Bob the application developer
spends much time developing customized code for the
requirements of Marvin.

This scenario could benefit from our automated stor-
age virtualization. Instead of asking Bob to redesign the
app, Marvin could use our tool to generate a customized
version of MeetingScheduler with a cloud sharing fea-
ture. With this group sharing feature of the app, Mar-
vin could easily have all his group members use his set-
tings. Everyone would install the instrumented app and
sync from Marvin’s settings. Whenever Marvin changes
the settings, the group members would automatically get
their settings updated. Sharing and security would be
completely handled by the automated instrumentation.

3 BlueMountain Design
The uses cases described above show the utility of au-
tomated storage virtualization. Unlike libraries that de-
velopers need to use manually, automated instrumenta-
tion can potentially reduce the burden of development
and even allow end users to modify and enhance down-
loaded apps.

We are currently exploring this automated approach
with a framework called BlueMountain. Below, we
present the overall architecture and the research chal-
lenges for BlueMountain. Although our discussion in
this section is mostly centered around cloud storage ser-
vices, we envision that we can apply similar concepts in
a hybrid cloud-peer setting.

3.1 BlueMountain Overview

Figure 1 shows the overall architecture of BlueMoun-
tain with two main components—BlueMountain com-

2



Figure 1: BlueMountain System Overview

piler and BlueMountain manager. The BlueMountain
compiler takes an Android app that wants storage virtu-
alization and a configuration file that describes the cloud
service API of the provider of choice, e.g., DropBox and
Google Drive. It then uses static analysis to intercept
storage calls at the bytecode-level and customizes their
functionality. The BlueMountain manager is an app in-
stalled on a user’s mobile device 1 that manages user
preferences, settings, and runtime configurations.

In order to concretely realize this architecture, there
are a number of questions we need to answer. First, we
need to identify the set of storage operations available
on Android, so we can enumerate all possible ways that
an app can store data. Second, given all the storage oper-
ations, we need a mechanism to analyze and instrument
an app binary for storage call interception and virtual-
ization. Third, we need to match the storage semantics
of an app to the storage semantics of the cloud services
the app wants to use. This requires us to bridge the gap
(if any) between (i) the local Android storage interface
and cloud providers’ interfaces, and (ii) the storage se-
mantics of an app and the semantics provided by cloud
services. In the rest of this section, we detail each ques-
tion and report our findings so far.

3.2 Android Storage Options and APIs

We first need to identify the set of storage operations in
Android, which will allow us to correctly identify which
operations we need to intercept with app instrumenta-
tion. We answer this question by examining Android
APIs.
Storage Access on Android: Unlike desktop apps, An-
droid apps use storage in a more managed fashion. Ev-
ery app has its own storage sandbox, i.e., specific loca-
tions for read/write operations controlled by Linux file
permissions. In addition, Android provides APIs such
as Activity.getDir() to access these locations.
These APIs abstract away the detail of where files are
stored in the filesystem, which ensures portability across

1BlueMountain manager can also be injected into the app itself
without requiring a user to install an app—an alternative architecture
we are exploring.

devices and OS versions. The use of path strings to ac-
cess storage is likely to only work on a specific platform,
hence discouraged.
Storage on Android: Android provide four storage op-
tions for an app: (i) files, (ii) SQLite database, (iii)
SharedPreferences, a key-value store commonly
used for storing user settings, and (iv) ContentPro-
vider, a storage interface that an app can implement
which is commonly used to provide structured data to
other apps, e.g., contact information. All of these op-
tions are well-documented and we can easily enumerate
the list of API calls available for these options using the
Android documentation [1].

These two characteristics (managed storage access
and well-documented storage options) give us the op-
portunity to tap into the storage operations and virtual-
ize them. The next challenge is to instrument an app
to virtualize storage calls, and this is more challenging
than simply finding and replacing storage method calls
as we discuss below.

3.3 App Instrumentation

Identifying all possible storage options and their APIs
gives us a good starting point for storage call virtualiza-
tion. However, there are additional questions we need to
answer. First, we need to be able to instrument an An-
droid app binary without requiring its source code. Sec-
ond, we need to correctly intercept storage calls when
an app makes the calls. For the first question, there are
various off-the-shelf Java/Android instrumentation tools
available that we can leverage, among which we have
chosen to use Soot [8]. Soot allows us to decompile
an Android app, and statically analyze the decompiled
source with its intermediate representation called Jim-
ple [9].

At first glance, it may seem that all that we need to
do is a text search to identify all call sites where stor-
age APIs are used, and rewrite those call sites to vir-
tualize the storage operations. However, it turns out
that it is much more involved than that. For exam-
ple, consider the code snippet shown in Figure 2. In
lines 1 to 6, an app class MyFileOutputStream ex-
tends a Java library class FileOutputStream and
overrides write(). In lines 10 to 12, main()
creates a MyFileOutputStream object and passes
it to myWrite(), at which point type casting hap-
pens to FileOutputStream. This means that when
write() is called in line 17, it is called with the type
FileOutputStream, but the actual object is of type
MyFileOutputStream.

If we want to intercept FileOutputStream-
.write(), a simple search for the type FileOut-
putStream and the method write() will determine
that we need to intercept the call site at line 17. How-

3



1 public class MyFileOutputStream
2 extends FileOutputStream {
3 public int write(Bytes b) {
4 // Overriding
5 }
6 }
7 public class Main {
8 public static void main(String args[]) {
9 Bytes b = 10;

10 MyFileOutputStream obj1 =
11 new MyFileOutputStream();
12 myWrite(obj, b);
13 }
14

15 public static void myWrite
16 (FileOutputStream obj, Bytes b) {
17 obj.write(b);
18 }
19 }

Figure 2: Call Interception Example

ever, as the example demonstrates, the actual type can
be different, e.g., MyFileOutputStream, which is
not what we want to intercept. Another simple ap-
proach that one can easily perceive is to rewrite File-
OutputStream itself and put interception code in
its write(). However, modifying FileOutput-
Stream would require us to modify system libraries
that are part of the Android platform. Unless we could
redistribute the Android platform, it would be impossi-
ble for us to deploy our interception code.

In order to address this problem, we are exploring
class wrapping as a solution. In our approach, we gen-
erate a wrapper class for each storage class we want to
intercept and modify the original type to its correspond-
ing wrapper type. While this gives us an opportunity
to correctly intercept storage API calls, there are further
challenges to overcome due to intricate interplays be-
tween generated wrappers and the rest of the code. This
is mainly caused by many language features offered by
Java such as synchronization, class loading, and native
code integration (JNI). We are currently identifying and
addressing these challenges in our full implementation.

3.4 Bridging the Gap: Interfaces and Semantics

The last challenge we need to address is bridging
the gap between local and remote storage operations.
This comes in two flavors: (i) interface mismatch—
translating local storage operations into operations that
perform the same way on a hybrid local/cloud storage,
and (ii) semantics mismatch— providing the same se-
mantics of local storage (e.g., consistency), while using
cloud services. This, in particular the second mismatch,
is quite challenging to deal with and in some cases, may
not even be possible to address. As a first step, we dis-
cuss the interfaces provided by current cloud services
and how we are addressing specific mismatches.
Cloud Storage APIs: Generally, all the major cloud
storage providers (e.g., Google Drive and DropBox)
use an object store model, i.e., they provide the abil-

ity to upload and download files through a Web-based
CRUD interface. In addition, each cloud service
provides alternative interfaces for development conve-
nience. These alternative interfaces internally leverage
Web-based CRUD APIs and provide advanced features.
For example, DropBox provides Sync API that resem-
bles a local filesystem interface, which internally syncs
data to the DropBox cloud. DropBox also has DataStore
API that provides a convenient way to store structured
data (e.g., a table). This DataStore API automatically
performs conflict resolution as well. Similarly, Google’s
RealTime API (though only available as a JavaScript li-
brary) offers a way to use objects of various granularities
(e.g., strings and lists) to sync across multiple clients.

Interface Mismatch: The above discussion about cloud
provider interfaces reveals three facts: (i) the common
denominator for all cloud providers is Web-based ba-
sic CRUD APIs, (ii) there is a diverse set of interfaces
that they provide, and (iii) CRUD APIs only assume an
object-based access model. Due to first two facts, we
believe that using the Web-based basic CRUD APIs is a
better choice for an automated tool like BlueMountain.
It will make the job of customizing cloud storage ac-
cess easier, since it will mostly be mechanical. On the
other hand, if we were to use the alternative APIs such
as DropBox DataStore API, it would be difficult for us
to make it adaptable across different providers.

The last fact poses a challenge for us since we need to
deal with various granularities of objects. As discussed
earlier, Android provides four storage options, and these
options operate at different object granularities. For
example, Android stores an entire SQLite database in-
stance as a single file, but apps access it at a much finer
granularity, e.g., individual rows and columns. This
means that a naive way of using a CRUD API, i.e., up-
dating an entire file whenever there is any change, might
not be the best way to deal with Android storage options.

Semantics Mismatch: In addition to the interfaces,
there is a potential mismatch between app consistency
requirements and cloud providers’ guarantees. This
stems from the fact that all cloud services only provide
eventual consistency through their CRUD interfaces.
This is true even with private cloud offerings such as
OpenStack [4]. While this model works well in most of
the cases, it is not suitable for all apps. For instance, cre-
ating a collaborative mobile app requires strong consis-
tency guarantees with automatic conflict resolution. Us-
ing alternative APIs might help; however, cloud service
providers have completely different semantics with their
alternative APIs, making it difficult for us to leverage. In
order to address this, we are exploring a hybrid cloud-
peer approach, where we leverage a cloud service both

4



as a stable storage and a message rendezvous point 2, al-
lowing clients to talk with each other to provide strong
consistency guarantees. Additionally, we plan to use
an instrumentation-time configuration file that specifies
various parameters. This file would contain parameters
such as the cloud service to use (e.g., DropBox), the de-
sired consistency model (e.g., near-real-time), etc.

4 Preliminary Prototype and Evaluation
We have a preliminary prototype of BlueMountain with
an ability to automatically create a backup-aware ver-
sion of an Android app. Our prototype implements
search-and-replace instrumentation, hence limited in
terms of instrumentation correctness.

To test our implementation, we created a sample An-
droid app similar to the MeetingScheduler app men-
tioned in Section 2.3. Our prototype instruments the app
to back up all the app data including the settings of the
app to DropBox. It also enables the app to restore ev-
erything from DropBox at installation time either on the
same device (a re-installation) or a different device (a
fresh installation and re-installations afterwards).

With this instrumentation, we have conducted some
preliminary experiments. From a fresh installation,
starting the app takes 0.17s on average without instru-
mentation, and 0.67s on average with instrumentation.
This extra latency comes mostly from our injected code
that checks if there is any data to restore from DropBox.

After a re-installation, data gets restored at startup,
and it takes 1.65s with a few KBs of data to restore.
The extra latency comes from data restoration, and it
will depend on the size of the data to restore. These
results show that the instrumentation itself will not add
much overhead. Rather, most of the overhead will stem
from the way we interact with cloud services, particu-
larly when stronger synchronization is required.

5 Related work
There is no directly related work on automated tools
for customization and adaptation. However, previous
work has tackled various challenges with mobile de-
vices accessing cloud services. Procrastinator [7], de-
veloped for Windows phones, analyzes and rewrites app
binaries to optimize caching and reduce network traffic.
Viewbox [10] and Simba [5] both deal with providing
fault tolerance and consistency guarantees for data com-
munication between mobile devices and cloud services.
Viewbox uses checksums to provide fault tolerance and
syncs only consistent views of local data. Simba pro-
vides consistency guarantees by providing programmers
with a high-level local programming abstraction unify-
ing tabular and object data. This provides strong con-

2In a mobile environment, all devices are behind firewalls, which
makes it difficult to directly communicate with each other.

sistency guarantees under all failure conditions. Cim-
biosys [6] deals with content sharing between mobile
devices and cloud services. It has an eventual consis-
tency model where data is updated when a connection
exists between a device and a cloud service. Apache
Cloudlib [2] is a Python library that provides a unified
API for interacting with many of the popular cloud ser-
vice providers. CloudRail [3] is a startup which is creat-
ing a universal cloud API. With this API, programmers
have access to all popular cloud service providers and
they extend this advantage to the users.

6 Conclusion and Discussions
In this paper, we have argued that an instrumentation
tool may enable mobile apps to access cloud storage
services automatically. By separating data management
from app logic, we believe the process of app develop-
ment will be easier and faster. We are currently develop-
ing BlueMountain, a prototype tool that aims to demon-
strate the power of automated storage virtualization.

Our future work includes, (i) concretely exploring
consistency and interface mismatch problems, (ii) ana-
lyzing apps in the Google Play Store to identify a subset
of apps that are most likely to benefit from BlueMoun-
tain, and (iii) exploring the possibility of automatically
adapting an app developed for one cloud service to use
a different cloud service.

Acknowledgments
This work has been supported in part by an NSF CA-
REER award, CNS-1350883.

References
[1] Android Documentation. http://developer.android.

com/.
[2] Apache Libcloud. http://libcloud.apache.org.
[3] Cloud Rail. http://cloudrail.com/.
[4] OpenStack Swift. https://swiftstack.com/

openstack-swift/.
[5] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Reliable,

consistent, and efficient data sync for mobile apps. In FAST’15.
USENIX Association, Feb. 2015.

[6] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
M. Walraed-Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat.
Cimbiosys: A platform for content-based partial replication. In
NSDI’09. USENIX Association, 2009.

[7] L. Ravindranath, S. Agarwal, J. Padhye, and C. Riederer. Pro-
crastinator: Pacing mobile apps usage of the network. In Proc.
ACM MobiSys, 2014.

[8] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a java bytecode optimization framework.
In CASCON’99. IBM Press, 1999.

[9] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java byte-
code for analyses and transformations. 1998.

[10] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Viewbox: Integrating local file systems with cloud
storage services. In FAST’14. USENIX, 2014.

5


