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Abstract
We propose a new point in the design space of ver-

sioning and provenance-aware file systems in which the
entire operating system, not just the file system, supports
such functionality. We leverage deterministic record-
and-replay to substitute computation for data. This
leads to a new file system design where the log of non-
deterministic inputs, not file data, is the fundamental unit
of persistent storage. We outline a distributed storage
system design based on these principles and describe the
challenges we foresee for achieving our vision.

1 Introduction
Two important goals of recent file system research and

commercial product development are retention of past
state (e.g., versioning file systems) and interconnecting
file data (e.g., by storing provenance information).

Past state is typically retained by efficiently stor-
ing checkpoints of file information; systems that pro-
vide this capability include Elephant[21], WAFL[10],
Wayback[24], and Ori[12]. Versioning file systems typ-
ically retain checkpoints of file state at specific intervals
(e.g., on operations such as file close, at specific time
intervals, or as designated by an administrator). There
is a fundamental tradeoff in choosing the checkpoint
frequency: more frequent checkpoints increase storage
costs, but less frequent checkpoints limit the data that
can be recalled.

Connections between file data may include temporal
relationships [22] or provenance [14]. The fundamental
tradeoff in such systems is the detail of connection in-
formation: more detail increases storage costs, but less
detail limits what information can be recalled about con-
nections and provenance during future queries.

These systems have explored the design space where
state retention and provenance are solely or mostly the
responsibility of the file system. Recently, we proposed
and prototyped the concept of an eidetic system [6], in
which the entire operating system is responsible for pro-
viding similar functionality. An eidetic system can recall
any past user-level state of the computer system, includ-
ing file data, system inputs and outputs, and transient
process state (address space and register values). Fur-
ther, it can reason about the provenance of that state at
byte granularity using dynamic information flow track-

ing to understand what past data and computation af-
fected that state and what future data and computation
was in turn influenced by the state in question. These
properties are a superset of those provided by versioning
and provenance-aware storage systems.

Whereas our prototype considered only local storage
and grafted eidetic support onto an existing file system,
this paper explores a clean-sheet design for a distributed
eidetic file system. We specifically consider the case of a
small number of personal devices and cloud servers co-
operating to provide the eidetic property within the con-
text of a distributed file system. In one sense, we are
clearly choosing extreme endpoints for the tradeoffs in
the first two paragraphs. Choosing those endpoints frees
us to explore radically new design choices for structur-
ing distributed file systems. For instance, one surprising
result is that the fundamental unit of data retention be-
comes the log of non-deterministic inputs rather than the
actual file data.

An eidetic system uses deterministic record-and-
replay [8] to regenerate process state. This is a DVR-like
capability in which the execution of one or more pro-
cesses can be recorded and precisely replayed at any time
in the future. Deterministic record-and-replay is based
on the observation that most of a computer system’s ex-
ecution is deterministic; thus, if the system records the
value of non-deterministic events such as the results of
system calls and thread scheduling decisions and sup-
plies the same values during re-execution, it can guar-
antee that the replay executes the same sequence of in-
structions and generates the same outputs.

Thus, an eidetic system can substitute computation for
data. Rather than store a checkpoint for a given appli-
cation or file system state, the system can regenerate the
state by re-executing the computation that produced that
state. On the other hand, it is not practical to substitute
data for computation; having two checkpoints of file sys-
tem or application state reveals little about the computa-
tion that transformed the first state into the second.

The logical outcome of this observation is that the logs
of non-deterministic operations, not file data, are the fun-
damental unit of persistent storage in an eidetic file sys-
tem. File system data can be regenerated by replaying
some subset of the logs, while it is not usually possible
to infer the logs of non-determinism or resulting com-



putation from file system snapshots of any granularity.
Of course, storing file system state is necessary for ac-
ceptable performance; one would not want to reproduce
all past computations simply to read the current value
from a file. The difference is that we can regard all file
data, directory information, and metadata as cached val-
ues which can be discarded and regenerated on demand.

Moving from a checkpoint-based design to a log-
based one presents several opportunities for optimiza-
tion. A distributed file system can choose to transmit
or store a log of non-deterministic operations in lieu of
the data produced by those operations. It can reduce re-
source usage by avoiding regenerating file system state
until data is actually read. It can deduplicate the logs
of non-determinism to reduce storage costs for appli-
cation executions with similar actions. In this rest of
the paper, we outline one possible design for an eide-
tic file system and describe an agenda for exploring such
optimizations. It is our hypothesis that eidetic systems
will prove more effective at realizing the goals of state
and provenance retention than prior file-system-only so-
lutions, while achieving equal or reduced resource costs
than some systems that provide only a subset of these
properties.

2 Design goals
We first list the design goals for an eidetic distributed

file system. Most importantly, it should maintain the
eidetic properties of recording all state and provenance
across servers and mobile devices. This means that it
must persistently store the logs of non-determinism for
all processes executed on those devices. To recover
provenance, it must also store the linkage between bytes
written by one process and bytes read by another; e.g.,
which process wrote the bytes read from a file or socket.

Next, it should support an eventual consistency model
appropriate for mobile devices that are intermittently
connected and potentially unreliable. We have targeted
the Coda weakly-connected consistency model [13] in
which cloud server(s) host the first-class replica and
clients host second-class replicas. Client updates are
aggressively pushed to the server, which reintegrate
changes with the complete first-class replica of file sys-
tem state. Once the server accepts an update, other
clients can retrieve the data even if the originating client
is lost or unavailable.

Our final goal is to minimize resource usage while pro-
viding acceptable performance. Resources consumed by
our system include storage, network bandwidth, compu-
tation cycles, and energy for both clients and servers.
Since eidetic systems allow some resources to be traded
for others (e.g., we can sometimes reduce bandwidth by
replaying a computation to regenerate data rather than
transmitting files over the network), we will need to de-

Figure 1: System architecture

velop methods to compare usage of different resources.

3 Designing a distributed eidetic file system

3.1 Architecture
Figure 1 shows the types of data that a distributed ei-

detic file system should store. The fundamental storage
type is a log of non-deterministic operations. Each log
contains the results of system calls, timing and value of
signals, and order of synchronization operations (e.g.,
lock acquisition and atomic instructions). This is suffi-
cient to guarantee deterministic replay of race-free pro-
cesses or groups of processes; we discuss handling data
races in Section 4. The storage utilization of such logs is
reasonable. In an approximately one-month deployment
of eidetic systems on our workstations [6], we found
that, after considerable optimization, the logs for all user-
level processes consumed less that 2.6 GB of storage per
workstation per day, so a 4 TB hard drive could store
over four years of data. The distributed file system stores
the logs of all user-level processes, assigning each a
globally-unique log identifier. In order to support data
provenance, each log operation that reads data produced
by another process (e.g., via a file, socket, or other form
of IPC) provides the log id(s) and operation(s) within
those logs that produced the data. This information pro-
vides a causal ordering across log operations.

Replaying a log deterministically regenerates the out-
puts of the recorded process(es). This leads to the fol-
lowing invariant:

File Safety Invariant: File system data is persisted as
soon as all logged non-deterministic inputs that causally
precede the operations that output that data have been
made durable.
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This observation is similar to the durability property of
committing operations to a file system journal. However,
reading data using only logs of non-determinism would
be horribly inefficient since each read operation would
require reproducing the computation that wrote the data.
Thus, the file system should also store the values of data
and metadata for current files and directories (in much
the same way that a journaling file system stores the cur-
rent file system state in addition to the journal). However,
the collection of such objects can be treated as a cache;
we can delete values that we expect to not read in the
future and for which the regeneration cost is trivial.

Our logs of non-determinism record the results of all
system calls. This means that reads of file data can con-
stitute a substantial portion of our log. However, many
operations read the same data. In our prototype, we re-
duced log size with a read-after-write cache that holds
past file versions. Read operations in the logs refer to
the file version in the cache by reference, reducing stor-
age utilization when the same data is read multiple times.
If the desired file version is not in the cache, then the
processes that wrote the desired data can be replayed
to reproduce the needed values. In our prototype [6],
we found that the RAW cache reduced log sizes from
4–97% (average 46%) across a wide range of applica-
tions. We could extend the RAW cache to also include
file system metadata (e.g., directories and attributes) but
the potential gains appear to be minimal. Analyzing ap-
proximately one month worth of logs from that prototype
(30 GB of data), we found that such a cache would only
reduce log sizes by an additional 2.7%.

An eidetic system requires one additional storage type
for efficiency: a filemap that relates which log operations
wrote different byte ranges of a file. Write operations
update the filemap and read operations copy the relevant
information into the log of the reading process for the
set of bytes returned. This supports provenance queries
and also allows the eidetic file system to determine which
logs to replay in the event that needed file data is not
cached. Filemaps can always be regenerated from logs
and are cached on the server and clients in the same way
as directories and file metadata.

Our distributed file system uses a Coda-like consis-
tency model in which only the server hosts a complete
first-class replica of file system data. This means that the
server is responsible for storing all logs generated by any
file system client. Clients store a subset of those logs. As
a client executes applications, it asynchronously pushes
the logs of non-determinism to the server in a manner
consistent with the causal order of log operations. Thus,
when the server acknowledges that it has received and
stored a log range, all data written by operations in that
range are durable. Since clients may be slow or tem-
porarily disconnected, they should persist log data to lo-

cal storage until the server acknowledges receipt; after
that point, they are free to delete the logs.

We plan to use callbacks to maintain cache consis-
tency. Clients will register callbacks when they cache
logs, files, metadata, and filemaps; the server will send
callback breaks when it persists a log that modifies any
of these objects. Upon receipt of a callback break, the
client will flush the specified object from its cache and
obtain a new version on demand. Since we use optimistic
concurrency, two clients may make conflicting updates to
file system data. We will use version vectors to uniquely
name each such version; including the vectors in the log
of non-determinism will ensure that the data read can be
precisely identified for replay. Version vectors will also
be used to support manual conflict resolution.

Since the server is expected to have substantial stor-
age resources, we envision that it will store the current
state of directories, file system metadata, and filemaps;
the storage requirements for these types are expected to
be relatively small. In contrast, the server may choose to
store only a subset of file data and regenerate content on
demand via replay.

3.2 Write path
As an application executes, the client records a com-

pressed log of nondeterministic inputs. This log is
asynchronously persisted to disk, unless it is forced by
an application sync. In addition, the locally cached
copies of files, filemaps, and metadata are updated asyn-
chronously, so that future reads will be efficient. Logs
are pushed to the server asynchronously, with the order
of log transmission consistent with the causal order of
operations within the log. The server acknowledges log
data as it is received; the client must pin a log region in
its cache until the acknowledgment is received.

After storing a log region, the server scans it to de-
termine the set of objects updated. It issues callbacks to
any clients that cache updated objects. The server also
uses the version vectors in the log to detect conflicting
updates from different clients and flag these for manual
resolution (if an object is in conflict, there will be mul-
tiple current versions until the conflict is resolved). The
server updates the current version(s) of all directories, at-
tributes, and filemaps modified by the log region. Most
information needed for such updates is already included
in the log of non-determinism; we add a small amount
of data such as file names and timestamps so that such
updates can be made without replaying the logged com-
putation.

Next, the server decides whether it will cache the up-
dated version of each file modified by the log region.
Since it has persisted the log region and logged opera-
tions that causally precede that region, it already has the
ability to regenerate any version. It may choose to defer

3



caching this version because it believes that it is unlikely
to be read by another client and/or because the cost of re-
generating the version is expected to be small. If the file
is, in fact, never requested by another client, the server
saves both network bandwidth and storage.

The server may choose to immediately cache the up-
dated version of one or more files if sharing is likely or
the cost of regenerating the file later is expected to be
high. In this case, it can fetch the modified version from
the client or replay computation to regenerate the ver-
sion. Note that replaying the log may require updating
other file versions read by the recorded application, so a
recursive replay could be required.

Predicting which strategy to use is an interesting re-
search challenge. The server must estimate the proba-
bility that a version will be requested by another client.
It must also estimate the cost of replay; we expect that
the user-level compute time of the recorded process is a
good start for such an estimate. The server must balance
storage costs, network costs, and compute costs. Finally,
in the event that a non-cached file version is needed in
the future, the server should estimate the probability that
it will need to re-execute the logs vs. the probability that
it will be able to fetch an appropriate version from the
cache of the modifying client.

3.3 Read path

When a client application reads file system data or
metadata, it first checks if it has the current version
cached (as determined by it having not yet received a
callback break for the specified object). We expect the
vast majority of accesses to hit in caches. If the object
is not cached, the client asks the server for a recipe for
retrieving the version. The recipe may simply be the
version of the requested object, or it may specify that
the version should be fetched from another client (e.g.,
one located on the same sub-network as the requesting
client). Alternatively, the recipe may specify that the
client regenerate the version by replaying a log. If the
files read by the log are not present in the client’s cache,
the recipe may include additional instructions on how to
fetch or regenerate those files.

The server can choose a good recipe because it has
knowledge of the state of all client caches (through the
callbacks it maintains). It also can estimate the cost of re-
playing logs since it stores all logs and can therefore read
recorded hints such as user-level compute time. Note that
in the event that it does not cache a requested file version,
the server itself can perform the re-execution to regener-
ate such content before shipping the version to the client.
As with the write path, formulating the best strategy that
minimizes network and compute cost is an interesting re-
search problem.

4 Challenges

Since we envision a radical departure from current file
system design, there are naturally a number of challenges
we will need to overcome.

Data Races: Deterministic record and replay has low
overhead for multithreaded processes only if it can as-
sume the absence of unknown data races [6] (the out-
come of known data races can be added to the log of non-
determinism). After a race, a replayed execution may
therefore produce different results (e.g., file data) than a
recorded execution. We plan to add hashes or checksums
of file system modifications to the log to detect such oc-
currences. Once a divergence is detected, we can search
through possible race outcomes until we find one consis-
tent with the log. Previous research [1, 18] has shown
search to be feasible if races are rare (which matches our
experience with the eidetic system prototype) and logs
are detailed (and our logs are indeed detailed). This con-
verts the problem of races from a correctness issue to a
performance one.

Different processor architectures: There are a vari-
ety of processor architectures across mobile devices and
servers. However, deterministic record and replay as-
sumes that the ISA is constant between recording and re-
playing. One way to address this issue is to employ sev-
eral co-located servers with different architectures, each
of which can replay logs from different types of clients.
Another method is to run a replay within an emulator
such as QEMU [20]. The Paranoid Android[19] project
showed that the speedup gain from mobile phones to
servers was more than sufficient to mitigate the slow-
down caused by replaying in an emulated environment.

Privacy: Since replay logs reproduce any state, users
must implicitly trust the servers that replay those logs
(even if the logs are encrypted for storage, they must
be unencrypted during replay). If cloud servers are not
trusted, one potential solution is to leverage recent hard-
ware support for private code execution in the cloud [3].

Log size: Our prototype eidetic OS [6] used a number
of compression techniques to enable projected storage of
four or more years of computation from a workstation on
a single 4 TB hard drive. However, further reductions in
log size would increase the benefit of eidetic distributed
file systems by reducing both storage and network band-
width consumption. One promising avenue we plan to
explore is deduplication of log data across multiple exe-
cutions of the same program. Our hypothesis is that there
is a considerable amount of repetitiveness in application
activities; for instance start-up sequences may be very
similar from run to run. Potentially, we could encourage
such similarities by making time values, thread schedul-
ing, and other sources of non-determinism behave more
deterministically.
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5 Related Work
Many prior file systems [7, 10, 12, 16, 21, 24] have

maintained past state in the form of versions or check-
points. However, these systems face a tradeoff between
checkpoint granularity and storage costs. Even if all file
modifications are retained, they still lack the ability to
reproduce past computations and intermediary process
state. Provenance-aware storage systems [14, 15] pre-
serve causal histories of file data and capture the rela-
tionship between processes and files. However, they do
not capture the causal history within process execution as
they cannot reproduce non-deterministic computation.

Like out proposed work, Nectar [9] associates data
with its computation and substitutes one for the other.
Data can be deleted if it is not accessed for a long time
and recomputed on demand by rerunning the compu-
tation. However, Nectar only supports functional and
deterministic LINQ programs, while our eidetic sys-
tems support general-purpose programs. Similarly, Bad-
FS [4] and TREC [23] are capable of selective recompu-
tation of deterministic operations by combining file sys-
tems with make-style batch processing.

One of our goals is to minimize network resource us-
age, possibly by increasing client and server computa-
tion. Systems such as LBFS [17] and Shark [2] explore
a similar tradeoff by using deduplication to trade compu-
tation for a reduction in network traffic. The tradeoff in
deterministic record-and-replay occupies a different spot
on the compute/network tradeoff.

Like our work, operation shipping [5, 11] trades com-
putation for communication by shipping a list of opera-
tions used for modifying a file to another machine. With-
out deterministic record-and-replay, this approach is very
fragile as it is difficult to get the replayed operations to
produce the same outputs as the recorded operations.

6 Conclusion
An eidetic distributed file system is a new point in

the design space of versioning and provenance-aware file
systems. Rather than the file system being mostly or
solely responsible for providing these features, the rest
of the operating system participates by supporting deter-
ministic record-and-replay and tracking provenance via
IPC. Our hypothesis is that an eidetic distributed file sys-
tem can be more effective in providing state retention and
provenance while achieving reasonable overheads. We
are building the system proposed in this paper to prove
or disprove that hypothesis.
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