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Abstract

The long-expected convergence of High Performance
Computing and Big Data Analytics is upon us. Unfor-
tunately, the computing environments created for each
workload are not necessarily conducive for the other. In
this paper, we evaluate the ability of traditional high per-
formance computing architectures to run big data ana-
Iytics. We discover and describe limitations which pre-
vent the seamless utilization of existing big data analyt-
ics tools and software. Specifically, we evaluate the ef-
fectiveness of distributed key-value stores for manipu-
lating large data sets across tightly coupled parallel su-
percomputers. Although existing distributed key-value
stores have proven highly effective in cloud environ-
ments, we find their performance on HPC clusters to be
degraded. Accordingly, we have built an HPC specific
key-value stored called the Multi-Dimensional Hierar-
chical Indexing Middleware (MDHIM). Using standard
big data benchmarks we find that MDHIM performance
more than triples that of Cassandra on HPC systems.

1 Introduction

Big data workloads in cloud systems comes from a myr-
iad and diverse set of sources such as sensor networks,
the social web, business applications, and data logging.
In HPC, large data more typically is created as a result
of parallel simulations running on the world’s largest su-
percomputers. The size of data from a single application
run can be on the order of petabytes or more in raw files.
To be effectively analyzed, these simulation results need
to be indexed in multiple dimensions with multiple or-
derings to find patterns and reveal scientific insight from
the data. Indexing and sorting data of these quantities us-
ing existing tools may be prohibitively slow or may even
be impossible. In addition to these scientific simulations,
we have also discovered big data limitations within ex-
isting filesystems and storage middleware.
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For example, we have found that PLFS (Parallel Log
Structured File System) [3], a system software devel-
oped at Los Alamos National Laboratory for improving
the speed of parallel writes to shared files can generate
excessive amounts of metadata for very large files [9].
The limitation is due to how PLFS loads all global meta-
data for a particular file into every readers’ memory. A
distributed key-value store (KVS) could be used to dis-
tribute this metadata and allow efficient processing of
very large PLFS files.

Fortunately, distributed key-value stores exist and
have been the subject of a very large amount of excel-
lent research [7, 5, 8, 10]. Unfortunately, these exist-
ing tools have typically been designed for cloud environ-
ments and are not well-suited for HPC supercomputers
and HPC workloads.

Typically, these key-value stores work as follows.
They store partitioned data across machines by means of
a hashing algorithm that maps keys to specific servers.
The hashing algorithms are consistent, meaning that
the same keys are always mapped to the same server.
Servers and clients communicate through a TCP/IP net-
work, which could be local or geographically distributed.
Servers are system daemons configured a priori to serve
a portion of the key space and may provide failover in
the case of a network or system error.

In an HPC environment however, TCP/IP networks
may or may not be available, depending on the system.
Instead, many HPC systems have specialized intercon-
nects such as Infiniband or proprietary networks from
Cray and IBM that provide extremely low latency and
very high bandwidth that exceeds TCP/IP capabilities.
These specialized interconnects have APIs that support
RDMA and/or messaging natively. HPC interconnects
often additionally support TCP/IP, however, the perfor-
mance is lower than the the native APIs.

An additional difficulty is that system services such
as persistent daemons are difficult to configure on HPC
systems where workflows and job scheduling is managed



by a resource manager such as SLURM [17] or MOAB
[13]. To set up a system service on a system managed by
a resource manager, the user must run the system service
immediately before the job runs and it must be run as the
user. While this is not impossible to achieve, in practice
it can be very difficult to set up correctly. Furthermore,
the existing cloud key-value software packages are not
intended to run in this manner and may expect access to
resources not always available to a standard user.

To address these challenges and limitations requires a
new distributed key-value store system designed specifi-
cally for HPC supercomputers. Such a system must work
with Infiniband and its variants, take advantage of the
massive computational resources on the compute system,
and run as a library within the application. Accordingly,
we have developed the Multi-Dimensional Hashing In-
dexing Middleware (MDHIM); a parallel key-value store
framework designed for HPC systems. MDHIM differs
from other key-value stores by supporting HPC networks
natively, using dynamic servers that start and end with
the application, working with pluggable database back-
ends, ordering a global key space by range instead of
hash, using cursor type operations, exposing multiple di-
mensions, and minimizing network traffic with bulk op-
erations. Each of these will be explained in the following
sections.

To demonstrate the performance of MDHIM, we have
compared its performance to Cassandra [10] using the
Yahoo! Cloud Serving Benchmark [6]. The rest of this
paper is organized as follows. Section 2 describes the
background, Section 3 explains our design goals, Section
4 details our implementation, Section 5 provides an eval-
uation of performance. In Section 6, we discuss future
work and we conclude in Section 7.

2 Background

There were two main motivations for this work. The first
was to address metadata limitations in the existing PLFS
implementation. As a log-structured file system, PLFS
has metadata describing every write to a file. Exascale
data volumes for a single HPC checkpoint file are ex-
pected to reach tens of petabytes [4]. Using log-structure
in PLFS to store data has been shown to improve par-
allel bandwidth significantly. However, for large files
written by tens of thousands of cooperative processes,
the total amount of PLFS metadata can exceed multiple
gigabytes [9]. Since PLFS runs on the compute nodes,
this is problematic for HPC systems in which memory is
scarce. MDHIM solves this problem by distributing the
metadata across the compute cluster thereby dramatically
reducing PLFS’ memory consumption.

A second motivation, and the focus of this paper, is
to provide big-data capabilities within an HPC environ-

ment for big-data analytics. Many current HPC work-
flows have pipelined simulation and analysis phases in
which the simulation data produces data subsequently
consumed by the analysis program [2, 16]. The data sets
are typically coordinate data of values within a multi-
dimensional physics space. Although these applications
currently use POSIX as the staging group between con-
sumer and producer, a key-value store could be used
where the coordinate address is the key. In addition to
improving access rates for small reads and writes, this
approach allows a more natural and semantically mean-
ingful shared access method for the producer and the
consumer.

The recent DOE-funded FastForward IO project led
by Intel [1] has shown a demand from HPC scientists
for these semantic data interfaces to replace the flat-file
view long dictated by the POSIX interface. MDHIM is a
natural persistent data store for these massive coordinate
data sets. The key-value interface allows each data block
to be stored as a value with the coordinate location of that
block serving as the key.

MDHIM was therefore motivated both to address the
PLFS metadata challenge as well as to be a scalable stor-
age mechanism for scientific applications. For scientific
applications and PLFS, the data, and the keys to address
them, is distributed across the running processes. Some
subset of the processes in the application are designated
as MDHIM server. These servers partition the key-value
data into ranged partitions balanced across the cluster.

3 Implementation

MDHIM is implemented as a library using MPI [15] for
communications that can be linked to an application to
provide a scalable key-value store. It is embeddable, sup-
ports single point to point insertion and retrievals, strong
consistency, bulk insertion and retrievals, cursor type op-
erations, pluggable data stores, multiple dimensions, and
options for adjusting the distribution of the keys.

When the application calls mdhimInit, the range
servers are started as threads spawned from the main pro-
cesses. Each range server is responsible for a certain
portion of the key space. When the application wants
to get or put key-value pairs, it calls into the MDHIM
library which then performs client operations to the pre-
viously spawned servers. When the application calls
mdhimClose, the threads are shutdown. This design
makes it easy to use MDHIM in a scientific application.

Keys are currently limited to one hundred bytes and
values can be of any size that is allowable by the underly-
ing datastore. Keys types are limited to predefined types:
integer, long integer, double, long double, string, and the
generic byte for sorting purposes. Values are treated as
binary blobs, regardless of the contents. Key-value pairs
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Figure 1: MDHIM’s software architecture. Each MPI rank is running an appli-
cation that is linked to the MDHIM library. The MDHIM library consists of a
client and an a range server. In this example, every rank is running a range server.
Each MDHIM client is running from the same thread as the application thread
that made a call to the MDHIM API. Each range server is running on a separate
thread from the client. Every client can contact every range server in response to
queries from the application for each target range.

can be inserted and retrieved individually, or in bulk mes-
sages. mdhimPut and mdhimGet will insert or retrieve
a single key-value pair. mdhimBPut and mdhimBGet
provide support for bulk messages; up to five hundred
thousand key-value pairs can be insertedor retrieved at
once. Bulk messages outperform single point to point
messages because the number of round-trips on the high
speed interconnect is reduced.

Key value pairs can also be retrieved by the API call,
mdhimBGetOp, which emulates a cursor operation found
in many databases. With this function, the user can re-
quest to retrieve a number of keys in order starting from
a specified key, the first key, or the last key. The direc-
tion of the keys retrieved can be ascending or descend-
ing. In order for clients to know which range servers to
query for these cursor operations, clients must first call
the mdhimStatFlush function. This function returns
statistics from each range server (i.e., min, max, number
of keys) that clients use to determine the servers to query.
By off-loading query decision making to the clients, we
further reduce network traffic and the load on the servers.

Strong consistency is the consistency model used.
This was chosen due to the limitations of threads in MPI.

The client portion of the MDHIM library is run from
the same thread as the calling application. Clients can
contact any range server, even range servers running in
the same process. Every key is mapped to a single range
server according to the range configuration parameters
provided in the mdhimInit Figure 1 shows the design of
the MDHIM software.

The range server configuration is optionally provided

by the application as an initialization parameter that
specifies how many range servers should be spawned as
well as the size of their ranges. For example, a config-
uration can specify that every job process can spawn a
server or that only some subset of them do so. The num-
ber of range servers can affect performance since fewer
servers could mean that more clients are communicat-
ing with the same servers at the same time and too many
servers can result in overly small ranges and more net-
work activity. Ideally, the data should be distributed such
that each client is accessing different servers at the same
time. In practice, that is difficult to achieve perfectly, but
can be tuned using the configurable parameters. For sci-
entific computations whose behavior is mostly consistent
across time, a balanced configuration can be found and
reused.

MDHIM provides the ability for the user to define how
the data is distributed across the range servers with the
range size configuration option. The entire key space is
a series of ranges that are addressable between the num-
bers 1 to 232 — 1 and each range can contain at most 24
keys. The size of the range dictates which range servers
are responsible for which keys and each key maps to a
single range by means of the partitioner. The partitioner
makes a decision about which range server handles a key
by consulting the mapping algorithms implemented for
the different key types mentioned above. These map-
pings may not be optimal for every workload, however;
they provide a reasonable default mapping. Our future
work includes support for a user defined partitioner.

Data stores are made pluggable by abstracting the data
store interface. New data stores can be added by writ-
ing C code that implements the abstracted functions. At
this time, support has been added for LevelDB [11] and
MySQL [14]. LevelDB is the default data store due to its
server-less design and key ordering support. The order-
ing is necessary to support the cursor operations. MD-
HIM provides the communication necessary between
range servers, thus communication between data store
daemons is redundant. However, not all data stores sup-
port this design and may still provide good performance
depending on the workload. For example, if multiple di-
mensions are used, some data stores could be optimized
for that type of workload.

Multi-dimensionality has been implemented by allow-
ing the user to create any number of secondary index
instances. At this time, each index instance creates a
new data store instance, if it hasn’t already been cre-
ated, which separates the indexes and allows them to op-
erate independently. Data stores could be implemented
to create an index local to the database instead of a new
database. Secondary keys can be inserted at the same
time as the primary key, or anytime after the primary key
has been inserted.



4 Evaluation

To test the performance of MDHIM, we compared it
against Cassandra [10] using the Yahoo! Cloud Serv-
ing Benchmark [6]. YCSB is a Java based tool for col-
lecting performance results from distributed databases
that includes support for many different key-value stores.
To use YCSB with MDHIM, we developed an MDHIM
plugin for YCSB [12]. The tests were performed on
the Mustang cluster at Los Alamos National Laboratory.
Mustang consists of 1600 nodes with dual-socket AMD
12-core MagnyCours processors and 64GB of memory
per node. The high speed network on Mustang is an In-
finiband 4x-QDR interconnect with Mellanox InfiniScale
IV hardware configured with a fat tree topology.

The YCSB tests consisted of strong and weak scaling
tests to demonstrate the scaling characteristics of both
MDHIM and Cassandra. The weak scaling tests per-
formed inserts and reads for 1K and 100K records per
node. The strong scaling tests performed insert and read
operations on 1 million and 100 million records in total,
where the number of keys inserted and read per node re-
duced as the number of nodes increased. Both types of
tests used a uniform key distribution, 1KB per key, one
process per node, stored their data on a tmpfs mount,
and used node sizes ranging from sixteen to two-hundred
and fifty-six. The YCSB uniform distribution consists of
a specific number or random integers. In all of our tests,
the number of random integers available was 1574000.
Cassandra was configured to use fifty megabytes for its
internal memory tables, to sync its commit log in batch
mode, and to use IP over Infiniband. The reason for
these changes was to more accurately reflect an HPC
workload. Fifty megabytes for memory tables was cho-
sen to reduce the amount of memory used by the server
since applications run on the same node as the server pro-
cess/thread and would need to use most of the memory
for computation. The commit log was synced with the
batch option instead of periodic since batch mode will
require the commit log to be synced to the disk before a
response is sent back to the client and MDHIM behaves
in the same way. Periodic mode still has to sync the com-
mit log to disk, but can do so in the background while
acknowledging client requests immediately. Cassandra
cannot take advantage of Inifiniband natively, so it was
configured to use Infiniband over IP. MDHIM was con-
figured to use fifty megabytes for memory tables and to
use Infiniband natively. In addition, Cassandra was con-
figured to use compression, while MDHIM was not. We
found that Cassandra’s compression improved it’s per-
formance and did not change the database sizes by sig-
nificant amounts. The results of the Cassandra and MD-
HIM tests using YCSB are shown in Figures 2 and 3.

The results show that MDHIM outperformed Cassan-
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Figure 2: YCSB weak scaling test results for Cassandra and MDHIM. Two types
of tests are represented: 1K records per node and 100K records per node. There
were three runs performed at each data point and the error bars represent the
standard deviation.
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Figure 3: YCSB strong scaling test results for Cassandra and MDHIM. | mil-
lion records were inserted/retrieved in total for each run. There were three runs
performed at each data point and the error bars represent the standard deviation.

dra in each test. The reasons for MDHIM’s increased
performance are due to its use of native Infiniband sup-
port and a better key distribution. Figure 4 shows the
data distribution and sizes from a single test where 128
nodes were used to insert/retrieve 100K records per node
for Cassandra and MDHIM. These results show that MD-
HIM has a more uniform data distribution, which means
that all servers served about the same about of data. The
sizes of the databases stored by Cassandra and MDHIM
are different due to the implementations of Cassandra’s
internal database and LevelDB. Cassandra’s distribution
is less uniform, thus leading to an unbalanced server
load.
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Figure 4: The data size frequency stored per server by Cassandra and MDHIM
after a single run with 128 nodes and 100K records inserted per node.

5 Conclusion

In conclusion, MDHIM is a distributed key-value store
framework designed for HPC systems. The prototype
has been written in MPI to take advantage of high-speed
interconnects natively and to be easily embeddable into
a scientific application. It is highly scalable and supports
multiple dimensions, pluggable data stores, cursor type
operations, and bulk messages. Our results with the Ya-
hoo! Cloud Serving Benchmark (YCSB) show that it
outperforms Cassandra using a uniform distribution due
to it’s native high-speed interconnect support and a better
key distribution.
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