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Abstract

Guaranteeing crash consistency is still one of the most

expensive operations in traditional file systems because

it causes redundant writes in a journaling file system, ex-

cessive read/writes in a log-structured file system, and

tree-wandering problem in a copy-on-write file system.

In this paper, we argue that such overhead can be sig-

nificantly reduced by leveraging address remapping tech-

nique, which is already essential in many flash SSD de-

vices. We thoroughly explore the potential of address

remapping technique to ease the cost of guaranteeing

consistency in two traditional file systems (i.e., Ext4

and F2FS) and one database system (i.e., MySQL). In

particular, we introduce address remapping-based tech-

niques to guarantee consistency, for file system journal-

ing (i.e., SOJ and SDJ), segment cleaning (i.e., SSC), and

application-level data journaling (i.e., SADJ). To evalu-

ate the proposed techniques, we developed a PCIe SSD

prototype, which exposes the address remapping capa-

bility to the upper layer as a share command. Our ex-

perimental results using the PCIe SSD with the share

command confirms that the address remapping, though

simple, is very effective in reducing the read/write am-

plification due to the conventional ways of guaranteeing

consistency in the existing file systems and database ap-

plications.

1 Introduction

In recent years, address remapping techniques have

raised a lot of interests in academia and industry be-

cause it opens new optimization opportunities in de-

signing efficient consistency mechanisms [6, 11, 12, 17,

26]. Especially, these remapping techniques give perfor-

mance benefits by reducing expensive consistency op-

erations in file systems (e.g., journaling, log-structured,

and copy-on-write) and consistency-critical applications

(e.g., MySQL [3], SQLite [4], git, and vim).

Generally, to guarantee the consistency of file meta-

data, data blocks, and versions, modern file systems have

heavily resorted to various techniques such as journal-

ing, logging, and copy-on-write. Unfortunately, they suf-

fer from heavy read/write amplification incurred by the

mechanisms inherent in each scheme, including redun-

dant write [1, 24], segment cleaning [13, 23], and tree

wandering [22]. Furthermore, because they do not pro-

vide application-level crash consistency [15, 19–21, 25],

many consistency-critical applications should implement

their own idiosyncratic mechanisms to ensure the recov-

ery of their data from unexpected crashes, which are, in

some cases, still crash-vulnerable [20, 21, 27]. In these

scenarios where several types of consistency should be

guaranteed, the remapping technique opens up a new

chance of achieving high data consistency with low per-

formance overhead.

However, much research has not been conducted to or-

chestrate the benefits of the remapping technique across

existing storage stacks, such as file system, block de-

vice, and internal storage layer; previous work has not

yet explored how the remapping technique can be lever-

aged to application-level crash consistency. For exam-

ple, JFTL [9] and ANViL [26] implemented the func-

tionalities of atomic address remapping in internal stor-

age and host block layer, respectively. They clearly con-

firmed that the address remapping is useful in various

cases, such as single-write journaling, snapshot, file copy,

and de-duplication. Unfortunately, previous studies did

not consider the application-level crash consistency even

though it is a common functionality necessary in modern

consistency-critical applications. We observed that the

consistency overheads in applications have essentially

the same features with those in modern file systems.

In this paper, we perform a comprehensive study on

leveraging address remapping technique in optimizing

the file system-level and application-level crash con-

sistency mechanisms. For our case studies, we utilized

SHARE flash storage interface [17] that allows host pro-

grams to explicitly remap one or more pairs of LBAs

atomically at the flash storage FTL layer, and imple-



mented SHARE by modifying the FTL firmware of

the commercial high-end PCIe M.2 SSD, Samsung 960

EVO. We first present that the address remapping tech-

nique, SHARE, can significantly reduce the overhead

of journaling file system and log-structured file system.

In particular, we present two SHARE-based journaling

schemes, namely SOJ and SDJ, on Ext4 [14] and present

a SHARE-based segment cleaning scheme, namely SSC,

on F2FS [13]. We also offer valuable insights about how

to efficiently adopt SHARE for the application-level crash

consistency. Our evaluation results confirm that the effect

of the remapping technique is very promising. As an ex-

ample, when Ext4 guarantees the application-level crash

consistency using SHARE, the performance of an OLTP

benchmark on MySQL/InnoDB DBMS is improved by

6.16 times over the default configuration.

2 Flash memory, FTL, and SHARE

An out-of-place update strategy is commonly used in a

flash storage device because flash memory does not al-

low to update pages in place. Thus, to maintain the ever-

changing mapping between logical and physical flash

memory addresses, the flash storage device is equipped

with a firmware module called FTL (flash translation

layer) [10], which manages a mapping table between

logical block address (LBA) and physical page address

(PPA) in a page granularity. To leverage this indirec-

tion of page-level address mapping in flash storage, re-

cently in database community, Oh et al. [17] proposed

the SHARE. It exposes an interface that allows host ap-

plications to explicitly ask FTL to change its internal ad-

dress mapping. To be concrete, as illustrated in Figure 1,

upon receiving a share command from the host with a

pair of two logical block addresses, LBA2 and LBA7, as

its parameter, FTL atomically changes the PPN (physical

page number) of LBA2 in its page-mapping table to that

of LBA7, thus the latter physical page being shared by

the former logical address. A share command can have

an optional third argument, length, when the length of

data to be shared is longer than the FTL mapping granu-

larity (i.e., 4KB). Though the description so far assumes

that the share command is associated with a single pair

of LBAs, it can have multiple LBA pairs in a batch [17].

3 File System-level Crash Consistency

The concept of SHARE is simple, but there are some

design challenges in integrating it with the consistency

mechanisms of existing file systems.

In this section, we show how two file systems, Ext4

and F2F2, can leverage the share command in support-

ing their data consistency with low overhead. For our

studies, we ran all experiments on a system with a quad-

core processor (Intel i7-6700) and 8GB memory, running

Linux kernel version 4.6.7.

Figure 1: An illustration of SHARE command. Upon

share(LBA2, LBA7), FTL atomically remaps the PPN of LBA2

to that of LBA7 so that LBA2 and LBA7 share the same physi-

cal page.

Case Study 1: Ext4 Guaranteeing crash consistency is

one of the most important functionalities in designing a

file system. But, there is a trade-off between consistency

level and performance. For this reason, the Ext4 file sys-

tem takes a relaxed consistency level, i.e., the ordered

journaling mode (OJ), as its default mode. The OJ mode

provides metadata consistency [8], which only guaran-

tees that metadata is entirely consistent and the data read

by a file legitimately belongs to that file. Therefore, un-

der the OJ mode, a file can point to the older version of its

data, which is a source of the well-known torn page prob-

lem in database systems. In contrast, the full data journal

mode (DJ) supports version consistency [8], where the

metadata version is guaranteed to match to the version

of the referred data. But, this higher-level consistency of

the DJ mode comes at the expense of considerable per-

formance degradation due to the double-write journaling

of both data and metadata.

Recall that SHARE allows the host programs to explic-

itly and atomically change the address mappings being

internally managed by FTL. With the help of SHARE,

the DJ mode can achieve higher performance and consis-

tency almost for free by offloading the burden of guaran-

teeing system-wide version consistency from the file sys-

tem to the flash storage. In this paper, we design SHARE-

aware ordered journaling (SOJ) and SHARE-aware data

journaling (SDJ) by slightly modifying the existing jour-

naling modes of Ext4. A key challenge in using the

SHARE is how to track a set of LBA pairs of the jour-

naled location and home location. Since a page is, once

buffered in page cache, generally updated more than once

before being flushed to its home location, it is very cru-

cial to track a set of LBA pairs up to date; missing

such LBA pairs might crash the file system even without

power failure or system crash. To solve this challenge, we

employ an auxiliary red-black tree, called A-tree (atomic-

tree), where LBA pairs are inserted or updated whenever

the relevant journal data is recorded on the journal loca-

tion.

Now, let us explain two phases for guaranteeing crash

consistency in SOJ and SDJ: commit and checkpoint.

While the commit phase is almost same to that of Ext4,
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Figure 2: The effect of SHARE on the journaling modes in

Ext4.

the checkpoint phase is in stark contrast with that of Ext4.

When a commit operation is triggered, each write opera-

tion for journaling is first recorded in the journal area

and then the relevant LBA pair is inserted into the A-tree

for SHARE. At each checkpoint, we issue share com-

mands by searching LBA pairs on the A-tree belonging

to the checkpoint transaction. Then, upon receiving the

share command, flash storage will carry out the atomic

address remapping for a given set of LBA pairs so that

the home locations are shared with the journaled loca-

tions. Finally, for the next checkpoint, the previous LBA

pairs in the A-tree are discarded. In this way, SOJ and

SDJ can avoid unnecessary overhead caused by redun-

dant journaling writes.

We implemented our design as a prototype in Linux

kernel. Note that SOJ and SDJ do not necessitate any ex-

tra operations in employing the address remapping be-

cause they strictly adhere to the fundamental design prin-

ciples of journaling in Ext4 and are implemented at the

file system layer; meanwhile, ANViL [26] requires addi-

tional operations for both garbage collection and its meta-

data consistency at the virtualized block layer. We first

evaluated SHARE-aware journaling modes using the FIO

benchmark. In this experiment, the benchmark is config-

ured to write 2GB data randomly to 10,000 files with a

8KB granularity. In order to test the effect of fsync() in-

terval, which represents the number of write operations

between two consecutive fsync() calls, we repeated the

same experiment while varying fsync() interval.

Figure 2a presents the throughput in IOPS for our ex-

periments. In Figure 2a, SOJ always has the highest per-

formance and is, on average, 12% better than OJ in Ext4.

We note that SOJ can violate data durability and/or con-

sistency requirement under power failure or system crash.

On the other hand, SDJ shows similar performance to

that of OJ mode at fsync() interval 128 while it guar-

antees the version consistency. Unfortunately, the perfor-

mance of SDJ degrades as the fsync() interval is short-

ened. The major reason for the performance drop is that

SDJ has to trigger checkpoint operations more frequently
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Figure 3: The effect of SHARE on segment cleaning in F2FS.

than OJ mode in order to reclaim journal blocks; the jour-

nal area will fill up more quickly in SDJ as both data

and metadata have to be stored in the journal area in

SDJ mode. Fortunately, this performance issue, though

orthogonal to the main theme of this paper, can be miti-

gated simply by increasing the default journal size [6].

To further understand the benefits of SDJ, we used

the Varmail in Filebench that is one of the representa-

tive real-world benchmarks and configured it to generate

multi-threaded I/O workload with 10,000 files and 100

concurrent threads. Figure 2b demonstrates the through-

put of Varmail. From this figure, we can confirm that SDJ

works well in real-world workload and the results have

similar patterns to those in Figure 2a.

Case Study 2: F2FS Now, we explore another use case

of SHARE in log-structured file system (LFS) [23]. A

log-structured writing scheme is widely adopted for flash

storage devices, but it still suffers from the inevitable seg-

ment cleaning overhead for securing large chunks of free

space. Though several techniques, such as data group-

ing [16], slack space recycling [18], and in-place-update

(IPU) mode in F2FS [2], have been proposed, none of

them completely remove copy-back overhead of valid

blocks. In contrast, our approach can fundamentally re-

move the copy-back overhead of valid blocks by incorpo-

rating SHARE into the segment cleaning procedure. That

is, instead of copying valid blocks in a victim segment to

a new segment, we simply call SHARE for address remap-

ping from the victim segment to the new segment.

We implemented this SHARE-aware segment cleaning

(SSC) by modifying about 100 LoC of F2FS. For eval-

uation, we first filled up the file system to make its uti-

lization to 50% of the total space. Then, we performed

experiments with FIO benchmark, which was configured

to perform random writes to 40% of the total storage ca-

pacity, by varying fsync() interval from 8 to 128. Fig-

ure 3 shows the total number of pages moved during the

segment cleaning and the performance results (IOPS) of

each segment cleaning. Figure 3a shows how many valid

pages are moved during the segment cleaning and we can

see that there is no significant difference between SC and

SSC. Interestingly, when fsync() interval is 8, SSC and
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Figure 4: OLTP benchmark results of Sysbench and LinkBench using MySQL. SysBench in an OLTP mode handles a 10 GB

database (20 files) with 40 million rows for 1,000,000 operations. We ran LinkBench with 4,800,000 operations for a 50 GB

database (24 files) after two minutes warm-up. In both experiments, MySQL/InnoDB engine was configured to use 5 GB as a buffer

pool with sixteen concurrent threads, and all under buffered I/O mode.

SC do nothing. This is because current F2FS was mod-

ified to allow an in-place update when the fsync() in-

terval is smaller than 16. Meanwhile, Figure 3b demon-

strates that SSC outperforms the original segment clean-

ing by 10%–39% although the number of copy-backed

pages is similar. This performance improvement can be

explained with the fact that SSC updates only metadata

blocks, such as segment information table and segment

summary area, while avoiding the copy-back overhead

of data blocks.

In summary, the above studies show that the simple

SHARE-based address remapping functionality of flash

storage helps the existing file systems to remove the over-

head of consistency mechanisms and thus to boost their

performance significantly.

4 Application-level Crash Consistency

For some applications such as databases and key-value

stores, even the system-wide version consistency of Ext4

DJ mode, despite its double-write journaling, fails to

meet their stringent requirements for transactional atom-

icity. For this reason, each application should devise

its own application-level crash consistency mechanism.

For instance, it is well-known that MySQL relies on

costly application-level journaling mechanism for trans-

actional atomicity, called double-write-buffer (for short,

DWB) [3]. However, such application-level crash consis-

tency mechanisms bring two problems. First, they usu-

ally suffer from poor performance and reduced lifespan

of the underlying flash storage because of write ampli-

fication and frequent fsync() calls from the applica-

tion layer. Second, the application-level update proto-

cols are so complex and error-prone, and there still ex-

ist some subtle bugs even in widely-deployed applica-

tions [20,21,27]. Therefore, it would be desirable for file

system to support the application-level crash consistency

as its first class citizen functionality.

Case Study 3: MySQL/InnoDB We show how file

systems can utilize the SHARE in supporting application-

level crash consistency in database applications. One

main challenge in utilizing SHARE for this purpose

is how to ensure the ACID semantics of conventional

database transactions on top of transactional file systems.

Because the set of pages that has to be atomically written

by a database transaction may span over multiple trans-

actions of file system, file system may break the atom-

icity of the database application. For example, a prob-

lematic case occurs when one application’s transaction

is chopped by the transactions of the file system due to

fsync() or time threshold (i.e., 5 seconds commit) in

an unintended fashion. To prevent such a case, we ap-

plied the semantics of the failure-atomic update APIs

(i.e., O_ATOMIC, syncv(), and msync()) [19, 25] to our

prototype (i.e., SDJ), and we call this as SHARE-aware

application-level data journaling (SADJ). In SADJ,

these APIs guarantee the atomic write of multiple scat-

tered pages in either single or multiple files opened with

O_ATOMIC flag. For files opened with O_ATOMIC, SADJ de-

fers writing of dirty blocks to their home location, and

these dirty blocks will be written to their home loca-

tion only by synchronization operations (e.g., fsync(),

fdatasync(), msync(), and syncv()). More interestingly,

SADJ can halve the amount of writes to the storage by is-

suing SHARE instead of the redundant writes, hence dou-

bling the application’s performance.

Unfortunately, as mentioned in §3, SADJ sometimes

faces a challenge due to the small-size journal area

(e.g., 128MB) because it quickly fills up the journal

area by allocating journal blocks for application’s data

as well as file system’s metadata. In addition, in terms

of application-level crash consistency, some applications

may need large journal area to support the DBMS-like

ACID transactions. In order to address this challenge

caused by small-size journal area, we decided to allocate

rather large-size journal area (e.g., 1GB), which we be-

lieve is large enough to preserve all the data that are re-

quired for application-level crash consistency. Of course,

one alternative solution to completely address the issue

is to dynamically extend the journal area, but it is be-

yond the scope of our study. For this study, MySQL/Inn-



oDB storage engine was used. Because SADJ can guar-

antee the version consistency, the database is safe from

the risk of data inconsistency despite the DWB mode in

the storage engine is turned off. To evaluate the effect of

SADJ on MySQL/InnoDB database, we ran two popu-

lar OLTP benchmarks, SysBench [5] and LinkBench [7],

under four different modes: (1) DWB-ON/OJ(default), (2)

DWB-OFF/DJ, (3) DWB-OFF/OJ, and (4) DWB-OFF/SADJ.

The results are presented in Figure 4. Note that the third

mode DWB-OFF/OJ does not prevent data corruption

while the other three modes do; we deliberately added

the crash-inconsistent DWB-OFF/OJ mode so as to stress

that DWB-OFF/SADJ can outperform even the crash-

inconsistent mode. As Figure 4a shows, DWB-OFF/SADJ

outperforms the default mode DWB-ON/OJ by 6.16 times

and the DWB-OFF/DJ by 2.73 times. This performance

gain is, as is clearly shown in Figure 4b, in part due

to the reduction of the amount of writes which comes

from avoiding the redundant writes at either DWB or DJ

mode and instead calling the address remapping at the

storage layer. However, this reduction cannot solely ex-

plain the large performance gap between DWB-ON/OJ

and DWB-OFF/SADJ modes. The other main reason for

the gap is the difference in the number of disk cache

FLUSH operations invoked in the two modes. The default

DWB-ON/OJ mode frequently calls fsync() to guarantee

the consistency of database files1. On the other hand,

DWB-OFF/SADJ calls one FLUSH operation after writing

all database files together because SADJ can provide

application-level data ordering and durability for free.

Thus, as Figure 4c shows, DWB-OFF/SADJ invokes 16.4x

less disk cache FLUSH operations than the original ver-

sion.

In summary, applications can benefit in terms of per-

formance without sacrificing any consistency if file sys-

tems can explicitly and efficiently support application-

level crash consistency on top of flash storage devices

with the atomic address remapping functionality.

5 Related Work

Our study is not the first work on exploiting the address

remapping mechanism for system performance optimiza-

tion [6, 11, 12, 17, 26]. Now, we will compare the clos-

est previous studies, ANViL [26] and JFTL [9], with

our study. Weiss et al. [26] proposed a small set of stor-

age APIs, based on address remapping at the virtualized

block device layer, and showed that those primitives are

useful in a variety of case studies, such as single-write

journaling, snapshot, file copy, and de-duplication. In

this respect, our study could not be regarded as unique.

1When a dirty page is replaced from the buffer cache, DWB appends

new copy to the double-write-buffer and then overwrites the old copy

in its original location. In each step, an fsync() call is made to enforce

ordering and durability.

But, we argue that our study is in stark contrast with

ANViL from two perspectives. First, we show for the

first time that the application-level crash consistent file

system can be made practically with the help of atomic

address remapping in flash storages. Second, from the

perspective of performance, we think that the right place

to embody the functionality of atomic address remapping

is not in the host-side block device layer, but the FTL

layer as in SHARE; because the space for address map-

ping in ANViL is managed in a log-structured manner,

another garbage collection scheme is required.

To our knowledge, JFTL [9] is the first approach to

suggest the atomic address remapping functionality in

FTL so as to avoid the redundant write overhead in jour-

naling file system. In this sense, it is the closest approach

to our study. But, the authors of JFTL did not take into

account the benefits and challenges of the application-

level crash consistency at all. In addition, since it as-

sumes a proprietary interface between the host and flash

storage which is introduced only for the purpose of jour-

nal data remapping, its atomic address remapping, unlike

ANViL [26] and SHARE, could not be fully and flexibly

leveraged by host systems.

6 Conclusion

In this paper, we presented a comprehensive study where

address remapping technique can be used to relieve the

file system’s burden of guaranteeing the crash consis-

tency as well as data consistency, and boost the per-

formance of the consistency-critical applications. In our

study, to show the practical portability of the address

remapping, we implemented its functionality inside a

commercial SSD as firmware. Our experimental results

show that SHARE-based file systems perform similar to

or outperform conventional ones, while providing the

higher-level version consistency.

Meanwhile, the idea of leveraging the address remap-

ping in file systems is not limited to journaling file sys-

tems and log-structured file systems. We expect that the

SHARE would be also helpful in mitigating the tree-

wandering problem in CoW-based B-tree file systems,

such as btrfs [22]. This would be an interesting topic for

future work.
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