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1 Introduction
In traditional computer systems, memory and storage
are statically divide and separately allocated. In such a
strictly dichotomized system, resource usage becomes
unbalanced; more memory is always in need, yet large
portions of storage remains unused [5, 18]. The goal of
this paper is to break this strict division of memory and
storage, and present a system that can dynamically move
the boundary between memory and storage as need be.

Commercial Persistent Memory (PM) is now in the
horizon. In particular, 3D XPoint based SSDs are now in
the market [12]. More importantly, PM products based
on the DIMM interface are expected to be available soon
as well [11]. Such products are expected to bring many
changes to ways systems behave [7, 9, 21].

In this paper, we assume a hybrid memory system
composed of DRAM and DIMM interface PM, where the
intention is to use PM as storage space [7,9,21]. For such
a system, we present Storage-As-You-Go (SAY-Go), a
system that transparently adjusts the use of PM such that
PM can be used as memory as well as storage as need be.
In particular, it has been observed that storage is almost
never used to its full capacity [5, 18]. Our approach is to
provide PM as a middle ground where PM that is not yet
used as storage may be allocated as memory if the ap-
plication requires more memory to alleviate the memory
crunch.

There are two technical challenges in achieving this
goal. One is providing a memory allocation service that
can freely grow and shrink memory it is managing. The
other is a file system that supports dynamic resizing of
partitions. In this paper, we present our solution of the
former, which we refer to as Persistent Memory Buddy
(PMB). A design of PMB is presented along with its im-
plementation in the Linux kernel. The latter is left for
future work.
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Figure 1: Working memory expansion methods: (a)
Swapping (b) pVM and Memorage (c) SAY-Go

2 Related Work
Since the inception of modern computing, the hunger for
more memory has yet to be satiated. From the early days
of computing, and even to this day, techniques such as
virtual memory and swapping have been used to pro-
vide the illusion of sufficient memory as shown in Fig-
ure 1(a). These techniques have come with sacrifice in
performance as data needs to be transferred between fast
memory and slow storage that are separated by a hard,
static boundary. Such techniques were developed under
the premise that DRAM capacity is (relatively) small,
while storage capacity is large.

With the advent of PM, researchers have considered
other options. As PM is compatible with DRAM in terms
of performance, it was observed that PM itself could
(temporarily) be used as memory [13, 14]. (We limit our
discussions here to when PM is being used as storage.
There is a whole body of work that attempts to make
use of PM just as main memory, but again, a resource
that is statically and separately divided from storage.
See [16, 17, 22] and references within for more related
work.) The basic idea behind these approaches is de-
picted in Figure 1(b) where part of PM is borrowed out
of storage space and used as part of memory.



Specifically, pVM [14] is a recent study that focuses
on providing persistent store similar to NV-Heap [6] and
Mnemosyne [20], but making use of the memory system
to enhance performance. In so doing, it also provides a
feature to allocate part of the PM as non-persistent space
to the process address space. Since providing persistent
store is the primary purpose, it also provides a technique
for ensuring consistency. In terms of transparency, users
need to explicitly make calls to a library with calls such
as npmalloc(), nvmmap() to allocate space from PM.
This requires application modification and programmer
awareness to make use of these features.

The system most similar to our approach is Memorage
proposed by Jung and Cho [13]. Memorage approaches
the problem from a file system perspective. Operating
on a PM-based file system, file system free blocks are
taken and structured as a buddy system and set as the
Memorage zone to provide PM space as memory. The
file system has to be modified to reflect the fact that the
blocks lent as memory have been allocated so that con-
flicts do not occur. The benefit of Memorage is that it
does not require any application modifications and work-
ing memory expansion can be transparently provided.
However, it requires modifications to the file system to
support this feature. Additionally, runtime overhead is
incurred as data structures for memory expansion are
created and released dynamically. Finally, the original
Memorage study overlooks the issue of data structure
consistency, a critical issue when making use of PM.

A summary of the differences between the two pre-
vious closely related studies, pVM and Memorage, and
SAY-Go, the system we propose, are given in Table 1.
The key distinctive feature of SAY-Go is the transparent
dynamic adjustment of the memory and storage bound-
ary as shown in Figure 1(c). To the best of our knowl-
edge, our work is the first to propose and provide a mech-
anism for supporting such a dynamic boundary.

3 PM Buddy Design Goals
In the Storage-As-You-Go (SAY-Go) system, instead of a
static division of PM into working memory and storage,
the PM capacity used as working memory or storage is
dynamically adjusted as need be. For such dynamic ad-
justment, appropriate memory management and file sys-
tem support is required. In this section, we describe the
design goals of PM Buddy (PMB), the memory manage-
ment component to support SAY-Go.

Our design goal with PMB is as follows.

1. Seamless Integration: PMB should take action
only when memory runs out. As we assume sys-
tems with DRAM and PM hybrid memory, DRAM
will, in general, be used as working memory. It is
only when DRAM runs out that PMB should start
to take action and PM is allocated to applications.

Table 1: Summary and comparison to previous work
pVM Memorage SAY-Go

Goal
persistent memory efficient use

store expansion of resources
Memory

fixed fixed dynamicStorage
Division

Consistency yes
not

yes
considered

Transparent
no yes yes(Automatic

scaling)
Runtime

no yes no
overhead

This is because PM is anticipated to have perfor-
mance characteristics lower than that of DRAM.
Through this flexible and dynamic allocation of PM
free space, the system can dynamically change the
logical boundaries of working memory and storage
despite the physically fixed boundaries of DRAM
and PM, as can be seen from Figure 1(c).

2. Transparency: PMB must be supported in a way
such that applications are not aware of its happen-
ings, but should only reap the benefits of employ-
ing PMB. That is, legacy applications should not
change in any way. Furthermore, in developing new
applications, legacy programming models should be
sufficient and need not make use of new program-
ming models.

3. Consistency: Finally, the system needs to remain
consistent upon a normal reboot as well as a reboot
after recovery from fault. Consistency here refers
to the fact that the persistent part of PM should be
viewed as being persistent and the non-persistent
part being cleared of content for reuse. Such con-
sistency, though seemingly trivial and natural, can-
not be maintained without properly ensuring the
permanence of state and their corresponding meta-
data upon a fault. For example, if not accurately de-
signed, memory leaks may occur if a user program
terminates due to a fault in the memory allocation
step. Such memory leaks can accumulate as PM is,
by nature, persistent, leading to performance degra-
dation in the long run.

To achieve goals 1 and 2, we design and implement
PMB within the memory management framework of the
operating system kernel. In particular, as we describe in
Section 4, within Linux, the Buddy system is adopted
and extended. To achieve the third goal, we maintain data
structures such as page descriptors and an allocation bit
map in PM separately from the existing Buddy system
and make use of logging.

We describe the detailed implementation of PMB in
the following section.
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Figure 2: PM Buddy layout in Linux

4 PM Buddy Implementation
In this section, we describe the working prototype of
PMB as implemented in Linux. In order to satisfy the
transparency design goal, we make minimal changes to
the existing system. This is especially important with
the memory management module as this module is com-
plex and sensitive to changes. Our approach is to extend
the functionality of the existing buddy memory manager.
Thus, as PM is extended to be used as working memory,
the extra memory space is simply added on to the exist-
ing Buddy system with no changes to other layers.

4.1 Layout
Memory in Linux is divided into zones, in par-
ticular, ZONE DMA, ZONE NORMAL, and
ZONE HIGHMEM [10]. We concentrate our discussion
on ZONE NORMAL as this is the zone from which
pages are allocated as working memory. Hereafter, we
do not consider ZONE DMA and ZONE HIGHMEM
as they are irrelevant to our discussion.

With PMB, the volatile DRAM is covered by
ZONE NORMAL (denoted NORMAL, hence-
forth), while PM is divided into two new zones,
ZONE MIGRATE and ZONE STRG (each denoted
by MIGRATE and STRG, respectively, henceforth) as
shown in Figure 2. STRG is the minimum storage area
that will always be used as storage space (solid line
in Figure 2). It is also used to persist metadata that is
needed to satisfy the consistency goal of the design, that
is, maintain consistency of PM. In particular, STRG
stores the PM page descriptor, which contains the current
order information that is essential in maintaining the
buddy system. It also stores the bitmap that maintains
the allocation state of PM pages and a log table used to
recover from faults that occur during allocation.

Though we do not consider the use of recent program-
ming models such as Mnemosyne [20], NV-Heaps [6], or
pVM [14] in this paper, such models can be supported by
making use the STRG zone as depicted by the dotted ar-
row in Figure 2. MIGRATE, on the other hand, is the PM
area that is used as memory or storage as flexibly as need
be. This area is the core of PMB that is used to satisfy
the seamless integration design goal.
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Figure 3: Page allocation from MIGRATE zone to NOR-
MAL zone and vice versa

4.2 Managing pages
The MIGRATE zone is the key component in PMB.
Pages in MIGRATE are either allocated as persistent or
non-persistent pages depending on its use as storage or
memory. As shown in Figure 3, the management of pages
in MIGRATE (right hand side) is almost exactly the same
as Buddy management in the NORMAL zone (left hand
side). The main difference here is the unit of each page.
Whereas in Buddy, each page is 4KB, with PMB, the
page size is 2MB, the size used for huge pages in Linux.
PMB takes the 2MB huge page size as the default page
size. This choice is made as the existing Buddy supports
a maximum of 4MB contiguous memory space, which is
relatively small for the storage layer. With the 2MB de-
fault page in PMB, zone MIGRATE and STRG can be
allocated contiguous space ranging from 2MB to 2GB,
and this allows for the storage layer to handle 2GB of
I/O at once. Note 2MB is chosen as this size is the huge
page unit supported in our platform architecture and may
be changed according to the architectural support.

Page movement occurs in two directions: from MI-
GRATE to NORMAL, which we refer to as ‘migration’,
and vice versa, which we refer to as ‘retrieval’. Migration
and retrieval are both done in 4MB page chunks, between
order 10 of the NORMAL zone and order 1 of the MI-
GRATE zone, as depicted in Figure 3. Note that 4MB is
the largest contiguous page unit supported by the Buddy
system. This allows for PMB to be seamlessly integrated
into the existing memory module.

Actual migration of pages from MIGRATE to NOR-
MAL is instigated by a free space watermark. If the
number of free pages falls below this watermark, the
migrator thread calls the page migration function,
which transfers the 4MB of free space.

For retrieval, in our current implementation, there is no
watermark and the pages are retrieved, that is, returned
from NORMAL to MIGRATE, when all pages belong-
ing to the same order 10 page chunk are released. As
we maintain the zone of origin in the page descriptor,
this is checked to see where the chunk is from. If it is
from MIGRATE, then it is returned to MIGRATE. If the



Table 2: Workload characteristics [3, 4, 8]

FFT Redis

Scale
Memory intensive In-memory

application database
Domain Signal processing Key-value store

Benchmark Splash2x
YCSB

suite in Parsec 3.0
Input Native (largest) 1:1 (read:write)

Memory usage 12GB 20GB

Table 3: Evaluation Platform

CPU Intel Xeon E5-2620v3
Memory 16GB PC4-17000 × 16 (Total 256GB)
OS Ubuntu 14.04 with Linux v4.11.1

chunk is originally from NORMAL, naturally, it remains
in NORMAL. The actual code change required for mi-
gration (and retrieval) is simply a series of list link and
unlink operations.

5 Evaluation
In this section, we discuss the experimental results of
PMB. The goals of the experiments are twofold. The first
goal is to show that PMB is beneficial in performance
compared to the traditional swapping method that is typ-
ically used to provide a larger virtual address space in
traditional systems. The second is to show that our im-
plementation correctly allocates and retrieves the pages
between MIGRATE and NORMAL. These together, in
effect, is used to show the practical usefulness of PMB.

We make use of two workloads, namely, FFT and
the Redis in-memory database, both of which are mem-
ory intensive applications. The detailed characteristics of
each workload are shown in Table 2. Note that memory
usage is 12GB and 20GB, respectively. The experimen-
tal environment is summarized in Table 3. As real PM is
unavailable, we simply make use of DRAM to emulate
PM. NORMAL is simply considered to be DRAM as it
should be, while MIGRATE and STRG are considered
to be PM and set as pseudo-PM by using the modified
PMEM device driver [19].

Of the total 256GB of DRAM, 16GB is set aside for
STRG. Currently, STRG has no real function except to
hold the metadata for consistency. The rest of the 240GB
are partitioned between NORMAL and MIGRATE, of
which the size is differently set for each workload. For
FFT, it is set to 16GB and 224GB, and for Redis, it is
set to 32GB and 208GB. This is to accommodate the en-
tire memory needs of each application in DRAM, which
serves as the base case. In order to strain the memory us-
age of each application so that migration will occur, we
employ a stress tool that will take up a specified amount
of memory capacity [2]. Using this tool limits the mem-
ory usage of the applications that we consider requiring
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Figure 4: Performance of applications as the DRAM used
by the application is limited to the values in the x-axis.
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Figure 5: Total number of swap-ins and swap-outs, each
of which incurs a memory copy, observed during execu-
tion of applications.

it to either swap out (as in the traditional system) or to
invoke PMB to expand its memory usage to PM.

5.1 Comparison with swap
The traditional mechanism to support virtual address
space larger than the physical address space is to tem-
porarily place part of the virtual address space in storage
space, for example, by means of swapping [15]. Natu-
rally, if memory space could be extended, there would
be less need to make use of storage space resulting in
performance improvements. Quantitative observations of
such benefits have been made in a previous study [14]. In
this section, we present our own experiments and obser-
vations in comparison to the swap mechanism based on
our implementation of PMB.

Figure 4 shows the average execution time of 5 execu-
tions for each setting with its standard deviation shown
with the line range on top of the bars. The results show
that as less and less memory is available for the work-
load considered (which is controlled with the stress tool
mentioned above), performance with PMB remains sta-
ble. With real PM, we anticipate performance to degrade
somewhat as read/write latency is expected to be slightly
worse than DRAM. In the interest of space, we did not
consider this issue in this paper. In contrast, we see that
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Figure 6: Page migration and retrieval count with PMB

swapping performance degrades considerably as mem-
ory allocated become limited. We also note the standard
variation for swapping is much larger than that of PMB
showing that PMB performance is relatively stable.

Specifically, our measurements show that page mi-
gration with PMB is done in 400 nanoseconds on av-
erage, while for each swap-in and swap-out, it takes 6
and 41 microseconds, respectively, as measured when
the function do swap page() and shrink zone(), re-
spectively, is called and returned. While the actual copy-
ing of the page using the movntq instruction for each
swap takes roughly 1.2 microseconds, the rest is due
to software overhead. In particular, the high overhead
of swap-out is due to a couple of reasons. First, within
the shrink zone() function, the system tries to avoid
swap-out by trying to make use of the unused pages
that the slab allocator had pre-allocated and by flushing
the page cache to free up memory. Second, if, and only
when, these attempts fail, it scans the pages in the zones
using a complicated selection algorithm to select the vic-
tim page. In the case of swap-in, the page fault handler
simply checks whether the requested page is in the swap
space, and if so, brings it back to working memory, which
incurs much less overhead compared to swap-out.

Figure 5 shows the actual number of pages swapped
in and out for the two applications as reported by the
/proc/vmstat utility provided in Linux [1]. We see that
the number of swaps has a strong influence on the perfor-
mance shown in Figure 4.

5.2 PM page migration and retrieval
In this section, we observe the number of pages that are
moved between NORMAL and MIGRATE as the appli-
cation executes. Figure 6 shows the number of pages that
are migrated to NORMAL, retrieved back to MIGRATE,
and the difference between the two, that is the number
of pages from MIGRATE that are being used as mem-
ory pages, measured in 3 second intervals, as time pro-
gresses. Figure 6(a) is the results for when FFT is mak-
ing use of 9GB of DRAM (second bar of Figure 4(a)),
Figure 6(b) is for Redis making use of 15GB of DRAM
(second bar of Figure 4(b)), Figure 6(c) is when both FFT

and Redis are executed simultaneously, with the stress
tool taking up 8GBs of DRAM. As FFT has shorter ex-
ecution time, it is restarted upon termination after a 20
second lapse to show the effect of termination. The re-
sults presented are average values of three runs.

We observe that pages are being migrated and re-
trieved dynamically as applications execute. Figures 6(a)
and (b) show that for applications run independently and
alone, most of the migration and retrieval is happening
in a monotonic manner. We observe that the changes are
more dynamic for Figure 6(c) as FFT terminates and re-
linquishes the PM space that had been allocated. When
run with Redis, FFT showed an average execution time
of 60 seconds. Since there is a 20 second lapse before
restarting its execution, we see that pages are being freed
and retrieved in the vicinity of 60, 140, 220, 300 seconds,
being reflected in the fluctuating red line in Figure 6(c)
around these points.

6 Summary and Future Work
In this paper, we proposed a system called Storage-As-
You-Go (SAY-Go) that transparently adjusts the use of
PM such that PM can be used as memory as well as
storage as need be. Whereas previous studies considered
DIMM interface PM as storage, this study proposed to
break the boundary between memory and storage so that
PM is used as memory or storage as needed and for per-
formance benefit.

In particular, in this paper, we presented the design
and implementation of, what we call Persistent Memory
Buddy (PMB). PMB allows for memory allocation ser-
vice that can freely grow and shrink memory it is man-
aging. We presented experimental results that show that
PMB performs considerably better than the traditional
swapping technique and that PM is being dynamically
allocated as memory or storage space.

There are many issues to resolve to reach our even-
tually goal of SAY-Go. First and foremost, a file system
that supports dynamic resizing of partitions is required.
We are in the process of designing this file system. Even
within PMB, there are many policy issues that need to be
carefully analyzed. This is also on-going work.
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