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Abstract

As nonvolatile memory technologies with access laten-
cies comparable to DRAM proliferate, the CPU perfor-
mance of previously storage-bound workloads becomes
increasingly important. In this paper we examine the ef-
fects of the filesystem on cache behavior, a key aspect
of CPU performance. We then develop DenseFS, a spe-
cialized filesystem that aims for a highly compact cache
footprint and hence tries to minimize its cache pollution
and the performance penalties it incurs. We find that
DenseFS is effective in reducing the performance penalty
of filesystem operations on user code, and can achieve
dramatic reductions in cache miss rates as compared to
existing filesystems.

1 Introduction

Storage device speeds have increased considerably with
the increasing adoption of flash in applications that pre-
viously had employed hard disk drives [9, 12]. With the
increasing availability of non-volatile memory (NVM)
technologies [6, 8, 14], systems with persistent stor-
age accessible with DRAM-like latencies may soon be
widespread. With these dramatic improvements in the
performance of storage hardware, the overhead incurred
by the software managing it becomes more and more
significant and storage-intensive applications that were
previously I/O-bound become increasingly CPU-bound.
This transition has led to research efforts into tech-
niques like kernel-bypass filesystems [2, 13, 16—-18] and
in-device filesystems [10].

One of the most important factors in the CPU per-
formance of a workload is its hit rate in the CPU
cache [1, 5, 11], a hardware resource shared by both
the application and the operating system’s storage stack.
This sharing means that in addition to the performance
of filesystem code itself, the design and implementation
of performance-conscious filesystems should also give

consideration to the effects of cache pollution — that per-
forming filesystem operations perturbs the delicate cache
state needed to achieve good performance in executing
non-filesystem code.

However, filesystem research thus far has spent little
effort on this facet of the storage stack. Software design
decisions both small and large, as well as phenomena
such as code alignment that are not typically consciously
decided by software developers (but can be controlled by
a programmer who is aware of them), can play a signifi-
cant role in a filesystem’s cache behavior.

In order to examine and experiment with its impact
on application performance, in this paper we study the
cache footprints and access patterns of different Linux
filesystems. We then develop an experimental filesystem,
DenseFS, with the explicit aim of having a very com-
pact cache footprint, and evaluate the performance ben-
efits of the reduced pollution of application cache state
that this smaller footprint provides. With targeted mi-
crobenchmarking we find that in comparison to an ar-
ray of existing Linux filesystems, DenseFS can dramati-
cally reduce the performance impact of the cache pollu-
tion caused by filesystem operations, in some cases re-
ducing a 150% overhead to merely 20%. Using a real-
world program, we find that using DenseFS in place of
other existing filesystems can achieve a 37-65x reduc-
tion in L1 instruction cache misses, providing a 13% to
18% improvement in user-mode CPU performance.

The remainder of this paper is organized as follows.
In Section 2 we investigate the cache behavior of exist-
ing Linux filesystems; in Section 3 we present the design
and implementation of DenseFS; in Section 4 we evalu-
ate the performance of DenseFS in comparison to other
filesystems; finally, Section 5 concludes.

2 Filesystem Cache Access Patterns

We begin with an investigation of cache behavior in
existing Linux filesystems. By scripting gdb attached



Instruction Instruction

1000
1000

10°

800

600

400

200

0 0
0 32 64 0 32 64

(a) creat

(b) unlink of a 4KiB file

Instruction

50

102
40

300

200

32 64

(c) rename

Figure 1: Cachemaps of three operations on xfs.

to the kernel running in a virtual machine, we col-
lect instruction-level dynamic traces of btrfs, ext4, f2fs,
tmpfs, and xfs performing a variety of metadata opera-
tions. We trace each system call from the first kernel in-
struction to the last one before it resumes user-mode ex-
ecution. For each instruction, we record: (1) the address
and size of the instruction; (2) the addresses and sizes of
any data memory accesses performed by the instruction;
and (3) the full symbolic stack backtrace (the function
name, source file, and line number for each stack frame).

Our first analysis processes these traces by aggregating
all instruction and data memory accesses at byte gran-
ularity and counting the number of times each individ-
ual byte is accessed. We continue along the path of
prior research in using heatmaps for visualizing cache
access patterns [3, 15, 19] with a special heatmap we
term a cachemap (see Figure 1). Each row of cells in a
cachemap represents a single cache line (64 bytes), with
each cell representing one byte of memory. The vertical
axis serves simply to order cache lines by virtual address,
though it is not generally contiguous (only cache lines
that were accessed at least once are shown). The color
of each cell provides a log-scale indication of how many
times that byte was accessed! throughout the entire trace
(with white representing the special value zero).

These cachemaps provide us with a starting point from
which we can observe some general trends. First, the
instruction cache footprint is typically about twice the
size of the data cache footprint. Relative to the size of
the first-level caches in current x86 processors (32KiB,
or 512 64-byte lines), both are large enough to signifi-
cantly perturb, if not displace entirely, warm userspace
L1 cache state built up by an application.

The program that generates these cachemaps also offers an inter-
active mode in which a user can click on a cell to see the full backtrace
of every point at which that byte was accessed, making it easier to iden-
tifiy opportunities for potential optimizations.

Secondly, many data cache accesses are relatively
wasteful in that they drag an entire line into the cache
(displacing another one) only to provide a small handful
of bytes, often to a single memory access. Accesses of
this sort exhibit neither the spatial nor the temporal lo-
cality for which caches are optimized, and hence make
very poor use of them.

Thirdly, instruction accesses, due to execution be-
ing inherently sequential by default, are somewhat less
wasteful of cache resources in that a smaller number of
bytes in each cache line go unused on average. How-
ever, despite this spatial locality, the prevalence of dark
blue cells in the instruction cachemaps indicate that there
is relatively little temporal locality (reuse of already-
cached instructions); given the larger size of the instruc-
tion cache footprint this is still not a particularly effective
use of hardware resources.

Due to its larger size, we focus first on optimizing
instruction cache footprint. The low-level nature of in-
struction traces, however, makes it difficult to discern the
major sources of that footprint. In order to gain a better
understanding of this, we condense our instruction traces
into coarse-grained stack traces or cgstacks, simplified
views of the stack backtrace of a given instruction, and
visualize them in the form of a flame graph [7].

Given an instruction’s stack backtrace, we transform it
into a cgstack by mapping each frame, progressing from
callers to callees, to one of a set of designated code cate-
gories based on the file in which that function is defined
(for example, functions in mm/slab. c are mapped to the
“malloc” category, while fs/file.c is mapped to the
“vfs” category). If the category classification of a given
stack frame has not yet been seen in the corresponding
cgstack thus far, that category is then added to the top of
the cgstack. The result is effectively a high-level state-
ment about the provenance of each instruction. For ex-
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Figure 2: Cgstack flame graphs of code footprints.

ample, for a given instruction that statement may be that
the instruction’s presence in the trace is attributable to
page cache code called by VFES code.

After transforming each instruction’s stack trace into a
cgstack in this way, we then weight each cgstack by the
size of the instruction and aggregate the data together,
producing a flame graph for each trace (see Figure 2).

These cgstack flame graphs show some variation be-
tween different filesystems, but make it clear that com-
mon, non-filesystem-specific infrastructure such as the
VES and page cache play a large role in overall code
footprint. Armed with this knowledge, we set out to con-
struct a new filesystem with the aim of maximizing cache
density, in part by keeping it disentangled from the con-
ventional filesystem framework. The resulting filesystem
is called DenseFS, and is detailed in Section 3.

3 DenseFS

DenseFS is a small in-memory Linux filesystem imple-
mented in approximately 2500 lines of code. Given the
results of our analysis in Section 2 showing that the VFS
and page cache code are significant contributors to the
large code footprints of existing filesystems, DenseFsS is
not integrated into the “normal” Linux VES layer and
does not use its page cache. This is at the root of its pri-
mary practical difficulty: the standard file-access system
calls (open, read, unlink, etc.) cannot be used to ac-
cess it. Instead, it offers its own parallel set of system
calls (dfs_open, dfs_read, dfs_rename, and so forth)
with the same arguments, but which operate on files in
the DenseFS namespace. DenseFS file descriptors are
distinct from (and not interchangeable with) normal file
descriptors, but otherwise operate similarly. Alongside
its existing file descriptor table and working directory,
each process thus gains a separate DenseFS file descrip-
tor table and DenseFS working directory.

Within its set of special system calls, however,

DenseFS has familiar features. Directory entries, inodes,
and a superblock are represented with C structs, with
pointers linking them together in the same overall struc-
ture found in most Unix-style filesystems. These structs
are allocated in memory, but instead of using the general-
purpose in-kernel memory allocation routines (Linux’s
kmalloc family of calls), it instead performs one large
allocation for the entire (fixed) capacity of the filesys-
tem when it is mounted and then allocates its own inter-
nal structures within that region of memory (mimicking
what would be done in a true NVM filesystem).

3.1 Data Cache Compaction

In keeping with DenseFS’s aims of being compact, some
familiar structures are implemented differently than in
conventional filesystems, in particular its inode. A
straightforward inode structure for an in-memory filesys-
tem like DenseFS might closely resemble the stat struct
used in the standard stat system call, and indeed this
was our initial starting point with DenseFS. With a few
additional fields needed internally (a spinlock, a refer-
ence count for open files, and a union of pointers for di-
rectory entries and file data), this simple implementation,
however, yields a 112-byte inode — larger than desired for
a cache-dense filesystem.

With that starting point we made a few simple changes
to save space spent on timestamps: we replaced the bulky
16-byte struct timespec with the Linux kernel’s in-
ternal 8-byte ktime_t, and removed the atime member
entirely, since access times are rarely actually used by ap-
plications (filesystems are frequently mounted with the
noatime option anyway). This saved 32 bytes by reduc-
ing the space spent on timestamps from 48 bytes to 16.

Inode numbers are also relatively little-used, though
unlike atime the only information they encode is a unique
identifier, and thus can be removed without any com-
promise of functionality or semantics. Instead of stor-
ing an inode number in each inode, DenseFS’s stat call
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Figure 3: Cachemaps of the creat operation on
DenseFS, before and after manual cache-compaction op-
timization. The hatched green regions near the top of (b)
indicate cache footprint eliminated by the optimizations
described in Section 3.

instead populates the st_ino field with a value derived
from the in-memory address of the inode itself. In or-
der to allow for these synthetic inode numbers to re-
main persistent (were DenseFS operating on real non-
volatile memory), we subtract the base address of the
DenseFS memory region to form an offset instead of a
raw pointer value, and then XOR this offset with a secret
key stored in the DenseFS superblock in order to avoid
leaking potentially-sensitive metadata to userspace [4].
This saves eight bytes in the DenseFS inode struct.

The next inode compaction change we applied to
DenseFS is based on the observation that the user, group,
and mode fields contain very little entropy — even in
filesystems containing many millions of files, there may
be only a few hundred unique combinations of these
three fields, so encoding this near-duplicate information
in every individual inode is a very inefficient use of
space. In DenseFS we thus compress this information by
keeping a filesystem-wide table of <uid, gid, mode>
tuples and replacing the corresponding three entries in
the inode struct with a single 16-bit index into this ta-
ble. This saves another 10 bytes, and along with some
padding bytes saved by the the previous changes and re-
ordering a few fields, achieves an important goal: at 56
bytes, the DenseFS inode struct is now small enough to
be contained entirely in a single cache line. An example
of the resulting decrease in cache footprint can be seen
in the cachemaps in Figure 3.

3.2 Instruction Cache Compaction

To compact DenseFS’s code footprint, we first traced its
execution of various calls and produced corresponding

cachemaps as in Section 2. Guided by these cachemaps,
we then applied three varieties of manual adjustments to
help the executed code fit into fewer cache lines; Figure 3
shows the resulting cachemaps.

Function alignment: This is the most frequently
applicable and hence the most impactful technique.
An excellent example of it is found in the func-
tion current_kernel time64, used in updating inode
timestamps. The function’s code is only 58 bytes long,
short enough to fit in a single cache line, but its starting
address is offset from the cache-line boundary such that
it spills over into the next line, causing its execution to
displace one more line than it truly requires. By anno-
tating it to be aligned on a 64-byte boundary, we avoid
this pitfall and keep it contained in a single cache line.
It would be simple to use a compiler flag to apply this
alignment constraint globally to all functions, but this is
not necessarily always beneficial, as will be shown in our
discussion of function ordering below.

Branch hinting: The opportunity for this optimization
arises when the compiler arranges code suboptimally for
a conditional such as an if block. Consider a simple ex-
ample with an if block with a small body and no else
clause. A straightforward compilation of the code might
put the body of the if block “inline” with the surround-
ing code preceded by a conditional branch that skips over
it when the condition is false. If the condition is rarely
true, however, this results in wasted space in the instruc-
tion cache — the bytes for those instructions are brought
into the cache alongside their neighboring instructions,
but are never executed. If the bias of the condition is
known, a more optimal compilation would instead place
the body of the if block in a relatively far-off location
after the main “hot” body of the function and branch to
it (and then back) in the unlikely case that its condition
is true. By identifying occurrences like this (which are
visible as small gaps of white in our cachemaps), we
can sometimes add appropriate annotations to such if
conditions and squeeze out a few more precious bytes of
wasted cache space.

Function ordering: In one case we observed a cluster
of three functions, one 30 bytes, one 37, and one 28
bytes (strcpy, strcmp, and strlen, respectively). De-
spite totaling only 95 bytes, they nevertheless spanned
four cache lines — 256 bytes worth of space. One of the
two “wasted” lines was due to suboptimal alignment of
strlen causing its code to spill onto a second line, but
even after addressing that the trio of string functions that
should have fit easily in two lines still consumed three.
Despite being in the same source file, their relatively
distant locations within that file led to the correspond-
ing layout in memory not condensing them together as
would be desirable for compactness. In this case, cache-
line-aligning all three functions individually would still
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Figure 4: Microbenchmark performance results. The vertical axis shows the relative increase in time spent executing
user-mode code when regular calls to the given system call on the given filesystem are inserted (i.e. the performance
penalty of the syscall on user-mode execution). The horizontal axis shows the data and instruction cache footprints of

the user-mode code executed between system calls.

reduce cache density by the same token — separating
closely-related pieces of code. By simply reordering the
functions to bring them together in the source file that
defines them (1ib/string.c), we were able to achieve
the desired result of fitting all three into two cache lines.

4 Evaluation

We evaluated DenseFS’s effectiveness in reducing over-
all cache pollution using a finely-parameterized synthetic
microbenchmark to measure system call impact on user-
mode CPU performance. We have also performed some
preliminary experiments running a real application; both
are presented in this section. All measurements were
taken with an Intel Xeon E5-2670 CPU running a 4.13-
series Linux kernel.

Microbenchmark results: Our microbenchmark tool
exercises a single system call at a time, and offers the
ability to execute an amount of user-mode “think-time”
code in between each instance of the system call. This
user-mode code is JIT-compiled before the main loop,
and is parameterized to allow adjustment of its instruc-
tion and data cache footprints. The microbenchmark re-
ports fine-grained performance statistics for the system
call and the user-mode code independently.

Using this tool, we executed system calls and mea-
sured the performance of the user code while varying its
cache footprint, and compare the results against the per-
formance of executing the same user code with no system
calls at all. This allows us to directly measure the perfor-
mance impact on user-mode execution of the system call.
Figure 4 shows the results, with DenseFS consistently in-
curring the smallest penalty on user-mode performance.
Preliminary application results: To evaluate
DenseFS’s performance on a real-world program,
we ran version 3.1 of GNU grep over a 750MB direc-
tory tree containing 242,272 files, using an LD_PRELOAD

library to redirect its system calls to their DenseFS
equivalents. Using perf stat, we found that DenseFS
is highly effective at reducing L1 instruction cache
misses. Whereas xfs suffered 84.1M misses on this
workload (the most of the five other filesystems tested)
and tmpfs 49.0M (the least), DenseFS incurred only
1.3M, a reduction of 97% relative to tmpfs. This
improvement allowed grep’s user-mode IPC to increase
13% over tmpfs and 18% over xfs. These results are
promising, though further evaluation on real applications
will be necessary.

5 Conclusion

We have shown with DenseFS that it is possible to im-
plement a filesystem with a much smaller cache footprint
than those of existing filesystems. Further, we have seen
that the resulting reduction in cache pollution has a sig-
nificant positive effect on the performance of user-mode
application code. The implementation of DenseFS has
made some trade-offs in functionality in order to achieve
this small cache footprint; an interesting challenge to
consider in further research on this topic would be how
to eliminate some of these compromises (or reduce their
negative effects) while maintaining as much as possible
the compactness that DenseFS strives for.
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