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Abstract

Cloud datacenters are becoming increasingly heteroge-
neous with respect to the hardware on which virtual ma-
chine (VM) instances are hosted. As a result, ostensibly
identical instances in the cloud show significant perfor-
mance variability depending on the physical machines
that host them. In our case study on Amazon’s EC2
public cloud, we observe that the average execution time
of Hadoop MapReduce jobs vary by up to 30% in spite
of using identical VM instances for the Hadoop cluster.
In this paper, we propose and develop U-CHAMPION,
a user-centric middleware that automates job provision-
ing and configuration of the Hadoop MapReduce frame-
work in a public cloud to improve job performance and
reduce the cost of leasing VM instances. It addresses
the unique challenges of hardware heterogeneity-aware
job provisioning in the public cloud through a novel
selective-instance-reacquisition technique. It applies a
collaborative filtering technique based on UV Decompo-
sition for online estimation of ad-hoc job execution time.
We have implemented U-CHAMPION on Amazon EC2
and compared it with a representative automated MapRe-
duce job provisioning system. Experimental results with
the PUMA benchmarks show that U-CHAMPION im-
proves MapReduce job performance and reduces the cost
of leasing VM instances by as much as 21%.

1 Introduction

Today, big data processing frameworks such as Hadoop
MapReduce [1] are increasingly deployed in public
clouds. However, due to the absence of automation tools,
currently end users are forced to make job provisioning
decisions manually. Recent studies [16,28,29,31] have
focused on improving Hadoop job performance through
automated resource allocation and parameter configura-
tion. However, most research has been done on small
private clusters, which tend to be homogeneous with re-
spect to the hardware configuration and performance.

One of the foremost challenges of MapReduce job
provisioning in a public cloud is imposed by the hetero-
geneity of the underlying hardware infrastructure [10,21,
27]. Cloud datacenters usually upgrade their hardware
infrastructure over time, resulting in multiple genera-
tions of hardware with widely varying performance [25].
Such hardware heterogeneity has a significant impact on
Hadoop job completion time [21]. However, the VM in-
stances offered by public cloud providers do not indicate
the performance implications of the heterogenous hard-
ware that hosts them. Furthermore, there is no guaran-
tee that one VM will always be provisioned on the same
type of hardware. Our motivational case study on Ama-
zon EC2 public cloud shows that the average execution
time of Hadoop MapReduce jobs varies by up to 30% de-
spite using identical VM instances for the Hadoop clus-
ter. Hence, there is an urgent need for user-centric ap-
proaches that can address these challenges without re-
quiring explicit control of the cloud environment.

In this paper, we present U-CHAMPION, a user-
centric heterogeneity-aware middleware approach that
automates Hadoop job provisioning and configuration in
a public cloud to improve job performance and reduce
the cost of leasing VM instances. However, there are
several challenges in achieving heterogeneity-aware job
provisioning in a public cloud.

It is challenging to develop accurate performance
models for diverse Hadoop jobs running on a heteroge-
nous cloud environment. Recent studies focused on in-
tensive profiling of routinely executed jobs in the Hadoop
environment in order to estimate their performance for
various input data sizes [28]. However, such an approach
is not feasible for ad-hoc jobs submitted to the system,
which have unpredictable execution characteristics. To
address this challenge, U-CHAMPION performs two-
phase job profiling and performance modeling. In the
offline phase, it applies support vector machine (SVM)
regression modeling to estimate the completion time of
various Hadoop jobs for different input data sizes, re-
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source allocations, CPU models, and configuration pa-
rameters. In the online phase, it performs a lightweight
profiling of ad-hoc jobs submitted to the system by using
only a subset of possible configurations. Then, it applies
the UV Decomposition technique to quickly estimate the
job performance for all possible configurations.

U-CHAMPION’s job performance models provide the
foundation for making heterogeneity-aware resource al-
location and configuration decisions for Hadoop jobs.
However, it is significantly challenging to provision
Hadoop jobs with the desired resource configurations in
a public cloud. This is due to the fact that cloud providers
do not allow the end-users to decide where their VM in-
stances should be hosted. In addition, there are impor-
tant cost/performance trade-offs inherent in cloud sys-
tems, which rent VM instances to users by the hour.
U-CHAMPION addresses these challenges through a
novel selective-instance-reacquisition technique. The
main idea is to acquire new VM instances from the cloud
whenever there is an expectation that doing so will result
in more cost savings.

We have implemented U-CHAMPION on Amazon
EC2 and evaluated its impact on Hadoop job per-
formance and cost efficiency by using the PUMA
benchmarks [3]. For comparison, we implemented
AROMA [16], an automated MapReduce job provi-
sioning system proposed recently. Experimental re-
sults demonstrate U-CHAMPION’s improved accuracy
in predicting ad-hoc Hadoop job performance. This is
mainly due to its hardware heterogeneity awareness, and
the effectiveness of the UV Decomposition approach.
Furthermore, U-CHAMPION improves MapReduce job
performance and reduces the cost of leasing VM in-
stances by as much as 21%.

2 The Case Study and Motivations

Modern public clouds, such as Amazon EC2, routinely
run large numbers of applications simultaneously on
huge datacenters. In settings such as parallel data pro-
cessing jobs, the MapReduce framework has become in-
valuable, allowing a relatively easy setup. However, the
changing conditions within large datacenters have led to
significant difficulties that are most visible in the public
cloud.

2.1 Heterogeneity Characterization

Inside of a commercial datacenter, hardware is in con-
stant flux. Servers are upgraded in sections, since fully
upgrading a datacenter at once is prohibitively expensive.
This has given rise to the current state, where several gen-
erations of hardware inhabit a single datacenter.

Table 1: Hardware heterogeneity in Amazon EC2.
CPU Type (Small VMs) | #of VMs [ Percent of Total ]

US West-2 Datacenter

E5-2650 101 82.79

E5645 21 17.21

US East Datacenter

E5-2650 10 7.46

E5430 20 14.93

E5645 32 23.88

E5507 72 53.73
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Figure 1: Impact of hardware heterogeneity on Hadoop
job execution time.

We conducted a study on Amazon EC2 cloud data-
centers in the US West and US East regions to measure
the extent of their hardware heterogeneity. The US East
datacenter in Virginia was created in 2006, while the US
West-2 datacenter in Oregon started serving customers in
2011. We focused on analyzing CPU heterogeneity due
to the evidence for it being the most significant source of
performance variability [10,21], and due to the ease and
speed of determination (via the cpuid command).

The US East region shows a greater degree of hard-
ware heterogeneity. This can be explained through the
general observation that datacenters tend to grow more
heterogeneous as they grow older, with newer servers be-
ing brought in to replace the older systems. Table 1 sum-
marizes the results of our survey of the US West-2 and
US East datacenters. The data was obtained by check-
ing the CPU type of several hundred m1 . small instances
created on these datacenters on EC2. We report the num-
ber and the percentage of the VM instances running on
various CPU types.

2.2 Impact of Hardware Heterogeneity

Next, we analyze the impact of Amazon EC2 hardware
heterogeneity on the performance of Hadoop jobs. In this
experiment, we ran three Hadoop benchmark programs
(RandomWriter, Grep and Terasort) on Hadoop clus-
ters of various CPU types. Each cluster consists of two
VMs with the same CPU type. We ran each trial at least
five times and reported the average completion times.

138 11th International Conference on Autonomic Computing

USENIX Association



U-CHAMPION Amazon EC2
Offline Jobs —
el | f— |
VM
Hadoop Utility Matrix VM nfo Scheduler
Data # Modeler A
i Collector
Online Jobs
E— X Hadoop
Matrix Optimizer Cluster

Resource
Allocation

Estimator

Figure 2: The system architecture of U-CHAMPION.

Figure 1 shows the job execution times of sev-
eral benchmark applications running on clusters of two
ml.small VMs. We observe that the average job execu-
tion times can vary by as much as 30% between a cluster
running E5430 CPUs and one running E5-2650 CPUs.
However, cloud users can not determine what CPU types
will be associated with their VM instances. This mo-
tivates us to propose a user-centric heterogeneity-aware
MapReduce job provisioning in the public cloud.

3 U-CHAMPION Design

3.1 Architecture

We aim to create an automated job provisioning system
which integrates cluster setup optimization (cost aware-
ness and instance selection) with heterogeneity-aware
provisioning (parameter configuration, resource alloca-
tion) to improve Hadoop job performance and reduce the
cost of leasing Cloud resources. The U-CHAMPION Ar-
chitecture is shown in Figure 2. End users submit jobs to
U-CHAMPION through a command-line interface, and
our system provides appropriate configuration parame-
ters, VM types, and underlying hardware types in or-
der to minimize cost. With this information, a cluster
is started on Amazon EC2 and the job is submitted to the
master node of the cluster along with the results of the
parameter optimization.

U-CHAMPION consists of three major components;
the modeler, the estimator, and the optimizer.

3.2 Job Performance Modeling

In order to build accurate performance models of Hadoop
jobs, we run various Hadoop benchmarks on several
clusters on Amazon EC2 off line. We mine the Hadoop
logs of executed jobs for execution time, input size, and
various Hadoop configuration parameters. We use the
cpuid package to obtain the node CPU configuration.
This enables the creation of a database from which we
can create our own performance models.

3.2.1 Support Vector Machine Models

Our system applies a powerful supervised machine learn-
ing technique to learn the performance model for each
job. It constructs a support vector machine (SVM) re-
gression model to estimate the completion time of jobs
for different input data sizes, resource allocations, CPU
models, and configuration parameters. SVM method-
ology is known to be robust for estimating real-valued
functions (regression problem) from noisy and sparse
training data having many attributes [7,26]. This prop-
erty of SVM makes it a suitable technique for perfor-
mance modeling of complex Hadoop jobs in the Cloud
environment.

We conduct stepwise regression on the data sets col-
lected from our test-bed of virtualized Amazon EC2 In-
stances. For data collection, we measured the execu-
tion times of various Hadoop jobs with different input
data sizes in the range of 1 GB to 50 GB, using var-
ious Hadoop parameter configurations and running on
different cluster sizes of Hadoop nodes comprising of
ml.small instances on Amazon EC2. Due to the inher-
ent cost of running instances on EC2, we limit ourselves
to ml.small instances in order to stretch our resources
further.

U-CHAMPION incorporates hardware heterogeneity
by mining data clusters for CPU type during the re-
gression modeling. As shown in our case study, differ-
ences in CPU cause large differences in performance be-
tween seemingly identical m1.small instances in Ama-
zon EC2. U-CHAMPION accounts for these differences,
thereby directly increasing estimation accuracy.

3.3 Online Matrix Estimation

For ad-hoc jobs, U-CHAMPION performs a lightweight
online profiling on a small portion of the input dataset
with various Hadoop configuration parameters. This pro-
filing is performed on two different CPU configurations
in parallel to provide a seed of heterogeneity information.
U-CHAMPION relies on online matrix estimation to ob-
tain the complete performance model with heterogeneity
information.

We apply UV Decomposition [23], a collaborative fil-
tering technique used for matrix estimation for extremely
sparse data, and which was used in the Netflix Chal-
lenge [2]. We apply it here to a similar problem, where
we need to estimate the response of a job to new config-
uration and cluster conditions in terms of execution time
by estimating based on previously collected data. UV
Reconstruction has been shown to be effective for matri-
ces where less than 5% of values are known [23].
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3.4 Cost Optimization

U-CHAMPION improves the job execution time by
searching for the optimal configuration and underlying
hardware. It tries to provision the Hadoop cluster on
the CPU type that leads to the best performance. The
user has no control of VM placement in the public cloud.
Thus, the optimization in U-CHAMPION has to consider
both the cost of job execution and the cost of acquiring
the desired CPU type.

3.4.1 Cost Estimation

The costs associated with Amazon EC2 instances are
well-known and published on their website. Users are
charged by the hour, and are charged for a full-hour for
each partial hour used. Therefore, the cost of running a
job in EC2 can be estimated as
Cjob = Ljob * Minst * Cinst

where t,;, is the number of hours a job takes to complete
with the current cluster (rounded up to the nearest inte-
ger due to the discrete charging intervals on EC2), nj,
represents the number of instances, and ¢,y is the total
cost of one job execution. Note that neither 7,5 nor cips
changes as a result of CPU type, so that the estimated
execution time of the job is the only variable which can
be optimized for a cluster of a specific size and instance
type (i.e. small, medium or large standard instances).

The cost of acquiring a VM that is provisioned on a
specific CPU type can be estimated by

€cpu = Cinst (D
Pcpu

where e, is the expected cost of obtaining a VM with
given CPU type, cjny is the cost of the VM instance per
hour, and p.,, is the probability of obtaining an instance
with that CPU type from Amazon (Here we use the data
provided in Table 1). We represent e, as the expected
number of VMs needed to find a certain CPU type (which
is simply 1/p.p,) multiplied by the cost/hour, since Ama-
zon charges one hour of cost upon requesting a VM.

3.4.2 Cost Saving by VM Reacquisition

Here we provide our logic for an algorithm which pro-
vides cluster optimization through selective instance
reacquisition. We acquire new instances wherever we
have an expectation that doing so will result in more cost
savings through predicted execution time improvement
than cost overhead involved in requesting additional in-
stances and closing under-performing ones.

This leads to the examination of our tradeoff for each
VM, which is

Liob * Cinst

tiob " Cinst 2 + €cpu

where « is the speedup from changing CPU type. Here
we state that if the total estimated cost of a VM is greater
than the estimated cost of the VM with a new CPU plus
the estimated cost of obtaining that CPU, then it is advan-
tageous for us to look for higher-performing instances.
The speedup « is obtained through previous results for
jobs run on the various CPU types. By performing this
examination on all VM instances, we are able to optimize
the cost saving for the Hadoop cluster.

4 Implementation and Evaluation

4.1 Testbed

We build our testbed using Amazon EC2 service. We
use the US East datacenter due to the large amount of
observed hardware heterogeneity. The datacenter has
four different CPU types: Intel Xeon E5-2650, Intel
Xeon E5645, Intel Xeon E5507, and Intel Xeon E5430.
We provisioned multiple m1.small virtual machine in-
stances. Each of them have one vCPU and 1.7 GB mem-
ory. The VMs are created using the standard Amazon
Machine Image (AMI) provided by alestic.com and in-
stalled with Ubuntu Linux 10.04.

‘We build Hadoop clusters using Hadoop version 1.1.2,
and provision with sizes ranging from 2 to 10 slave nodes
for the experiments. Each slave node is configured with
one map slot and one reduce slot.

We use the PUMA benchmark suite [3] to test
the performance of U-CHAMPION with representative
MapReduce jobs. The PUMA benchmark contains var-
ious MapReduce benchmarks and real-world test in-
puts. In the experiments, we performed offline pro-
filing on Grep, Wordcount, Inverted Index, and
RandomWriter benchmarks, then performed online pro-
filing and model estimation for the Terasort bench-
mark.

For comparison, we implemented AROMA [16].
AROMA is an automated configuration system for
Hadoop parameters using machine learning to profile
jobs and clustering of profiles to optimize job execution
time and cost. It is hardware heterogeneity agnostic.

The output of our job models is the job execution time
for a set of inputs. We used the LIBSVM library [7] to
explore appropriate kernel functions and implement the
SVM regression technique.

4.2 Execution Time Estimation Accuracy

First, we study the accuracy of job execution time esti-
mation. We create a Hadoop cluster with two slave nodes
on Amazon EC2. We use the Terasort benchmark with
20 GB input data that is generated by RandomWriter.
We create job performance models for U-CHAMPION
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Figure 3: Estimated vs actual execution times.

and AROMA and use them to estimate the job execu-
tion time of Terasort on various CPU types. We com-
pare the estimated execution time by U-CHAMPION and
AROMA to the actual execution time of the job.

Figure 3 shows the estimated job execution time of
the Terasort benchmark on different hardware. The es-
timated job execution time by U-CHAMPION is 9.9%,
9.7%, 15.7%, and 13.7% different from the actual value
on the E5507, E5430, E5645, and E5-2650, respectively.
U-CHAMPION is able to accurately estimate execution
time for different CPU types. AROMA is profiled us-
ing E5-2650 CPUs, and it provides the same estimated
job execution time for different CPU types. As a re-
sult, the worst-case estimation error for U-CHAMPION
is less than 16%, whereas AROMA’s worst case estima-
tion error is 35%.

4.3 Improving Job Execution Time

In this section, we evaluate U-CHAMPION’s ability to
reduce the overall job execution time. We build a Hadoop
cluster with two slave nodes and run several PUMA
benchmarks with 20 GB of input data. We use the job
execution time of Hadoop with a default configuration as
the baseline and compare the normalized job execution
time of U-CHAMPION and AROMA. The default con-
figuration uses heterogeneity-blind resource provision-
ing, meaning that we simply use whichever instances are
assigned to us by Amazon.

Figure 4 shows the normalized job execution time of
all benchmarks using these three approaches. The re-
sults show that U-CHAMPION outperformed the de-
fault configuration, with up to 21% shorter job execution
times. U-CHAMPION provides the optimized config-
uration and cluster for each job, leading to this signif-
icant improvement in job execution time. In the pub-
lic clouds, users are charged for VM instances by the
hour. Thus, a reduction in job execution time directly re-
sults in cost savings. U-CHAMPION also outperformed
AROMA, achieving up to 20% job execution time sav-
ings. U-CHAMPION achieves better performance than
AROMA due to its ability to exploit the heterogeneity in
the underlying hardware. U-CHAMPION not only pro-

Default ==
AROMA mssssss
11 U-CHAMPION  sssssnst:

Normalized Execution Time

Te [ Te
org Sore Grep, Worg, c%gvs o lnzrm
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Se, »
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Figure 4: PUMA benchmark job execution time.

Table 2: Cost Optimization for RandomWriter Bench-

mark Workload.
Before Optimization After Optimization
E5-2650 x 1 E5-2650 x 3
E5430 x 2
E5645 x 2 E5645 x 7
E5507 x 5
Execution time improvement 14.5%
Execution cost improvement 14.5%
Cost overhead $1.68

vides an optimized job configuration, but also provisions
better VM instances through selective instance reacqui-
sition.

4.4 Cluster Optimization vs Cost

U-CHAMPION estimates the cost of finding better-
performing VM instances for a cluster, and compares
it with cost-savings achieved via lower execution time
due to said instances. The cost of m1.small VM in-
stance is Ciygy = $0.06/h and approximately 7.46% of
our instances will be E5-2650 instances to start (see
Table 1). The approximate cost of finding the best-
performing CPU type (ES5-2650) for RandomWriter is
% = 0.804 dollars (Eq. 1). As the execution time of
our RandomWriter task approaches infinity, we can ob-
tain an average of 13% and a maximum of 30% (ie, we
started with only the worst-performing VM instances)
cost savings by using only the best-performing VM in-
stances.

Table 2 shows example results of our cost algorithm
for a Hadoop cluster of 10 slave nodes running the Ran-
domWriter with 40 GB input data. The underlying CPUs
of the node before and after the algorithm is run are
shown. U-CHAMPION creates 28 new VM instances
to obtain the VMs with desired CPU type, therefore the
cost overhead of this cluster performance enhancement
is $1.68 (28 x Cjp). Keep in mind that this provides ex-
ecution time and cost improvement as long as the cluster
is running. The cost will be amortized across all jobs
run on this cluster until it is shut down by the user. For
this example, we assume that the instances opened follow

USENIX Association

11th International Conference on Autonomic Computing 141



12000

Actual
Predicted -

10000 |

8000 [
6000

4000

Job Execution Time (sec)

2000

2 4 6 8 10 12 14 16 18 20
Job Configuration

Figure 5: Prediction accuracy for an ad-hoc job for dif-
ferent Hadoop configurations.

the distribution which we observed in Table 1 in order to
show expected results.

4.5 Adaptiveness to Ad-Hoc Jobs

Previously we showed that ad-hoc jobs submitted to the
U-CHAMPION system were predicted with reasonable
accuracy even in the absence of similar jobs. Here we
evaluate the performance under more reasonable condi-
tions. And, we show that the model generated for the
Terasort benchmark by UV Decomposition remains
useful under a variety of job configurations.

This experiment assumes that a Terasort workload
with 20GB of input data (generated by TeraGen) has
been submitted to the system. We also assume an 8§ VM
cluster, and that several other benchmarks (Wordcount,
Grep, Inverted Index, etc) have been profiled offline.
In this case, we use the methodology described in section
3.3 to create a model for Terasort. Figure 5 shows the
prediction accuracy for 20 different Hadoop configura-
tions using the new model. We see prediction error here
of less than 17%.

5 Related Work

Recent studies have focused on improving the perfor-
mance of applications in clouds [5, 6, 8, 12, 14, 24]
through elastic resource allocation and VM schedul-
ing. Paragon [8] implements a heterogeneity-aware job
scheduling system using a Singular Value Decompo-
sition (SVD) technique similar to U-CHAMPION, but
considers scheduling only single-node applications and
requires full control of the cloud environment, making it
very hard to use for a user in the public cloud.

Users of the public cloud only have limited informa-
tion about the cloud environment and have no control of
the hardware their VMs run on. U-CHAMPION, along
with other user-centric research [16, 19], uses the limited
information that is available in order to improve the de-
cisions made by one user.

Hardware heterogeneity is a prevalent issue in public

clouds [10,17,21]. Recent studies show that it is feasible
to leverage the hardware heterogeneity to improve the
performance of applications [9-11,20,21].

There are also some works focusing on improving
Hadoop performance by reducing the delay due to shuf-
fle and straggler tasks [13, 18,30]. Park ef al. proposed
a novel VM reconfiguration approach that is aware of
the data locality of Hadoop [22]. Guo et al. proposed
and implemented iShuffle [13], a user-transparent shuf-
fle service that pro-actively pushes map output data to
nodes via a novel shuffle-onwrite operation and flexibly
schedules reduce tasks considering workload balance.

There is a rich set of research focused on the pa-
rameters and performance of Hadoop clusters. Jiang
et al. [15], conducted a comprehensive performance
study of Hadoop and summarized the factors that can
significantly improve Hadoop performance. Verma et
al. [28,29], proposed a cluster resource allocation ap-
proach for Hadoop. AROMA [16] provides a novel
framework for automated parameter estimation and clus-
ter resource provisioning in order to maximize job per-
formance in a given cluster.

6 Conclusion

U-CHAMPION is proposed and developed to enable
a user-centric and heterogeneity-aware MapReduce job
provisioning in the public cloud. It addresses the unique
challenges imposed by the public cloud environment
through a novel selective-instance-reacquisition tech-
nique. This technique applies our proposed optimiza-
tion algorithm to acquire new VM instances if it results
in more cost savings. Furthermore, U-CHAMPION is
able to make accurate performance prediction of ad-hoc
Hadoop jobs through its UV Decomposition technique
and by the incorporation of hardware heterogeneity-
awareness in job performance modeling. Extensive eval-
uation of U-CHAMPION on Amazon EC2 Cloud with
representative benchmark applications demonstrated its
improved performance prediction accuracy as compared
to a heterogeneity-unaware approach. Furthermore, the
results showed its ability to improve Hadoop job perfor-
mance and reduce the cost of leasing the Cloud resources
by up to 21%.

Our future work will extend U-CHAMPION to a
multi-user environment for mitigating performance inter-
ference.
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