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Abstract

We provide Risk Limiting Audits for proportional representation elec-
tion systems such as D’Hondt and Sainte-Laguë. These techniques could
be used to produce evidence of correct (electronic) election outcomes in
Denmark, Luxembourg, Estonia, Norway, and many other countries.

1 Introduction

Electronic voting in Europe is both controversial and limited. Some coun-
tries use polling-place DREs (direct-recording electronic voting machines);
others, such as the Netherlands, Ireland, and Germany, introduced and
then rejected DREs. No European country requires auditing a paper
trail. Some, including Switzerland, Estonia and (until recently) Norway,
use Internet voting systems without universally verifiable tallying.

Risk-limiting audits test an announced election result against voter-
verified paper records. They aim to answer the question, “Given an agreed
list of cast votes, how do we provide convincing public evidence that the
election outcome is correct?”1 The techniques were developed for plurality
voting systems. It is not obvious how to adapt them to complex European
election systems. This paper fills the gap for many “highest-averages”2

proportional representation schemes used in Europe, including D’Hondt
and Sainte-Laguë. As far as we know, this is the first work to develop risk-
limiting audits for highest-averages proportional representation methods.

We provide several RLA techniques for highest-averages elections: If
the reported seat allocation is wrong, there is a guaranteed minimum
probability that the audit will correct it.

These methods could be used in Norway, Germany, Luxembourg, Es-
tonia, Denmark, Belgium, and other countries. Our work could apply in
Belgium, where—after computer scientists pressured the government—the

1Ensuring that the list accurately reflects the voters’ intentions is also challenging; see, for
instance, Stark and Wagner [2012].

2This terminology is from Gallagher [1992].
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electronic voting machines produce a paper trail, which has never been
audited, despite recommendations [BeV, 2007].3

1.1 Background and contribution: Risk-limiting
audits

We assume we have a voter-verified paper record that has been determined
by a compliance audit Benaloh, Jones, Lazarus, Lindeman, and Stark
[2011], Lindeman and Stark [2012], Stark and Wagner [2012] to reflect
the true electoral outcome (The electoral outcome is the number of seats
assigned to each party, not the specific number of votes cast for each
party.) We also have a reported (electronic) outcome, which we distrust.

Risk-limiting audits (RLAs), introduced by Stark [2008a], provide a
statistical assurance that the reported outcome matches the actual out-
come a full hand tally of the paper record would show. If the reported
outcome is wrong, no matter why, a risk-limiting audit has a large prob-
ability of correcting it. After a RLA, either there is strong statistical
evidence that the outcome is correct, or the outcome is known to be cor-
rect.

RLAs have been derived for and performed on plurality contests, ma-
jority contests, multi-winner contests, and multiple contests simultane-
ously [Stark, 2008b, Hall, Miratrix, Stark, Briones, Ginnold, Oakley, Peaden,
Pellerin, Stanionis, and Webber, 2009, ?]. Sarwate, Checkoway, and
Shacham [2013] consider risk-limiting audits for IRV/STV, Condorcet and
Borda. We know of no work on RLAs for highest-averages systems.

We focus on two approaches to RLAs, described by Lindeman and
Stark [2012]: ballot-polling audits, which rely on the paper ballots but not
the electronic record, and ballot-level comparison audits, which compare
electronic cast vote records (tallies for individual ballots) to the corre-
sponding paper records. Both require a ballot manifest that describes
how ballots are stored. Ballot-polling audits have minimal set-up costs
and need nothing from the electronic system except a reported outcome.
But they generally involve inspecting more ballots than ballot-level com-
parison audits, which require that the voting system report results for
individual ballots in a way that allows each to be matched to its corre-
sponding paper record—and no federally certified voting system in the
US does that. Batch-level comparison audits, which compare electronic
tallies for bundles of ballots to hand counts of the votes on those ballots,
can be performed by substituting the new test statistic we introduce here
into existing batch-level RLA methods.

Section 2 develops RLAs for voting schemes in which each voter may
cast at most one vote per party, but possibly several votes in all. Section 3
develops a method applicable when voters may cast several votes among
different lists. In both sections, we show how to audit which candidates
deserve each party’s seats, if a simple plurality system is used for that

3We do not address auditing the Belgian allocation of party seats to candidates, nor do we
develop RLAs for the complex multi-stage seat allocation in Danish and German parliamentary
elections—although our methods could form the basis of such audits. As is, the methods can
audit the allocation of most of the seats, but not the “compensatory” rounds.
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step, as it is in Danish, Luxembourgish, and Norwegian municipal elec-
tions. We illustrate the approach using data from the Danish European
Parliamentary Election in 2014. Some countries, including Belgium, use
a more complicated algorithm for seating candidates within a party—we
do not address that audit.

1.2 “Highest-averages” voting methods

“Highest-averages” methods are party-list proportional representation meth-
ods: Each voter chooses a party, and the seats are allocated to parties in
proportion to the votes each received. Complications arise from rounding,
since seats come in integral numbers. (Complications also arise when vot-
ers may cast votes for individual candidates or for more than one party.
We address such issues in Section 3.) Throughout the paper, we use
“party” and “list” interchangeably.

A list of divisors d(1), d(2), . . . , d(S) determines a highest-averages
method. Starting with the tally t(p) for each party p = 1, . . . , P , seats are
allocated by calculating pps = t(p)/d(s) for p = 1, . . . , P and s = 1, . . . , S.
The S seats go to the parties corresponding to the S largest values of pps,
that is, the winning set W is

W = {(p, s) : t(p)/d(s) is one of the S largest.}

Every other candidate loses:

L = {(p, s) /∈ W}

The number of seats assigned to party p is #{(i, s) ∈ W : i = p}.
Some countries compute all P × S values of pps, then choose the largest
S entries. Others (such as Luxembourg) derive the same result using
iterative calculations, known as Jefferson’s or Webster’s method.

Notation is summarised in Table 1. Table 1.2 shows how seats were
allocated to each coalition in the 2014 Danish EU Parliamentary elections,
using D’Hondt. Won seats are shown in bold—these were subsequently
distributed among coalition members.

If there are more than S values of pps greater than or equal to the Sth
largest, a tie-breaking rule is used to select S of them. In this case the
margin is zero and a full hand count is required. Hence we assume from
now on that #W = S and #L = S(P − 1).

“Highest-averages” methods differ in their choice of divisors. Bel-
gium, Denmark, Luxembourg, and many others use the D’Hondt method,
for which d(i) = i. Sainte-Laguë, which Germany uses, has divisors
1, 3, 5, 7, . . .. Estonia and Norway use variants of D’Hondt and Sainte-
Laguë respectively.

2 RLAs for one vote per party

Think of each of the P × S pairs (p, s) as a pseudo-candidate reported
to have received pps votes. The set W contains the reported winners
according to the reported tally. The reported outcome is the number of
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B : number of ballots cast in the contest

V : maximum number of votes per ballot

P : number of parties

S : number of seats to be assigned

Cp : number of candidates in party p

t(p) : reported total for party p

a(p) : the actual total for party p

e(p) ≡ t(p)− a(p), error for party p

t(p, c) : reported total for candidate c in party p

a(p, c) : actual total for candidate c in party p

e(p, c) ≡ t(p, c)− a(p, c), error for candidate c in party p

d(s) : the divisor for column s

pps ≡ t(p)/d(s)

πps ≡ a(p)/d(s)

W : the pairs (p, s) with the S largest values of pps

L : the pairs (p, s), p = 1, . . . , P , s = 1, . . . , S not in W
WP : the parties p that (reportedly) won at least one seat

LP : the parties p that (reportedly) lost at least one seat

Wp : the candidates c in party p who were seated

Lp : the candidates c in party p who were not seated

Table 1: Notation

Count in thousands
Coalition/party t(p) /2 /3 /4 /5 /6
A+B+F 833 417 278 208 167 139
Danish People’s 606 303 202 151 121 101
C+V 588 294 196 147 118 98
People against EU 184 92 61 46 37 31
Liberal Alliance 65 33 22 16 13 11

Table 2: Allocating 13 seats among 5 coalitions using D’Hondt, Danish 2014
EU Parliamentary election.
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seats each party gets according to the reported totals t(p), p = 1, . . . , P .
The actual outcome is the number of seats each party would get according
to the actual totals a(p), p = 1, . . . , P . The reported outcome is correct
if matches the actual outcome, i.e., if and only if

∀(pw, sw) ∈ W, ∀(p�, s�) ∈ L, πpwsw > πp�s� , (1)

where πps ≡ a(p)/d(s). Auditing consists of checking those S2(P − 1)
inequalities statistically. Some of them are entailed by others because
πps > πpt for s < t for any method with d(s) < d(t). Hence, for instance,
if πpwsw > πp�s� , then πpwsw > πp�s for all s ≥ s�, and πpws > πp�s� for
all s ≤ sw.

For party p, define

sw(p) ≡ max{s : (p, s) ∈ W}
s�(p) ≡ min{s : (p, s) ∈ L}.

These are the column indices of the last seat p wins and the first seat p
loses, respectively. If p won no seats then sw(p) doesn’t exist; if all p’s
candidates won then s�(p) doesn’t exist. At most S parties can have both
winners and losers, so at most min(2P, S + P ) of these exist. Define

WP ≡ {p : ∃s s.t. (p, s) ∈ W}

LP ≡ {p : ∃s s.t. (p, s) ∈ L}.

According to the reported results, these are the parties that won at least
one seat and the parties that lost at least one seat, respectively. The
inequalities that must be checked by auditing are

∀p ∈ WP , ∀q ∈ LP s.t. p �= q, πp,sw(p) > πq,s�(q). (2)

2.1 Ballot-polling Audits

Assumption We assume in this section that the voting rules allow
voters to cast at most one vote for at most one party. (A risk-limiting
ballot-polling method when voters may cast votes for more than one party
or more than one vote per party is given below in Section 3.2.1.)

We will modify the ballot-polling audit method introduced by Lin-
deman, Stark, and Yates [2012]. Consider a pair of pseudo-candidates
(pw, sw) ∈ W and (p�, s�) ∈ L, with pw �= p�. We want to use a random
sample to collect and assess evidence regarding whether πpwsw > πp�s� .
That inequality amounts to a(pw)/d(sw) > a(p�)/d(s�), i.e.,

a(pw) > a(p�)
d(sw)

d(s�)
. (3)

Suppose inequality (3) holds. Imagine drawing ballots at random. Let
Ap be the event that a randomly selected ballot shows a vote for party
p. Then Pr(Ap) = a(p)/B. If the outcome is correct (and if at least one
ballot was cast for party pw or for p�),

Pr(Apw ) ≥
d(sw)

d(s�)
Pr(Ap�),
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which implies that

Pr(Apw |Apw ∪Ap�) ≥
d(sw)

d(s�)
Pr(Ap� |Apw ∪Ap�),

since Apw ⊂ Apw ∪ Ap� and Ap� ⊂ Apw ∪ Ap� . That is, the conditional
probability πpw|pwp� that a randomly selected ballot shows a vote for
party pw given that it shows a vote either for pw or p� must be at least
d(sw)/d(s�) times the conditional probability πp�|pwp� that such a ballot
shows a vote for party p�. Those two conditional probabilities sum to
100%. Hence, for the outcome to be correct, we need

πpw|pwp� > (1− πpw|pwp�)d(sw)/d(s�)

πpw|pwp�(1 + d(sw)/d(s�)) > d(sw)/d(s�)

i.e., πpw|pwp� >
d(sw)

d(s�) + d(sw)
, (4)

and

πp�|pwp� < 1− d(sw)

d(s�) + d(sw)
. (5)

Now,

πpw|pwp� ≡ a(pw)

a(pw) + a(p�)

and
t(pw)

t(pw) + t(p�)
>

d(sw)

d(s�) + d(sw)
.

We can use Wald’s sequential probability ratio test [Wald, 1945] to test
the null hypothesis that

a(pw)

a(pw) + a(p�)
≤ d(sw)

d(s�) + d(sw)

against the alternative hypothesis that

a(pw)

a(pw) + a(p�)
≥ t(pw)

t(pw) + t(p�)
.

To reject the null hypothesis is to confirm that πpwsw > πp�s� . In a
single draw from the population of ballots, conditional on the event that
the ballot shows a vote for either pw or p�, the likelihood ratio for the
alternative to the null is

t(pw)
t(pw)+t(p�)

d(sw(pw)
d(sw(pw))+d(s�(p�))

if the ballot shows a vote for pw. Under the same condition, the likelihood
ratio for the alternative to the null is

1− t(pw)
t(pw)+t(p�)

1− d(sw(pw)
d(sw(pw))+d(s�(p�))

if the ballot shows a vote for p�. Using this likelihood ratio with Wald’s
sequential probability ratio test [Wald, 1945] gives the following algorithm
for an RLA with risk limit α:

6
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1. Select the risk limit α ∈ (0, 1), and M , the maximum number of
ballots to audit before proceeding to a full hand count. Define

γ+
psw(p)qs�(q)

≡ t(p)

t(p) + t(q)
· d(sw(p)) + d(s�(q))

d(sw(p))

and

γ−
psw(p)qs�(q)

≡
(
1− t(p)

t(p) + t(q)

)
×

(
1− d(sw(p)) + d(s�(q))

d(sw(p))

)
.

Set Tpsw(p)qs�(q) = 1 for all p ∈ WP and q ∈ LP , p �= q. Set m = 0.

2. Draw a ballot uniformly at random with replacement from those cast
in the contest and increment m.

3. If the ballot shows a valid vote for a reported winner p ∈ WP , then
for each q �= p in LP that did not receive a valid vote on that ballot
multiply Tpsw(p)qs�(q) by γ+

psw(p)qs�(q)
. Repeat for all such p.

4. If the ballot shows a valid vote for a reported loser q ∈ LP , then for
each p �= q in WP that did not receive a valid vote on that ballot,
multiply Tpsw(p)qs�(q) by γ−

psw(p)qs�(q)
. Repeat for all such q.

5. If any Tpsw(p)qs�(q) ≥ 1/α, reject the corresponding null hypothesis
for each such Tpsw(p)qs�(q). Once a null hypothesis is rejected, do
not update its Tpsw(p)qs�(q) after subsequent draws.

6. If all null hypotheses have been rejected, stop the audit: The re-
ported results stand. Otherwise, if m < M , return to step 2.

7. Perform a full hand count; the results of the hand count replace the
reported results.

Because
t(pw)

t(pw) + t(p�)
>

d(sw)

d(s�) + d(sw)
,

T pwsw(pq)p�s�(p�) increases when a ballot with a vote for pw is drawn and
decreases when a ballot for p� is drawn. If all the alternative hypotheses
are true, the values of all the T will tend to increase. If any of the null
hypotheses is true, the chance is less than α that the corresponding value
of T will ever exceed 1/α. Hence, as discussed in Lindeman et al. [2012], if
any of the null hypotheses is true, despite the fact that we are comparing
many pairs of probabilities, there is a large chance that the procedure will
require a full hand count: The issue of multiplicity does not arise.

2.2 Comparison audits

Assumption We continue to assume that the voting rules allow voters
to cast at most one vote per party, but now we allow votes for multiple
parties. (This assumption is relaxed in Section 3.2.2.)

Our approach is similar to the maximum (in-contest) relative over-
statement of pairwise margins introduced by Stark [2008b], but with
weights in the numerator to account for the fact that a vote for party
p amounts to (differing) fractional votes for all the pseudo-candidates in
row p.

7
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First, we will transform the problem slightly so that we can use MICRO.
We seek a simple sufficient condition for the correctness of the outcome
in terms of e(p), p = 1, . . . , P ; that is, a condition on the errors in the re-
ported tally that ensures πpwsw > πp�s� , ∀(pw, sw) ∈ W and ∀(p�, s�) ∈ L.

Suppose there is some p� ∈ L and pw ∈ W for which πpwsw ≤ πp�s� ;
that is, some seat has been misallocated. Then

πp�s� − πpwsw ≥ 0

πp�s� − pp�s� − (πpwsw − ppwsw ) ≥ ppwsw − pp�s�

(ppwsw − πpwsw )− (pp�s� − πp�s�)

ppwsw − pp�s�
≥ 1.

A little algebra using the definition pps ≡ t(p)/d(s) shows that the out-
come must therefore be correct if

MICRO ≡ max
(pw,sw)∈W, (p�,s�)∈L

d(s�)e(pw)− d(sw)e(p�)

d(s�)t(pw)− d(sw)t(p�)
< 1.

It suffices to take the maximum over pw �= p�: a party cannot lose a seat
to itself.

Let eb(p) denote the error in the tally of the vote for party p on ballot
b. Then e(p) =

∑B
b=1 eb(p). Since the sum of maxima dominates the

maximum of sums, MICRO < 1 if

B∑
b=1

max
(pw,sw)∈W, (p�,s�)∈L:pw �=p�

d(s�)eb(pw)− d(sw)eb(p�)

d(s�)t(pw)− d(sw)t(p�)
< 1. (6)

We now derive a test of hypothesis that MICRO ≥ 1 based on the Kaplan-
Wald approach, derived in Appendix A. The test can be modified to use
reported results for bundles of ballots rather than individual ballots, at
the expense of some bookkeeping; we do not present that generalization
here, because for typical bundle sizes and modest margins, it offers little
or no advantage over ballot-polling audits, which have far lower set-up
costs.

Although one ballot may have been miscounted in a way that affects
more than two parties, we need only count the errors that have the largest
combined effect on the margin between two pseudo-candidates, because
we are summing the maximum effect in the test. Since |eb(p)| ≤ 1, the
largest possible contribution of any ballot to the left hand side of (6) is

u ≡ max
w∈WP , �∈LP :w �=�

d(s�(�)) + d(sw(w))

d(s�(�))t(pw(w))− d(sw(w))t(p�(�))
. (7)

The Kaplan-Wald method requires sampling ballots independently with
a probability of selecting each ballot proportional to an upper bound on
MICRO for that ballot. Using u as the upper bound on MICRO for
every ballot results in sampling ballots with equal probabilities—and is
conservative.

The following algorithm gives RLA at risk limit α. We assume as
before that a compliance audit has shown the audit trail to be sufficiently
complete and accurate that a full hand count would show the correct
electoral outcome.
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The constant γ is a tuning parameter that trades off effort when the
cast vote records are error-free against the effort when the cast vote records
have errors. The larger γ is (within [0, 1]), the smaller the sample will
need to be to confirm the outcome when none of the cast vote records is
discovered to have error, but the larger the sample will need to be if the
audit uncovers errors.

1. Select the risk limit α ∈ (0, 1); M , the maximum number of ballots
to audit before proceeding to a full hand count; and γ ∈ (0, 1).
Calculate u and U = Bu, the maximum total overstatement. Set
m = 0.

2. Draw a ballot uniformly at random with replacement from those cast
in the contest and increment m.

3. Find MICRO for the selected ballot and divide it by u. Denote the
quotient Dm.

4. Calculate β =
∏m

i=1

[
γ 1−Di

1−1/U
+ 1− γ

]
.

5. If β > 1/α, stop the audit: The outcome is confirmed at risk limit
α.

6. If m < M , return to step 2.

7. Perform a full hand count; the results of the hand count replace the
reported results.

It is a theorem that if any seat was misallocated, the chance this algorithm
proceeds to a full hand count is at least 1−α: the risk limit is α. Smaller
values of γ reduce the increase in workload when discrepancies are found,
but increase the workload when no discrepancies are found. The risk limit
is conservative regardless.

The method can be simplified and still remain conservative if we re-
place step 3 by

3’) If the selected ballot agrees perfectly with the cast vote record, set
Dm = 0; otherwise, set Dm = 1.

That substitution eliminates the need for any algebra when a discrepancy
is discovered, and makes the calculation in step 4 simple. However, it can
require inspecting far more ballots when the outcome is correct and dis-
crepancies are observed, because each discrepancy results in multiplying
β by 1− γ.

2.3 Applicability

This method could be used immediately for auditing the number of seats
obtained by each list wherever voters may cast only one vote for a list,
for example in Danish municipal elections and in Belgium. (See the next
section for auditing the candidates assigned to each seat.)

It could also be used in Danish and German parliamentary elections
to audit the number of seats obtained by each list in the first (pure) round
of D’Hondt tallying. In both countries, the technique would have to be
augmented to deal with their complex processes for allocating “compen-
satory” seats in addition to the D’Hondt count.

9
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Many countries also impose a threshold for parliamentary represen-
tation. Some (including Estonia) allow candidates or parties who have
exceeded a threshold to be seated immediately, before the D’Hondt count.
These could be checked in a straightforward simultaneous audit.

2.4 Illustration: 2014 EU Parliamentary Election
in Denmark

Reported results for the 2014 EU Parliamentary election in Denmark are
in table 1.2.

An IPython notebook with the data and algorithms is in appendix B
and available at XXX. For γ = 0.95, the allocations of seats to coalitions
could have been confirmed at 99.9% confidence (α = 0.001 risk limit)
by inspecting 1903 ballots—if the audit did not find any errors in that
sample.

3 Extension to individual-candidate vari-
ants

Many countries allow individual candidate votes. Details vary, but in
broad brush, instead of or in addition to choosing a party, voters may
select or delete individual candidates. The allocation of seats to parties
is as above, based on a combination of party list votes and individual
candidate votes. The individual candidate votes are used to decide which
candidates in the party are seated.

The electoral outcome can be wrong—the wrong individuals can get
seats—either because the parties get the wrong number of seats or because
the t candidates within a party that was correctly allocated t seats are
not the correct candidates to seat. In many countries, the t candidates
in a party who are seated are the t who received the most votes. In
that case, we need to test whether every party got the right number of
seats and whether, for each party that received at least one seat, the
t candidates who reportedly received the most votes really did receive
the most votes. The latter amounts to auditing a collection of plurality
contests with multiple winners [Stark, 2009]. Below, we extend ballot-
polling audits to cover this case.

3.1 Single-list votes plus candidates

In parliamentary elections in Denmark, Belgium, Germany, Estonia, and
Norway, voters cast a single party-list vote and may also vote for individ-
ual candidate(s) within that list.4 In these cases, the audit of the seats

4This idea is expressed slightly differently in each country. In Denmark, a voter selects
either a candidate or a party list. A vote for a candidate is equivalent to a vote for their party
list for the purposes of the D’Hondt allocation, but also counts towards that candidate’s
individual tally for the purposes of assigning seats to candidates within a party. In Germany,
voters may select an individual candidate directly (which does not influence the allocation of
seats to parties in the Sainte-Laguë count) and then also cast a party-list vote. In Belgium,
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allocated per party by the highest-averages count is exactly the same as in
the pure case. The audit of which candidates should be seated within each
party can be performed simultaneously using the same random sample of
ballots by combining tests of pairwise majorities within each party with
the test of weighted majorities across parties:

• For ballot-polling, this only requires including additional test statis-
tics for each (seated, non-seated) pair within a party, following Lin-
deman et al. [2012]: for each pair, we seek strong evidence that the
seated candidate received more than half of the votes on ballots that
contain votes for either or both candidates.

• For ballot-level comparison audits, we can combine the tests that
the seated candidates each received more votes than any of the
non-seated candidates by using the maximum across-contest relative
overstatement (MACRO) across the pairwise within-party contests,
exactly as described by [Stark, 2009]. The Kaplan-Wald method can
be used to test the hypothesis that MACRO ≥ 1.

These approaches solve the auditing problem for Denmark and Ger-
many,5 but not Belgium, which would require a specialized technique
tailored to its complicated allocation algorithm.

3.2 Multiple list votes

Assumption This section considers rules that allow a voter to cast
multiple votes per party or votes for more than one party. For instance,
some countries allow voters to endorse several candidates, who need not
be in the same party. For the purposes of a highest-averages method, this
is equivalent to giving each voter several votes, which she may distribute
among several lists. The highest-averages count then proceeds exactly as
in the pure case, except there may be several votes per voter.

The ballot-level comparison RLA of section 2.2 can be modified eas-
ily to allow for this possibility—see Section 3.2.2. However, the basic
ballot-polling RLA of section 2.1 cannot, even though a comparably sim-
ple ballot-polling method works in plurality contests where voters may
cast votes for more than one candidate.6 We develop a different method
below in section 3.2.1

Rules vary widely among such systems. For instance, in Luxembourg,
voters may choose either a party vote or a candidate vote. In the latter,
they may cast up to S votes in total, including up to 2 votes for any single

voters may choose either a party list or an arbitrary number of candidates from the same list,
which again is equivalent for the purposes of the D’Hondt tally. Then candidates are seated
within parties using a complicated algorithm that combines the voters’ and the parties’ choices.

5This applies only to the first-round of Sainte-Laguë, not the second-round that allocates
extra seats in the Bundestag using a different system.

6In plurality contests, the basic ballot polling audit checks whether, among ballots that
list exactly one of two candidates, one candidate has the majority. Ballots that show both
candidates can be ignored. But when a voter can cast more than one vote per party, Party p
can have d(q)/d(p) times as many votes as party q among ballots that list exactly one of the
two parties, but still not have d(q)/d(p) times as many votes in all, so that conditioning does
not yield a valid test.
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candidate. Party votes are interpreted as one vote for every candidate
on the party list. Party totals are used to allocate seats to parties by
D’Hondt; individual votes are used to allocate seats within each party.

Auditing the allocation of seats to candidates requires a method ap-
propriate for the tallying scheme. In Luxembourg this is simple (multi-
winner) plurality; in Norwegian municipal elections it is a plurality variant
weighted by party selections. Both ballot-polling and ballot-level com-
parison RLAs can be extended to audit simultaneously how many seats
each party gets and which candidates get each party’s seats, assuming the
latter done by simple plurality. For illustration, we present ballot-polling
and comparison audits for the Luxembourgish system.

3.2.1 Ballot-polling audit

Developing a RLA for the Luxembourgish system requires a different ap-
proach than that of section 2.1. Voters may cast up to S votes, and up to
2 per candidate, so the probability that a randomly selected ballot shows
a vote for a given party or candidate is not proportional to the number of
votes for that party or candidate.

This method uses differences in expected values of the number of votes
for different parties (normalized by the appropriate column divisors d(·))
or for different candidates. We treat a party-list vote as a set of individ-
ualised votes for all candidates in that party. Suppose we select a ballot
uniformly at random from the B ballots cast. Let Vp,c denote the number

of votes for candidate c in party p on that ballot and let Vp ≡
∑Cp

c=1 Vp,c

denote the total number of votes for party p on that ballot. Then the
expected value of Vp,c is

IEVp,c = t(p, c)/B and IEVp = t(p)/B.

Moreover,

IE(Vp/d(s)− Vq/d(t)) =
t(p)/d(s)− t(q)/d(t)

B
. (8)

The allocation of seats to parties is therefore correct if

∀p ∈ WP , ∀q ∈ LP s.t. p �= q, IE

(
Vp

d(sw(p))
− Vq

d(s�(q))

)
> 0. (9)

The allocation of seats to candidates in those parties is also correct if

∀p ∈ WP , cw ∈ Wp, c� ∈ Lp, IE(Vp,cw − Vp,c�) > 0. (10)

Voting rules for a particular country impose constraints that imply lower
and upper bounds on the combinations of random variables on the left-
hand sides of (9) and (10). Let Xi denote any of those left-hand sides,
calculated for the ith draw. (Draws are random, independent, and uni-
formly distributed.) Let x+ and x− denote the upper and lower bounds
respectively. For example, in the Luxembourgish system, the rules require
Vp,c ≤ 2 and Vp ≤ S, so if Xi denotes

Vp

d(sw(p))
− Vq

d(s�(q))
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for the ith draw (Eq. (9)), then x+ is S/d(sw(p)) and x− is −S/d(s�(q)).
We know a priori that x− ≤ Xi ≤ x+; we wish to test the hypoth-

esis that IEXi ≤ 0. Rejecting that hypothesis for all the left-hand sides
confirms the seat allocation. Let X̃i ≡ (Xi + x−)/(x+ − x−). Then
X̃i ∈ [0, 1], and the condition IEXi ≤ 0 is equivalent to the condition
IEX̃i ≤ t ≡ x−/(x+−x−). Imagine drawing n ballots, resulting in {X̃i}ni=1

independent and identically distributed on [0, 1]. Define

LR ≡
n∏

i=1

[
γ
X̃i

t
+ 1− γ

]
. (11)

Much the same proof as in appendix A7 shows that if IEX̃i ≤ t, Pr{LR >
1/α} ≤ α for any n. We can use this result to test all the conditions (9)
and (10) with a single sample. Multiplicity is not a concern because the
audit proceeds to a full hand count if any null hypothesis is not rejected.

3.2.2 Ballot-level comparison audit

The algorithm of section 2.2 can audit the number of seats allocated to
parties in the case of allowing up to V votes per party per voter, except
that the upper bound um on the maximum possible value of MICRO for
a single ballot is V times as large as that in Equation 7. For Luxembourg,
the maximum votes per ballot is the number of available seats, so um =
Su. To include the competition for seats among members of the same
party, we need only consider that competition to be a collection of pairwise
elections between all candidates in a party who were awarded seats and
all who were not. Table 1 outlines the notation.

The definition of MACRO incorporating both kinds of error is:

MACROmulti ≡ max

{
MICRO, max

p∈WP ,cw∈Wp,c�∈Lp

e(p, cw)− e(p, c�)

t(p, cw)− t(p, c�)

}
.

If MACROmulti < 1, the allocation of seats to parties and the allocation
of seats to candidates within parties are all correct.

3.2.3 Logistical and statistical concerns

If relatively few votes separate a seated candidate from a candidate in the
same party who is not seated, the sample sizes needed to attain reasonable
risk limits using the methods presented above will be very large. If it
is possible to divide the ballots into (overlapping) subsets that contain
only the ballots cast for a particular party, and to sample directly from
those subsets, it may be possible to reduce sample sizes, depending on the
margins compared to the number of ballots in each subset. Auditing the
allocation of seats within parties separately from auditing the allocation
of seats to parties also raises issues of multiple testing, which will tend to
increase the required sample size to attain a given risk limit.

7The proof appears in sketch form in http://printmacroj.com/martMean.htm, last accessed
10 November 2013.
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3.3 Audit Summary

We have presented ballot-polling and ballot-level comparison RLAs for all
highest-averages proportional representation methods, including those in
which voters select a single party list and those in which they may cast
some votes for each of several parties and more than one vote for the same
party or candidate. We have shown that the same sample can be used
to check that the right candidates were seated within each party, at least
for (the many) countries that use plurality or a simple variant to allo-
cate seats to candidates. The methods need modifications to check the
“compensatory” rounds in German and Danish parliamentary elections,
which do not use a highest-averages method, and for auditing which can-
didates get the party’s seats in non-plurality systems such as Belgian and
Norwegian parliamentary elections.

4 Conclusion

Highest-averages methods include many party-list proportional represen-
tation methods, implemented differently in different countries—and some-
times in different ways in a single country. The pure versions of these
methods are amenable both to efficient risk-limiting audits and to com-
plete homomorphic tallying. We develop methods for several variants,
some of which are particularly important because the country uses or
plans to use electronic voting. In particular, we illustrate risk-limiting au-
dits for Denmark and privacy-preserving universally verifiable tallying for
Norway. The methods allow election outcomes of D’Hondt, Sainte-Laguë,
and variants to be verified.
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A The Kaplan-Wald Method

This section combines ideas from dollar-unit sampling as used in financial
auditing [Panel on Nonstandard Mixtures of Distributions, 1988] with a
technique described in H.M. Kaplan’s website, http://printmacroj.com/
martMean.htm.8 Kaplan’s work fleshes out an idea due to Wald [Wald,
1945, 2004], and is closely related to a technique presented in Kaplan
[1987]. We have a population of N items. Item j has a value xj between
0 and a known upper bound uj > 0. We wish to estimate the population
total T =

∑N
j=1 xj .

Define dj ≡ xj/uj , for j = 1, . . . , N . Each dj is necessarily between
0 and 1. Let U =

∑N
j=1 uj . We will make n independent random draws

with replacement from the population; the probability of selecting item
j is pj ≡ uj/U in each draw. That is, the chance of selecting item j is
proportional to its upper bound.

Let J(i) be the index of the item selected on the ith draw. Let Di be
dJ(i), the value of d for the item selected on the ith draw. For instance, if
the second draw gives the fifth item, then J(2) = 5 and D2 = dJ(2) = d5.
The chance that J(i) = j is pj . The expected value of Di is

IEDi =

N∑
j=1

dj Pr(J(i) = j)

=
N∑

j=1

dj(uj/U)

=
N∑

j=1

(xj/uj)× (uj/U)

=
N∑

j=1

xj/U

= T/U.

Hence,

IE
1

n

n∑
i=1

Di =
1

n
nT/U = T/U. (12)

That is, the average of the n draws {Di}ni=1 is an unbiased estimator of the
population total T as a fraction of the total upper bound U . Equivalently,
U times the average of {Di}ni=1 is an unbiased estimate of the population
total T .

The expected value of Di is T/U , which is unknown since T is un-
known. For the purpose of conducting a risk-limiting audit, we want to
test the hypothesis that T ≥ 1 (equivalently, that T/U ≥ 1/U). We will
derive a method based on Wald’s sequential probability ratio test [Wald,
1945, 2004], following an idea of Harold Kaplan, based in turn on a re-
mark in Wald [2004].9 Note that if U < 1, we do not need to audit: the

8Last accessed 10 November 2013.
9See http://printmacroj.com/martMean.htm. Last accessed 10 November 2013.
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maximum possible value of MICRO is less than 1, so the outcome must
be correct. We therefore assume that U ≥ 1.

The likelihood ratio of the simple hypothesis H1 to the simple hy-
pothesis H0 is the probability of observing the data that actually were
observed on the assumption that H1 is true, divided by the probability
of observing the data that were actually observed on the assumption that
H0 is true:

likelihood ratio ≡ Pr(observed data if H1 is true)

Pr(observed data if H0 is true)
. (13)

The probability of observing the data actually observed will tend to be
higher for whichever hypothesis is in fact true, so the likelihood ratio will
tend to be greater than 1 if H1 is true, and will tend to be less than 1 if H0

is true. The more observations we make, the more probable it is that the
resulting likelihood ratio will be small if H0 is true. Wald [1945] showed
that if H0 is true, then the probability is at most α that the likelihood
ratio is ever greater than 1/α, no matter how many observations are made.

Let D̃i ≡ 1−Di, and let d̃j ≡ 1−dj . Then the probability distribution
of D̃i is

f(d) ≡
N∑

j=1

pjδ(d− d̃j)),

where δ(·) is the Dirac delta function. Under the hypothesis that T = t,
the expected value of D̃i is 1−t/U , so the expected value of (1−t/U)−1D̃i

is 1. That is,

∫ 1

d=0

(1− t/U)−1df(d) =

N∑
j=1

(1− t/U)−1d̃jpj = 1. (14)

Let γ ∈ [0, 1] be a fixed number. Because
∑

j pj = 1, it follows that if
T = t,

IE(γ(1− t/U)−1D̃i + (1− γ))

=
γ

1− t/U
IED̃i + (1− γ)

=
γ

1− t/U
(1− t/U) + 1− γ

= γ · 1 + (1− γ)

= 1.

Now,

IE(γ(1− t/U)−1D̃i + (1− γ)) ≡
N∑

j=1

(γ(1− t/U)−1d̃j + 1− γ)pj . (15)

Let
gj,t,γ ≡ (γ(1− t/U)−1d̃j + 1− γ)pj , j = 1, . . . , N. (16)

17

https://www.usenix.org/jets/issues/0203


35

USENIX Journal of Election Technology and Systems (JETS)

Volume 3, Number 1 • December 2014

www.usenix.org/jets/issues/0301

Since t/U ∈ [0, 1] and all {d̃j} are nonnegative, it follows from (15) and
(??) that gj,t,γ ≥ 0 and

N∑
j=1

gj,t,γ = 1. (17)

That is,
∑N

j=1 gj,t,γδ(d − d̃j) is a probability distribution. Let F be a

random variable with Pr{F = d̃j} = gj,t,γ . Since IED̃i = 1− t/U ≥ 0,

IEF =
N∑

j=1

(
γ(1− t/U)−1d̃j + 1− γ

)
d̃jpj

=
γ

1− t/U

N∑
j=1

d̃2jpj + (1− γ)IED̃i

=
γ

1− t/U
IED̃2

i + (1− γ)IED̃i

≥ γ

1− t/U
(IED̃j)

2 + (1− γ)IED̃i

= γIED̃i + (1− γ)IED̃i = IED̃i,

where the penultimate step follows from Jensen’s inequality.
If the data allow us to reject the hypothesis H0 that {D̃i} all have the

same probability mass function f (for which IED̃i = 1−t/U) in favor of the
alternative hypothesis H1 that {D̃i} all have the probability mass function
gt,γ (for which IED̃i > 1 − t/U), we have strong statistical evidence that
IEDi < t/U . Since IEDi < t/U is a sufficient condition for the electoral
outcome to be correct, rejecting H0 means the audit can stop: The data
gave strong evidence that the election outcome is correct.

Recall that J(i) is the index of the item selected on the ith draw. For
n independent observations {D̃i}ni=1, the likelihood ratio of H1 to H0 is

LR =
Pr(observed data if H1 is true)

Pr(observed data if H0 is true)

=

∏n
i=1

[
γ(1− t/U)−1D̃i + 1− γ

]
pJ(i)∏n

i=1 pJ(i)

=

n∏
i=1

[
γ
1−Di

1− t/U
+ 1− γ

]
. (18)

The dependence on {pj} in the numerator and denominator cancel for-
tuitously: The validity of the test does not depend on any assumptions
about the population {dj} of values. Equation (18) motivates the intro-
duction of γ: For γ = 1, the likelihood ratio would forever be 0 if even a
single observed value of Di were equal to 1.

To conduct a risk-limiting audit, we take t = 1 in (18). If in fact T ≥ 1,
Wald’s sequential probability ratio test establishes that the chance that
the likelihood ratio is ever larger than 1/α is at most α, no matter what
the population {dj} of values may be. If we continue to inspect ballots
until LR > 1/α—or until we have inspected all the ballots—the chance
the audit will stop short of a full hand count if the outcome is wrong is
less than α.
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B Python code for the European Union
Parliamentary election in Denmark

import math

import numpy as np

import scipy

from scipy.stats import binom

import pandas as pd

#

def dHondt(partyTotals, seats, divisors):

’’’

allocate <seats> seats to parties according to <partyTotals> votes,

using D’Hondt proportional allocation with <weights> divisors

Input:

partyTotals: list of total votes by party

seats: total number of seats to allocate

divisors: divisors for proportional allocation.

For d’Hondt, divisors are 1, 2, 3, ...

Returns:

partySeats: list of number of seats for each party

seated: list of tuples--parties with at least one seat,

number of votes that party got,

and divisor for last seated in the party

notSeated: list of tuples--parties with at least one lost seat,

number of votes that party got,

and divisor for the first non-seated in the party

pseudoCandidates: matrix of votes for each pseudocandidate

’’’

pseudoCandidates = np.array([partyTotals,]*seats, ).T/divisors.astype(float)

sortedPC = np.sort(np.ravel(pseudoCandidates))

lastSeated = sortedPC[-seats]

theSeated = np.where(pseudoCandidates >= lastSeated)

partySeats = np.bincount(theSeated[0], minlength=len(partyTotals))

# number of seats for each party

inx = np.nonzero(partySeats)[0] # only those with at least one seat

seated = zip(inx, partyTotals[inx], divisors[partySeats[inx]-1])

# parties with at least one seat,

# number of votes that party got,

# and divisor for last seated in

# the party

theNotSeated = np.where(pseudoCandidates < lastSeated)

partyNotSeats = np.bincount(theNotSeated[0], minlength=len(partyTotals))

# number of non-seats for each

# party

inx = np.nonzero(partyNotSeats)[0]

notSeated = zip(inx, partyTotals[inx], divisors[partySeats[inx]])
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# parties with at least one

# unseated, number of votes # that party got, and divisor

# for the first non-seated

# in the party

if (lastSeated == sortedPC[-(seats+1)]):

raise ValueError("Tied contest for the last seat!")

else:

return partySeats, seated, notSeated, lastSeated, pseudoCandidates

def uMax(win, lose):

’’’

finds the upper bound u on the MICRO for the contest

win and lose are lists of triples: [party, tally(party), divisor]

the divisor for win is the largest divisor for any seat the party won

the divisor for lose is the smallest divisor for any seat the party lost

See Stark and Teague, 2014, equations 4 and 5.

Input:

win: list of triples--party, tally(party), divisor

lose: list of triples--party, tally(party), divisor

Returns:

maximum possible relative overstatement for any ballot

’’’

u = 0.0

for w in win:

for ell in lose:

if w[0] != ell[0]:

u = max([u,

(float(ell[2]) + float(w[2]))/float(ell[2]*w[1] - w[2]*ell[1])])

return u

def minSampleSize(ballots, u, gamma=0.95, alpha=0.1):

’’’

find smallest sample size for risk-limit alpha, using cushion gamma \in (0,1)

1/alpha = (gamma/(1-1/(ballots*u))+1-gamma)**n

Input:

ballots: number of ballots cast in the contest

u: upper bound on overstatement per ballot

gamma: hedge against finding a ballot that attains the upper bound.

Larger values give less protection

alpha: risk limit

’’’

return math.ceil(math.log(1.0/alpha) /

math.log(gamma/(1.0-1.0/(ballots*u)) + 1.0 - gamma))

# final 2014 Danish EU Parliamentary election results from

# http://www.dst.dk/valg/Valg1475795/valgopg/valgopgHL.htm

# there were two coalitions: (A,B,F) and (C,V)

# There were 13 seats to allocate.
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#

# Official results by party

#

A = 435245

B = 148949

C = 208262

F = 249305

I = 65480

N = 183724

O = 605889

V = 379840

Ballots = 2332217 # includes invalid and blank ballots

nSeats = 13 # seats to allocate

#

# allocate seats to coalitions

#

coalitionTotals = np.array([A+B+F, C+V, I, N, O]) # for coalitions

coalitionSeats, coalitionSeated, coalitionNotSeated, coalitionLastSeated,

coalitionPCs

= dHondt(coalitionTotals, nSeats, np.arange(1, nSeats+1))

print ’A+B+F, C+V, I, N, O:’, coalitionSeats

#

# allocate seats within coalitions

#

nABFSeats = coalitionSeats[0]

nCVSeats = coalitionSeats[1]

ABFSeats, ABFSeated, ABFNotSeated, ABFLastSeated, ABFPCs

= dHondt(np.array([A, B, F]), nABFSeats, np.arange(1, nABFSeats+1))

CVSeats, CVSeated, CVNotSeated, CVLastSeated, CVPCs

= dHondt(np.array([C, V]), nCVSeats, np.arange(1, nCVSeats+1))

#

print ’A, B, F:’, ABFSeats, ’; C, V:’, CVSeats

#

ASeats = ABFSeats[0]

BSeats = ABFSeats[1]

CSeats = CVSeats[0]

FSeats = ABFSeats[2]

ISeats = coalitionSeats[2]

NSeats = coalitionSeats[3]

OSeats = coalitionSeats[4]

VSeats = CVSeats[1]

allSeats = [ASeats, BSeats, CSeats, FSeats, ISeats, NSeats, OSeats, VSeats]

print ’---------------\nSeats to parties A, B, C, F, I, N, O, V: ’, allSeats

print ’Seated coalitions, votes, divisor:’, coalitionSeated

print ’Non-Seated coalitions, votes, divisor:’, coalitionNotSeated

#

# Set audit parameters

gamma = 0.95 # tuning constant in the Kaplan-Wald method

alpha = 0.001 # risk limit

#
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u = uMax(coalitionSeated, coalitionNotSeated)

print Ballots*u

n = math.ceil(math.log(1.0/alpha) /

math.log(gamma/(1.0-1.0/(Ballots*u)) + 1.0 - gamma))

print n
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