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Abstract

System data is abundant, yet data-driven decision making
is currently more of an art than a science. Many orga-
nizations rely on data analysis for problem detection and
diagnosis, but the process continues to be custom and ad
hoc. In this paper, we examine the analytics process un-
dertaken by users to mine large data sets, and try to char-
acterize these searches by the operations performed. Fur-
thermore, we take a first stab at a methodical process to
automatically suggest operations based on statistical anal-
ysis of previous searches performed.

1 Introduction

With the data deluge generated by modern systems, sev-
eral organizations mine their data for insights to enable
data-driven decision making. However, data mining is
still fairly ad hoc and the lack of automated analysis and
visualization tools appears to be hindering data science,
requiring each organization to develop custom tools and
techniques.

Data analysis typically starts with preprocessing, nor-
malizing, and filtering the raw data, then transforming the
data to a format that can be input to the algorithms being
used or calculations being performed, and lastly comput-
ing the metrics to facilitate the decision making. Although
the algorithms and calculations are fairly standard, the
preprocessing step must be customized for each dataset,
causing a bottleneck in the rest of the analysis process.

Extracting useful analysis from data requires deep do-
main knowledge about the data and the system generating
the data. One must have a specific set of things to look
for in the data. Relying on generic techniques for analysis
can result in insights being left undiscovered. Specifically,
correlations within a data set or across two data sets can
provide more useful insights about the state of a system
rather than treating each individual data set as an isolated
piece of information.

A good goal is to automatically perform analysis op-
erations on the data without semantic knowledge about
the data or the system. This would be equivalent to mim-
icking the actions of a data scientist without his/her data-
specific knowledge. Achieving this goal requires search-
ing through the space of possible operations that can be

performed on the data, and finding the subset of interest-
ing or “insightful” operations. As aresult, we require (1) a
policy for exploring the space of possible operations, (2) a
metric for deciding which operations to present to the user
and (3) a policy for incorporating user feedback to iterate
on the analysis.

In this paper, we present a first cut at exploring the
space of analysis operations for data sets. We examine
user search logs from Splunk, a platform for indexing and
searching data. We profile these searches and identify the
characteristics of searches people use to extract insights
from their data. Since a majority of these searches are tar-
geted at monitoring production systems and used for prob-
lem detection and diagnosis, this is an important step to-
wards understanding the data-driven decision making be-
hind system monitoring.

2 Overview

Splunk is a platform for indexing and searching large
quantities of data from heterogeneous data sources, espe-
cially machine-generated logs. It has a MapReduce-like
architecture, details of which can be found in [3]. It in-
cludes a search language for querying and manipulating
data and a GUI with visualization tools. Our first major
goal is to build a semi-automated data exploration tool
on top of this platform. We first give a brief overview of
Splunk, and explain why it is a good choice for our ini-
tial efforts. We subsequently elaborate on the structure of
the search language. Lastly, we give a high-level sketch
of our vision for what a semi-automated data exploration
tool will look like in this context and suggest some possi-
ble approaches.

There are several key characteristics of Splunk that
make it especially useful for monitoring and troubleshoot-
ing:

1. Events are organized temporally—as most prob-
lems have symptoms visible in a particular time window,
troubleshooting is often driven by time and a temporal
data lay out facilitates such analysis.

2. No schema is required at index time—much log data
is semi-structured or unstructured and there is often no
notion of a schema that can be imposed on the data a
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Figure 1: A search consists of a pipeline of operators which
operate in sequential stages. Each stage of a search filters, trans-
forms or enriches data it receives from the previous stage, and
pipes it to the subsequent search stage.

priori, as the structure of the data may evolve over time.
Splunk only requires the presence of a time stamp and an
event delimiter. All other structure is imposed at search
time based on what is being extracted from the data.

3. Heterogeneous data sources can be cross-correlated—
most often, diagnosing the root cause of a problem
requires coalescing data from multiple log files that
capture information from various system components.
Splunk inherently coalesces various data sources by time,
and allows people to interleave data using specific fields
as “primary keys”.

4. Data is manipulated via a simple, yet expressive search
language—Splunk provides a user interface to explore
the data, as well as a simple search language that allows
users a range of options from free text searches to heavy
duty statistical and analytical searches.

These features make Splunk an ideal candidate for a
first approach at semi-automatic data exploration, because
it handles efficiently indexing data, extracting fields, per-
forming computation, and visualizing results, allowing us
to focus on the problem of how to automatically sug-
gest interesting analyses. In addition, computation in the
Splunk search language is structured as a pipeline, which
facilitates the iterative construction of analyses.

2.1 The Search Language

The search language is modeled after the Unix grep
command and pipe operator. Figure 1 shows a schematic
of the various elements of a search string. Data, in the
form of events with fields, is passed through each com-
mand in the search string. I Each command filters, trans-
forms or enriches data it receives from the previous stage,
and pipes it to the subsequent search stage. Within a
search stage, i.e., between pipes, one can extract infor-
mation from the data, augment the data, or summarize the
data using a variety of search commands. At the simplest

1You can think of events as being like rows, and fields as being like
columns, though this is not strictly accurate. For example, all events
need not have the same fields.

end of the spectrum, one can perform plain text searches
for specific strings or match field-value pairs. At the com-
plicated end of the spectrum, one can perform statistical
and analytics operations such as clustering the data using
k-means.

Below is an example of a Splunk search to provide a
count of errors by detailed status code:

searcherror | stats count Dby status |
lookup statuscodes status output statusdesc

The first segment searches all events for the keyword
“error”, and passes these events to the second stage. The
stats command takes these events and computes a count
per status code. In the final stage of the search, we ap-
pend the status description for each status code based on
an external lookup into a separate table.

2.2 Automating Data Analysis

In addition to the platform, search language, and visual-
ization tools, there are also pre-built packages called apps,
each tailored for certain types of data sets, which include
searches that generate reports and dashboards. For exam-
ple, using a web intelligence app, users can view graphs
depicting real-time visitor trends, platform usage, traffic
status, and more, and create three dozen types of business,
marketing, and IT reports with minimal effort. Other ex-
amples include apps for monitoring Windows and Unix
logs, PCI compliance, deployment, and enterprise secu-
rity. Although these apps are useful, their applicability
is limited because they are tailored for certain common
data sets by domain experts for particular purposes. This
makes them unhelpful for exploring new data sets or un-
covering interesting visualizations beyond those thought
up by an app’s author.

Thus, in the context of the Splunk platform, our pro-
posed analysis recommendation tool would enable users
to quickly and iteratively create reports and visualizations
like those found in apps, but for any type of data set,
without needing a semantic understanding of the data. It
will do this by performing a bounded, user-guided search
through the space of possible data transformations to pro-
duce the same types of analyses desired by app users. For
example, our tool might recommend a set of top four plots
depicting time series or correlations in the data, with op-
tions for changing plot type. The user can either click on
a one of these plots to see more like it, or can delete one
of these plots they deem to be irrelevant, to have it be re-
placed by a different plot. A similar interface could be
provided for other operations, such as joining or group-
ing. When an operation produces a new data, it can be
reincorporated into for iterative analysis.

There has been much prior work on building recom-
mendation systems. Both Google search [1] and Net-
flix [2] are classic examples of content recommendation
based on statistical analysis. There has also been much



Data set Searches
Ad hoc customer searches 10958
Scheduled customer searches 97727
All customer searches 108685
Firewall app 8
Deployment monitoring app 44
Unix app 86
Web intelligence app 124
Windows app 23
All apps 285

Table 1: Sources and number of search strings were collected.
We selected a random subset of customer searches which were
issued over the span of a little less than one year. The apps cho-
sen are five of the most popular apps, but we made no particular
effort to choose representative ones. Given app’s diversity in
purpose and complexity, due to targeted raw data set, as well as
author, we focus here primarily on customer searches.

research on improving such content recommendation sys-
tems [5, 4]. However, what we are proposing here is a
recommendation for analysis operations on the data rather
than the content of the data.

The main challenges here are exploring the space of
possible operations, deciding which operations to present
to the user, and incorporating user feedback. One initial
idea is to construct the search pipeline one command at a
time, using a Markov model learned from past searches.
Note that every Splunk search must start with search.
To add commands, at each step, generate a list of possi-
ble next commands. These next commands can be ranked
based on a number of things, for example, the probability
(based on frequencies observed in real searches) the com-
mand will be the th command given the current string of
commands that appear up to place ¢, or the probability that
the command will be used when the data has this or that
statistical property. Each time a command is appended
to the analysis pipeline, generate a new list with updated
rankings. This approach is very loosely inspired by auto-
matic spell checking tools and statistical machine trans-
lation. In the remainder of this paper, we examine real
searches from customers and apps, and use this study to
drive a discussion about this iterative, statistical machine
translation-inspired approach.

3 A Study of Searches

To better understand how to develop a semi-automated
analysis recommendation tool for data exploration on
top of Splunk, we have begun a study of both customer
searches as well as app searches. We have collected ap-
proximately 100,000 search strings from 81 customers, in
addition to 285 search strings from five of the most popu-
lar apps. A list of these sources is given in 1. 2

2Note that because customers might have apps installed, some of the
logged customer searches will also be app searches.
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Figure 2: Cumulative frequency distribution of time ranges that
were searched over in customer searches, split into two plots for
readability. The top graph gives all time ranges under a day,
while the bottom graph shows time ranges from one day to a
little over a year. Only about 69% of searches specified a time
range, but of those that did, 92% were over ranges of less than a
day, and many were over ranges on the order of seconds, a fact
which we found surprising.

We first present some high-level descriptive statistics
about these search strings, then the results of an n-gram
analysis. Our motivation for computing these search
n-grams was to gain some intuition for how to semi-
automatically and iteratively build analysis search strings.
This has resulted in a set of ideas for next steps toward
our proposed analysis recommendation tool, which we
present in Section 4.

We classified customer searches into two types: ad hoc,
which are generally one-off searches run by an analyst via
the GUI or the CLI, and scheduled, which are run reg-
ularly like acron job, usually for the purpose of creat-
ing an alert, dashboard, or report. Of the over 100,000
searches we analyzed, 10% were ad hoc.

The majority of customer search strings are short; Fig-
ure 3 shows that 80% are length three or less, and 99%
less than length ten. Since most searches are scheduled
searches, this means that such search strings tend to be
very short, usually consisting of a simple search for a
key term, or a search then stats. Conversely, only
46% of ad hoc search strings are length three or less. Fig-
ure 3(b) is a CDF of app search string length, and Fig-



n | Unique n-gram Percent | Command types
“search 68.514 filter
“search$ 31.460 filter

1 435 table$ 13.192 format
stats.count$ 11.332 count
rex 10.944 extract
“search stats.count$ 10.593 count
“search timechart.count$ 7.690 count, visualize

2 1242 “search top$ 6.938 filter
“search rename 5.746 format
“search rex 4.803 filter, extract
“search rename rex 3.040 filter, extract, format
rename rex table$ 3.039 format, extract

3 1531 “search rename table$ 1.972 filter, format
“search rex rename 1.949 filter, extract, format
rex rename table$ 1.949 filter, format
“search rename rex table$ 3.039 filter, format, extract
“search rex rename table$ 1.949 filter, format, extract

4 1299 stats.max eval.round collect head 1.490 max, round, store, filter
eval.round collect head export$ 1.490 round, store, filter
fields eval./ stats.max eval.round 1.490 filter, divide, max, roumd
fields eval./ stats.max eval.round collect 1.490 filter, divide, max, round, store
“search eval fields eval./ stats.max 1.490 filter, divide, max

5 1066 eval fields eval./ stats.max eval.round 1.490 filter, divide, max, round
stats.max eval.round collect head export$ 1.490 max, round, store, filter
eval./ stats.max eval.round collect head 1.490 divide, max, round, store, filter

Table 2: Summary of top search string n-grams for all subset of support case searches. The number of total unique n-grams can
decrease because searches that are less than length n are not included for n-gram analysis. The majority of customer search strings
are short and simply filter and format log events, occasionally computing some simple statistics.

ure 3(c) compares customer searches with app searches.
In apps, search strings tend to be longer; with 48% of
length three or less and 91% less than length ten. This
varies greatly by app, however, with certain apps, such
as the deployment monitor, skewing toward very long
searches, and other apps, like the Unix app, skewing short.

Information about the time ranges that customer
searches were run over are presented in 2. There are a few
caveats to note. The first is that not all searches specify a
time range—some are just specified to run over all events
in an index. Thus, only searches that specify a time range,
approximately 69% of customer searches, are included.
The second is that, for readability, searches were split
into ranges of less than a day, and ranges over a day (the
longest range is a little over a year). Searches in the first
category make up about 92% of searches. Many searches
span very small time ranges; 450 searches are over a range
of a minute or less, and 31 searches were over a range of
one second. Many of these searches turn out to be the
same search string repeated many times. Many searches
examine less than two hours of data, and searches looking
a more than a day are much less common.

Table 2 depicts some results of computing all n-grams
for each logged customer search string. To compute these,
we reduce each search string to a list of commands and
their function arguments (e.g., stats is a command and
count is a function argument), preserving the order that
they appear in the original search string. We then compute

n-grams from this list, where an n-gram is any sublist of
elements of size n. We show only the top five most fre-
quently occurring n-grams for n € {1,...,5}, in the in-
terests of space, and because most search strings are short.
A quick note on notation:

e ~cmd means cmd is the first command in the search.

e cmd$ means cmd is the last command in the search.

e cmd. fn_1.fn_2 means cmd is called with fn_1 and
£n_2 as arguments.

e cmd. fn_1 (£fn_2) means cmd is called with £n_1 as
an argument, which has £n_2 as an argument.

e [cmd] means that cmd is contained in a subsearch.

Along with each n-gram, we include a short description
what type of commands are included, e.g., the search
command is a filters events, while the £ields command
filters fields, but both are filters.

We see that the majority of customer searches, as pre-
viously observed, are simply filtering and formatting log
events, and occasionally computing some simple statis-
tics. This suggests that building analysis search strings
based solely on n-gram frequencies computed from cus-
tomer search logs, as proposed in Section 2.2, will yield
relatively simple searches; the next section show some ex-
amples of automatically generated searches, along with
additional heuristics used to guide the exploration towards
more “interesting” queries. An example of search strings
that might be suggested by using approximately this al-
gorithm is given in Section 4, along with a discussion of
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Figure 3: Distributions of search string lengths. The top graph
shows the search search string lengths for customer searches,
the middle for apps, and the bottom graph compares customer
searches and apps. The majority of search strings are short,
though app search strings tend to be longer.

possible improvements.

Another observation is that some common command
strings are simply permutations of one another, e.g.,
rename rex and rex rename. This suggests that for
our analysis recommendation tool, it might be useful to
define a canonical search language, one of the purposed of
which would be to represent permutations of commands
that do the same thing in a single way. This would also
help eliminate other idiosyncrasies such as the fact that
head export is appended to commands that are run
from the command line interface.

4 Toward Analysis Recommendation

Table 3 illustrates the rough idea for automatically gen-
erating the recommended searches as mentioned in Sec-
tion 2.2. In this algorithm, the construction of search
strings is like a Markov chain. This example uses the
customer search string data provided in the previous sec-
tion for the probabilities that weight the choice of the next
command in the string. In this example, we start with the
most frequently occurring starting command, which is al-
ways search. Although not shown here, we also need
a way to pick the arguments to search. One possibility
is to search for all values of categorical fields, or for com-
monly occurring search strings. We do not want to search
for very rare search strings (n = 1) since that represents
a different use case; we can assume that users will not be
interested in analysis of a single data point. Next, we look
at the list of commands that most frequently occur after
search, and so on. When we reach the end of a search
string, we output that as a suggested search.

Note that in the example we do not strictly explore the
path dictated by ranked frequency (iteration 3 should actu-
ally be “search rename rex). This is because that
path terminates relatively quickly, and we wanted to give
an example of a longer search. This demonstrates one of
the weaknesses of this particular next-command ranking
function. In addition, this ranking function does not ac-
count for equivalent permutations of commands. In the
remainder of this section, we discuss several challenges
we must solve, relating to these issues.

Choosing time ranges and arguments to commands:
In order to protect customer privacy, we did not look at
the fields or values in the customer search strings, since
that is sensitive information. However, when suggesting
an analysis, we must also decide what fields or values
to include as arguments to each command. In addition,
we must choose a time range of data to analyze. Poten-
tially, similar approaches for ranking which commands to
include next in an analysis pipeline could apply for rank-
ing which fields or values to include as arguments to each
command. Or, especially in the case of time ranges, it
might be reasonable to ask the user to specify.

Choosing an appropriate ranking functions: The rank-
ing scheme we proposed was purely based on customer
search string n-gram frequencies. A statistical approach
is reasonable; however, in addition to n-gram frequencies,
we may want to incorporate other information, including,
but not limited to:

1. The type of data source: e.g., Splunk searches often
specify the index or source type being searched over
(as index and source type are fields in each data set),
thus, when computing next-command rankings, we
can consider only search strings that search over the
same values for those fields.



Iteration | Suggestion to Output Current Command Next Command
“search$ “search stats.count$
1 “search “search timechart.count$
“search top$
“search rename
“search stats.count$ “search rename rex
2 “search timechart.count$ “search rename “search rename table$
“search top$ “search rename join
3 “search rename table$ “search rename join “search rename join table$
“search rename join
[search...
i “search rename join
[search rename] rename
convert table$

Table 3: An example algorithm for automatically generating recommended searches based on customer search n-gram frequencies.
We start with the most frequently occurring starting command, which is always search. Although not shown here, we also need
a way to pick the arguments to search. When we reach the end of a search string, we output that as a suggested search.

2. Search strings from apps: similar to the previous
case, we can leverage, where available, the domain-
knowledge present in already-created apps when the
data being searched is of the same type the app is in-
tended to be applied to, by giving higher weight to
n-grams computed from those apps.

3. Statistics related to the data itself: Certain commands
are more interesting or more often applied when
the data set in question has certain simple statistical
properties. A simple example of this is that when a
field always has the same value, a time series plot of
that field is unlikely to be interesting.

Exactly how to include this information is an open ques-
tion. Moreover, we may want to use a hybrid rule-based
and statistical approach in order to generate more so-
phisticated analysis. For instance, commands such as
anomalies and kmeans are infrequently used, and not
always applicable, but have the potential to yield interest-
ing insights. Thus, we could have a rule that looks for
cases when these commands make sense to apply (e.g.,
must have appropriate data type and entropy) and include
those as suggestions.

Incorporating user feedback: When a user rejects a sug-
gestion or requests similar suggestions, this should affect
which suggestions are provided subsequently, but it ex-
actly how this should be done is a matter of future re-
search.

Continuous, online training: We saw that the customer
search strings with which we might initially generate our
rankings tend to be quite simple. A simple search is
a good start but by itself does not make for very sophis-
ticated analysis. In addition, such search strings likely
arise from a different use case than our tool is targeted for,
namely, trouble-shooting, rather than offline, open-ended
data exploration. Since the performance of statistical ap-

proaches depend heavily on how good the input data is,
this is undesirable. The more a semi-automated data ex-
ploration tool is used, the more examples of interesting
search strings we will have. Our tool must have some way
of incorporating this information.

Creating a canonical analysis language: We have al-
ready seen simple examples where some sequence of op-
erations in the Splunk search language are equivalent to
others, or where the search language has certain quirks
not particularly relevant to the actual analysis being done.
The performance of our tool might be improved if it only
needs to consider search strings which have been canoni-
calized into a form of the analysis language which trans-
forms equivalent commands into a single form.
Applicability to other platforms: The solutions to the
above challenges will ideally be based on principles gen-
eral enough to apply to many other data analysis plat-
forms. It should be conceptually straightforward to ap-
ply our solution to other systems which also use pipelined
languages. In other cases, such as with SQL-like systems,
it might be simplest to include a translation step which
translates between SQL and our canonical analysis lan-
guage.
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