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Abstract
Content delivery networks and edge peering facilities
have unique operating constraints which require novel
approaches to load balancing. Contrary to traditional,
centralized datacenter networks, physical space is heav-
ily constrained. This limitation drives both the need for
greater efficiency, maximizing the ability to absorb de-
nial of service attacks and flash crowds at the edge, and
seamless failover, minimizing the impact of maintenance
on service availability.

This paper introduces Faild, a distributed load bal-
ancer which runs on commodity hardware and achieves
graceful failover without relying on network state, pro-
viding a cost-effective and scalable alternative to exist-
ing proposals. Faild allows any individual component
of the edge network to be removed from service with-
out breaking existing connections, a property which has
proved instrumental in sustaining the growth of a large
global edge network over the past four years. As a con-
sequence of this operational experience, we further doc-
ument unexpected protocol interactions stemming from
misconfigured devices in the wild which have significant
ramifications for transport protocol design.

1 Introduction
While economies of scale have increasingly centralized
compute and storage, user expectations dictate that con-
tent and even logic be pushed further towards the edge of
the network. This centrifugal relationship has increased
the relevance of Points of Presence (POPs) as an inter-
mediary between cloud hosted services and end-users.

As a design pattern, POPs were pioneered by Content
Delivery Networks (CDNs) intent on improving perfor-
mance for traditional HTTP caching and DNS resolution.
They have since evolved to encompass a much wider set
of application layer services such as media processing
(e.g. video and image optimization), security (e.g. appli-
cation layer firewalls) and business logic (e.g. authen-

tication and authorization; paywalls; request routing).
The common thread uniting these edge cloud services is
that they are latency sensitive and must therefore be ge-
ographically distributed across POPs rather than merely
centralized within availability regions.

Today, edge cloud providers deploy hundreds of POPs
[31, 39], with individual POPs able to deliver upwards
of a terabit per second of bandwidth whilst handling
millions of requests per second. How traffic is dis-
tributed across available hosts within a POP has a sig-
nificant impact on the performance and availability of
a large number of Internet services. Load balancing in
this context differs significantly from traditional data-
center environments, and as a result existing solutions
[15, 16, 17, 22, 27] are not readily applicable.

The defining constraint in the architecture of a POP
is that physical space is at a premium [39]. POPs are
typically set up in colocation facilities, often in regions
where few alternatives exist, if any. The resulting inelas-
tic price dynamics impose a strong economic incentive
to minimize POP hardware in an effort to reduce capi-
tal expenditure. Load balancing under such constraints
exacerbates the following concerns:

Efficiency. The physical build of POPs must be de-
signed to maximize the number of service requests that
a given number of hosts can process. Proposals that
rely on dedicated hardware appliances or VM instances
[15, 16, 17, 27] are not cost-efficient, since they con-
sume scarce resources without increasing the number of
requests that a POP can service.

Resilience. POPs provide a critical service at a fixed
capacity, and are therefore attractive targets for denial-
of-service attacks. Load balancing proposals which rely
on flow state or incur significant per-flow overhead [15,
16, 17, 22, 27] are vulnerable to exhaustion attacks, and
pose a threat to business continuity.

Gracefulness. Owing to the higher processing den-
sity of POPs, individual components within a POP rep-
resent a much larger proportion of total system capacity
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when compared with traditional cloud environments. It is
therefore vital that all system components can be brought
in and out of service gracefully, without disrupting active
flows. To our knowledge, no existing load balancer en-
sures seamless addition and removal of every element of
its architecture, including hosts, switches and peers.

The primary contribution of this paper is to describe
the design and implementation of a load-balancer which
achieves all of the above goals. Faild provides trans-
port affinity (seamless transport-layer failover) with min-
imal processing overhead. It synthesizes two distinct ap-
proaches leveraging hardware processing on commodity
switches where possible, and pushing out flow handling
to efficient software implementations when necessary.

A load balancing solution operating further down the
network stack would be oblivious to how packets relate
to ongoing transport connections, and therefore unable to
ensure graceful draining, i.e. bringing a system compo-
nent out of production without affecting service traffic.
On the other hand, operating above the transport layer
requires per-session state tracking, which is at odds with
our requirement for robustness against resource exhaus-
tion attacks. A key insight in this paper is that since
end hosts track flows themselves, this trade-off is not
binding: by performing host mapping on switches and
re-purposing the connection tracking functions that end-
hosts already perform, a load-balancer can retain trans-
port affinity without the burden of maintaining network
state. Although many of the specific techniques used by
Faild have been used in isolation in other contexts (see
Sec. 7), Faild brings them together in a novel way that
directly addresses the needs of edge clouds and CDNs.

Our final contribution is to provide insight into the tri-
als and tribulations of operating Faild over the past four
years at a large1 edge cloud provider. We document
where reality fell short of our original design assump-
tions - from network equipment shortcomings to unex-
pected middlebox behavior - and how these quirks may
affect future protocols to come.

The remainder of this paper is organized as follows.
Sec. 2 expands upon the engineering requirements of
edge load balancing. Sec. 3 describes the design of Faild,
and Sec. 4 details its current implementation. Sec. 5
evaluates the system in practice, and Sec. 6 describes
some of the lessons we learned by developing it and de-
ploying it on production. We present relevant related
work in Sec. 7, and conclude with Sec. 8.

2 Background and motivation
While the architecture of a POP bears superficial resem-
blance to traditional datacenter environments, their goals
differ, and as a result the set of constraints they impose

140+ POPs globally; 7+ million RPS and 4+ Tbps of client traffic.

diverge. This section expands upon the requirements pre-
sented in Sec. 1 and highlights the idiosyncrasies of load
balancing within POPs.

High request processing density. Ideally, all avail-
able power and space in the POP would be devoted exclu-
sively to hosts. This proves unfeasible except for the very
smallest POPs. As the number of hosts in the POP in-
creases, directly connecting them to upstream providers
becomes 1) logistically impractical for providers; 2) pro-
hibitively expensive for intra-POP traffic; and eventually
3) physically impossible due to lack of ports. Network
devices are therefore required to both reduce the number
of interconnects required towards providers and ensure
connectivity between hosts2. Our preferred POP topol-
ogy maximizes power and space cost-benefit for hosts by
collapsing all load balancing functions into just two lay-
ers: one for switches and one for hosts. A POP hence
consists of a minimal number of switches, each one con-
nected to all hosts and providing them with consolidated
BGP sessions and Internet connectivity. This deviates
from a common design pattern in datacenters, which re-
lies on Clos-like topologies [6, 33].

Traditional hardware solutions e.g. [1, 3] are un-
desirable both due to their low power/space efficiency
and poor horizontal scalability. Software-based solutions
[15, 27] on the other hand perform poorly given the lower
throughput and higher latency of packet processing on
general purpose hardware. For example, Maglev [15]
claims a 10 Gbps limit per load balancing host. Our
most common POP build has 4 switches fully meshed
with 32 hosts using 25 Gbps NICs. Since each host has a
rated capacity of 40 Gbps in order to ensure operational
stability, this results in a reference POP throughput of
1.28 Tbps. This alone would require over 100 Maglev
hosts to load balance, which greatly exceeds the num-
ber of target hosts. Even if future advancements made it
possible to substantially reduce the number of software
load balancers required per target host, deploying load
balancing functions in hosts would prevent using the full
bisection bandwidth offered by the physical POP topol-
ogy, further impacting request processing density.

Traffic surges. POP load balancers must be designed
to gracefully withstand traffic surges of hundreds of
times their usual loads, as well as DDoS attacks.

Highly optimized stateful solutions such as SilkRoad
[22] can scale to ten million simultaneous connections
by using hashing to scale per-connection state manage-
ment and storing this state in the ASIC SRAM mem-
ory of switches with a programmable data plane. In
our experience however POPs are routinely subjected to
SYN floods largely exceeding this number, and the in-
tensity and frequency of these attacks is suppressed only

2Facebook EdgeFabric [31] and Google Espresso [39] rely on simi-
lar architectures to provide a capacity-aware, SDN-based edge peering.
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when they fail to inflict economic harm. While software-
based solutions like Maglev [15] and Duet [17] are less
memory-constrained than SilkRoad, they are still subject
to degraded performance as the connection count rises.

A commonly deployed alternative to stateful load
balancing is to rely on Equal Cost Multipath (ECMP)
[18, 38] to simply hash inbound connections to ac-
tive hosts. While ECMP results in connection resets
when re-hashing, many operators tolerate this given they
more often operate under high load than high churn.
Flashcrowds and DDoS in particular make statelessness
an engineering necessity for edge load balancing, rather
than a design choice.
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(b) Worst case host drain event
rate per POP per minute

Figure 1: Drain events for one month, for all POPs

Host churn. While horizontally scaled services in a
datacenter may comprise tens or hundreds of thousands
of instances, POPs will typically have tens of nodes. As a
result, the relative service impact of removing and adding
hosts is much greater. Similarly, POPs are directly ex-
posed to a much more diverse set of peers (via IXPs, In-
ternet exchange points).

Without support for graceful failover, churn across the
set of hosts and providers can disrupt traffic in a manner
which is observable by customers, consequently increas-
ing the operational expense for support and deployment.
The need to remove hosts for software upgrades in partic-
ular is further exacerbated in edge networks due to their
pivotal role in securing cloud services. Often edge net-
works will provide TLS termination and interface with a
much wider set of clients, which increases the churn due
to important software upgrades. Fig. 1 shows the average
and worst case rate for hosts being drained across POPs
over the course of a month. The average daily drain rate
is not neglible given the size of a POP - this will include
both planned, automated maintenances and software or
hardware faults. Multiple concurrent drain events, how-
ever are relatively rare, since automated upgrades will
be halted in the presence of unplanned events. In our
environment switches are almost as frequently upgraded
as hosts, given we run a custom control plane stack and

there are frequent adjustments to the set of BGP peers.
Software load balancers [15, 16, 17, 27] can grace-

fully drain service hosts, but not the load balancers them-
selves since they maintain per-flow state. Hence, it is
normally not possible to remove a load balancer instance
from service without disrupting ongoing connections un-
less state is synchronized across all instances, which in
itself is non-trivial and hence rarely supported. Further-
more, routing changes within a POP or peer churn may
cause flows to be hashed to different load balancer in-
stances, thereby disrupting existing flows.

3 Design
Building on the stated goals from previous sections, we
now turn our attention to designing an efficient, stateless
and graceful load balancing system. Faild attains these
goals by relying on the socket information that hosts are
required to maintain, allowing network devices to remain
oblivious to TCP connection state. Similarly to other
load balancing architectures [15, 17, 19, 27], Faild uses
ECMP to hash flow tuples and load balance service traf-
fic. Correspondingly, services are application layer ab-
stractions advertised to the Internet using sets of virtual
IP addresses (VIP sets). Sec. 3.1 explores how Faild
couples ECMP and MAC address rewriting to approxi-
mate consistent hashing. We then describe how this can
be leveraged to enable graceful host failover in Sec. 3.2
and discuss host-side packet processing in Sec. 3.3.

3.1 Consistent hashing
We define consistent hashing as the ability to change
from load balancing over a baseline host set B to balanc-
ing over a failover host set F with only traffic destined
to hosts in a removal host set R of hosts in B but not in
F being affected. Only flows terminating on R (the set
of hosts being drained) are affected; ongoing flows ter-
minating on hosts in the common set C of hosts found in
both B and F remain unaffected.

In Faild, switches implement platform agnostic con-
sistent hashing by maintaining a fixed set of virtual nex-
thops, forcing the switch to perform an ARP lookup in-
stead. By not manipulating the routing table, we avoid
rehashing events which would otherwise reset existing
connections. Faild maps each service (set of VIPs) to
a set of ECMP nexthops, and each ECMP nexthop to a
MAC address. It is this transitive association between
services and MAC addresses that determines the load
balancing configuration.

Draining a switch can be achieved by instructing it
to withdraw route advertisements for all services from
all BGP sessions with its upstream providers. This will
redirect traffic flowing through it towards neighboring
switches, which would still advertise the withdrawn pre-
fixes. The only requirement for this process to be grace-
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10.0.1.B192.168.0.0/24
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Next hop IP

Healthcheck passing

Healthcheck failing

xx:xx:xx:xx:xx:c Target host

Figure 2: Custom routing protocol based on ARP table
manipulation. The routing table remains static while the
ARP table is adjusted to point at healthy hosts. Addi-
tional nexthops ensure even distribution of traffic when
some hosts are unavailable.

ful is that all switches are configured to hash identically,
so that all switches allocate flows to the same hosts.

A constraint of implementing consistent hashing in
this manner is that the granularity with which traffic can
be re-balanced is now directly tied to the number of nex-
thops used. If we only allocate one nexthop per host,
removing a host from service would potentially double
the amount of traffic towards a healthy neighbor. To
avoid this, we can use more nexthops to provide finer-
grained control, as illustrated in Fig. 2. In this example
having two virtual nexthops per host is enough ensure
that healthy hosts in the POP have an equal number of
ARP entries directed at them when withdrawing B from
production. In our implementation, we greedily reassign
ARP entries to the hosts with the fewest mapped entries.
Faild can approximate uniform load balancing by allo-
cating a large number of ECMP nexthops to a smaller
number of hosts. In practice we are constrained by the
maximum number of ECMP nexthops supported by the
underlying hardware (see Sec. 6.2).

Although switch vendors have recently started to pro-
vide consistent hashing natively [2, 4], Faild provides its
own implementation for two important benefits. Firstly,
by not relying on vendor implementations we lower the
entry-level cost of eligible switches for use in our POP

designs. More importantly, controlling the consistent
hashing logic allows us to signal to target hosts whether
the connections hashed onto them may have previously
been hashed onto different hosts. This is crucial to use
host TCP connection state to achieve transport affinity,
as we show in Sec. 3.2.

In the example in Fig. 2, if the ECMP nexthops as-
sociated with B are re-allocated to other hosts in the
pool, all ongoing connections towards host B will be ter-
minated. Within large datacenters this problem is usu-
ally dealt with by using application-aware load balancers
that track flow state and map new connections to healthy
hosts, maintaining this mapping until completion. This
approach runs counter to our goal of maximizing over-
all system capacity. In order to retain efficiency, we must
push the equivalent functionality down towards the hosts.

3.2 Encoding failover decisions
Host draining cannot be implemented on switches alone,
since they are layer 2/3 entities with no visibility of what
flows are in progress towards each host at any given time.
Instead, Faild distributes the responsibility for host drain-
ing across both the switch controller and hosts.

On the switch, a controller is responsible for using
consistent hashing to steer traffic towards hosts in the
failover set F . Hosts in F redirect traffic for ongoing
connections back to their original destination in R, so
that they continue to be served until their natural con-
clusion. Rather than relying on proprietary mechanisms,
Faild implements detour routing when draining by ex-
tending the semantics of MAC addresses to encode load
balancing state and its associated routing decisions, in
addition to network interface identification.

Any host f in F can forward ongoing connections to
their original host r in R if they ascertain the identity of
this host. Conceptually, this can be done by annotating
all drained traffic sent to f with the host r responsible for
handling connections which were active before the drain
episode started.

On baseline conditions all traffic for host r will be sent
to MAC addresses with r:r suffix, and all hosts will re-
ceive the load assigned to them by the baseline distribu-
tion. Hence, in the baseline state the last two octets for all
MAC addresses installed in the switch ARP table will be
identical, signaling that all flows should be processed by
their baseline host. In practice, switches forward frames
to hosts based on the last identifier only.

Now consider host r being drained. Fig. 3 revisits
the ARP table for the example in Fig. 2, this time using
MAC addresses which reflect a host being drained from
service, rather than simply removed. Faild will update
all MAC addresses in the switch forwarding table that
have suffixes of the form r:X by re-writing the penulti-
mate octet to denote the failover host f . Hence, ECMP
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Figure 3: ARP table during draining of host B. The
destination MAC address now encodes the drained host
alongside the failover host.

nexthops previously mapped to MAC addresses with an
r:r suffix will now have an f:r suffix and traffic will be
failed over to the correct host f in F .

By rewriting the ARP table in the switch, Faild can
specify, for each IP nexthop mapped to a host r in R, the
failover host f in F that will process new incoming re-
quests. This improves upon alternative techniques such
as switch-native consistent hashing: by appropriately se-
lecting MAC addresses, Faild can inform a given host b
which flows correspond to its baseline ECMP nexthops
(if b ∈C for a given nexthop, the MAC address used will
have a b:b suffix) and which ones correspond to failed-
over ECMP nexthops (if r ∈ R and f ∈ F for a given
nexthop, the MAC address used will have a f:r suffix).
Such an explicit signaling is not achievable with switch-
based implementations of consistent hashing.

3.3 Host-side processing
The method by which Faild steers traffic means we can
no longer rely on routing protocols such as BGP and
OSPF. Faild removes this responsibility from the rout-
ing layer, instead pushing it down to the data link layer.
This is done using a controller that exchanges informa-
tion with agents running on hosts and manipulates the
ARP table on the switch. A host must therefore run an
agent which is responsible for health checking local ser-
vices, and is able to drain hosts if their associated ser-
vice becomes degraded, non-responsive or placed under
maintenance. Since this agent provides intelligent con-
trol over MAC-to-IP bindings, Faild switches do not use
either ARP or IPv6 ND protocols.

Having received failover state information down from
the switch, hosts can decide whether to process traffic
locally or whether to forward it to a drained host. This
not only removes the need for maintaining flow state
within the network, but also distributes the computa-
tional cost of load balancing across a set of nodes which

Current target

xx:xx:xx:xx:a:b

Match 
previous?

SYN packet?

Local socket?

  Redirect

xx:xx:xx:xx:b:b

Process

Destination MAC address

1

3

2

3

4

Previous target

Match 
previous?

SYN packet?

Local socket?

  Redirect

Process

5

6

A B

Destination MAC address

Figure 4: Receive-side packet processing example for
traffic draining from host B towards host A. Packets fil-
tered through host A are only accepted if they belong to
a new connection, or if they match a local socket.

are more numerous and possess greater processing capa-
bilities than switches. This computational cost is further
reduced by implementing all of the receive-side process-
ing as a single purpose kernel module, which efficiently
processes inbound packets according to the destination
MAC address (see Fig. 4).

When processing a frame, the kernel module receive
handler at host h first determines whether the MAC ad-
dress used is of the form h:h where h matches its own
identifier. If so, packet processing is handed over to the
local network stack, since we are operating as a baseline
host (h ∈ B). Otherwise, the MAC address in the frame
will be of the form h:r, where h ∈ F and r ∈ R (h is the
failover host for r for this ECMP nexthop). The mod-
ule must then verify whether the packet inside the frame
belongs to a new connection, as signaled by the SYN
flag in the TCP header (step 2), or to an existing con-
nection, which can be verified by performing a lookup
against the local socket table (step 3). If none of these
conditions are met, the packet is redirected to the drain
target r of the request by rewriting its destination MAC
address to have a r:r suffix and returning the packet to
a Faild switch. The same processing logic is applied at
r (step 5). In this case, a r:r MAC address suffix indi-
cates a locally maintained connection, and the frame will
be immediately accepted. Outbound packets always fol-
low the direct path towards their destination, resulting in
asymmetrical packet forwarding during draining.

4 Implementation
This section details implementation specific nuances of
Faild on both the switch and host.

4.1 Switch controller
The switch controller is implemented in approximately
3500 LOC of Python code and runs as a userspace dae-
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mon on the control plane of a commodity switch built on
merchant silicon. While we use a proprietary vendor API
to access and configure data plane lookup tables, most of
the functionality could be implemented in a portable way
using OpenFlow [21], P4 [9] or SAI [5]. The controller
operates on three tables:
• the routing table, by configuring VIP prefixes for

each of the services to be load balanced and mapping
them to the corresponding group of ECMP next-hops;
• the ARP table, by mapping each nexthop to the ap-

propriate virtual MAC address as hosts are added or re-
moved from the service pool; and
• the bridging table, by mapping each virtual MAC

address to an outbound interface. Given the MAC ad-
dresses are virtual, there is no opportunity for learning
what egress ports they map to. Instead, the controller
must statically construct this mapping in order to avoid
flooding traffic over all ports. This mapping can be pro-
vided via configuration, or autoconfigured using a cus-
tom protocol (e.g. LLDP discovery).

The switch controller also has the responsibility of
keeping track of agent health checks, as well as ensur-
ing that load is evenly distributed across available hosts.
Despite its statelessness, a controller can use its logically
centralized view of network health to implement a va-
riety of load balancing strategies. Currently, agents en-
code three possible states for a health checked service:
up, down, disabled. Operationally, there is an important
distinction to be made between the disabled and down
service states, since the former denotes an intentional
withdrawal from service. While the underlying mechan-
ics used to drain the host are the same in either case, a
rapid sequence of downed hosts may be a symptom of a
cascading failure, at which point a controller may decide
to lock itself and fall back to standard ECMP.

Routing a packet of a load balanced connection re-
quires up to two sequential lookups. The first is the rout-
ing table lookup, normally performed in TCAM, to re-
solve the destination IP address to a group of ECMP nex-
thops. The second involves the computation of a hash on
the packet five tuples and the resolution to an entry of the
nexthop group, normally stored on on-chip SRAM.

ECMP lookup table size does not adversely affect
available space in the TCAM given that exact match
lookups are executed on on-chip SRAM [10]. Hence,
whereas supporting more services or fragmenting the
VIP prefixes used will lead to an increase in TCAM
footprint, adding more hosts or assigning more MAC
addresses to each host will only require an increase in
SRAM footprint. Faild leverages the lower cost and
greater abundance of SRAM over TCAM to achieve im-
proved horizontal scalability and decouple it from mem-
ory limitations.

4.2 Host agent
The host runs both a kernel module (1250 LOC in C)
and a userspace daemon (2000 LOC in Python). The
userspace daemon is responsible for configuring VIPs lo-
cally, executing healthchecks and relaying service health
upstream to switch controllers. The kernel module is re-
sponsible for processing incoming packets with a Faild
virtual MAC address as a destination. Depending on the
address and the local socket table, the module will either
deliver the packet locally or redirect the packet towards
the alternate host encoded in the destination MAC.

In addition to the processing described in Fig. 4, the
kernel module must add each of the secondary MAC ad-
dresses to the NIC unicast address filter using a standard
kernel network driver API function. The NIC driver im-
plements this function by adding the MAC address to the
NIC’s unicast perfect match filter. If this filter table is
full, the NIC will resort to either using a hash-based fil-
ter, or by enabling unicast promiscuous mode, depending
on the particular NIC model in use.

A further implementation nuance of the kernel module
is in ensuring correct SYN cookie support. SYN cook-
ies [8, 14] are vital in defending against large scale SYN
floods. The difficulty when we are sending SYN cook-
ies is that returning ACK packets will not match a local
socket. As a result, we cannot determine whether they
belong to a 3-way handshake for a connection that we
ourselves sent a SYN cookie for and hence should be de-
livered locally, or whether they are regular ACKs for a
drained host connection and hence should be forwarded.

Fortunately, there is a solution for this that is both sim-
ple and elegant. The Linux kernel enables SYN cook-
ies automatically upon listen queue overflow. We check
whether the listening socket on the local host has recently
seen a listen queue overflow, and if so, we execute a SYN
cookie validation on the ACK field. If the validation suc-
ceeds we deliver the packet locally and we forward the
packet otherwise. Since a SYN cookie is a hash of a set
of connection-related fields as well as some secret data
and is designed to be nontrivial to forge, we are unlikely
to accept an arbitrary ACK value as a valid SYN cookie.
We are also unlikely to accept a SYN cookie generated
by another host in the POP as a valid SYN cookie since
each host uses a distinct secret hash seed.

5 Evaluation
In this section we evaluate the efficiency, resilience and
gracefulness of Faild (see Sec. 1). In particular, we show
that Faild can drain any system component without im-
pacting end-to-end traffic (Sec. 5.1); can drain hosts in
a timely manner (Sec. 5.2); does not induce a signif-
icant latency increase when detouring drained connec-
tions (Sec. 5.3); does not impose significant CPU over-
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head on hosts (Sec. 5.4); and can achieve good load dis-
tributions across available hosts (Sec. 5.5).

All results presented were collected by means of ac-
tive and passive measurements on our smallest produc-
tion POP deployments, composed of only two switches
and eight hosts. Despite occupying only half a rack, this
particular instantiation of our POP design can scale up
to 400 Gbps of throughput and handle up to 320k re-
quests per second (RPS). Larger POPs can span up to
four switches and 64 hosts.

5.1 Graceful failover
Sec. 3.1 claimed Faild maintains transport affinity when
draining switches, allowing switches to be removed from
operation without impacting established TCP connec-
tions. This is demonstrated in Fig. 5, that shows off-
peak draining and refill of a Faild switch in a production
POP. This POP only comprises two switches, both multi-
homed to the same set of providers. The drain and refill
events are visible in the graph at the top, in which all in-
bound traffic from one switch is initially shifted to the
other and then shifted back. The other graphs highlight
that both the number of requests served by POP hosts and
the rate of reset packets (RST) and retransmissions they
generate remain unchanged. The graceful removal and
addition of one switch confirms that both switches must
be applying the same hashing function.
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Figure 5: Graceful draining and refill of a switch

We proceed to demonstrate host draining. With all
other components in steady state, the withdrawal of a
single host from service should trigger Faild to redis-
tribute traffic equally across all seven neighbors. This
is observable in the top graph of Fig. 6, which shows
the rate of requests handled by each host of a POP as a
host is drained and refilled. We can make two impor-

tant observations. First, upon disabling a host, the rate
of VIP-related requests decreases rapidly and eventually
converges to zero, on a timespan depending on the dis-
tribution of flow sizes active on the host when drained.
Similarly, upon the host being re-enabled, the rate of re-
quests rapidly converge to pre-draining values. Second,
enabling and disabling a host does not cause any increase
in RST and retransmission rates on any host. This vali-
dates that both events did not cause packets being deliv-
ered to incorrect hosts or dropped.
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Figure 6: Host failover. Host d, in red, is drained and
then refilled; traffic is shifted towards failover hosts f ∈
F , in grey, and then shifted back to d.

5.2 Switch reconfiguration time
As discussed in Sec. 3.1, Faild implements host drain-
ing by means of a user space application running on
the switch that updates the ARP table. For benchmark-
ing purposes, we repurposed this application to perform
batch ARP table updates of varying sizes. This was
carried out multiple times on two models of production
switches, referred to as switch A and B, equipped with
different ASICs. Fig. 7 plots the measured time as a
function of the number of ARP entries to be updated.

Roughly, we observe that overall reconfiguration time
scales linearly with the number of updates. Even in the
worst case scenario, requiring 1024 ARP entries to be
updated, the 95th percentile is 119ms for switch A and
134ms for switch B. These values are low enough to en-
sure that, for the foreseeable future, Faild does not hinder
our ability to react to host liveness in a timely manner.
This is particularly true given ARP updates are atomic,
and therefore service traffic is not disrupted during re-
configuration.
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Figure 7: ARP table reconfiguration time

5.3 Detour-induced latency
Unfortunately, common debugging tools (e.g. ping,
traceroute and nc) are not useful to measure the latency
induced by detour routing during draining. This is be-
cause TCP SYN packets are never detour routed, and
ICMP echo request packets do not trigger a lookup in
the host socket table, which is crucial to obtain a realistic
approximation of system behavior.

To measure detour routing latency we built a simple
active measurement tool that runs on a non-Faild server
q. The tool generates a stream of non-SYN TCP packets
having a destination MAC address suffix f:r that spec-
ifies a node r as the drained host and f as its failover
host. Since these are not TCP SYN packets, they trigger
a lookup in the socket table when received by f . Since
these packets do not correspond to an ongoing TCP con-
nection, the lookup will not return a match, resulting in
a detour through host r. When r attempts to process the
packet it will not find a matching socket either, and will
subsequently generate an RST packet and send it to q. By
measuring the time between the generation of the non-
SYN and RST packets q can measure the round trip la-
tency. The direct round trip latency between q and f is
measured using the same tool, but in this case the desti-
nation MAC address is set with two identical last octets,
which causes f to reply directly with a RST packet.

The subsequent results are plotted in Fig. 8a, that
shows the empirical CDF of RTT in steady-state and
draining phases. Introducing a single hop detour induces
a very low increase in end-to-end latency: the 50th per-
centile of the latency differential is 14 µs, the 95th per-
centile is 14.6 µs, and the 99th percentile is 19.52 µs.
It should be noted that this small additional latency is
observed only during a host draining phase and only by
flows terminated at hosts being drained. In contrast, soft-
ware load balancers add a latency between 50µs and 1ms
[17, 15] to all packets they process.

5.4 Host overhead
In order to measure the overhead incurred by the kernel
component of Faild, we instrumented hosts to periodi-
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Figure 8: Draining microbenchmarks

cally collect stack traces on each CPU and count how
many of those traces included function calls attributed
to Faild. These counts are then normalized using the
total number of traces collected. Since hosts run on
GNU/Linux, we collected traces at 999 Hz to avoid syn-
chronization with the 1 kHz timer interrupt frequency.

Fig. 8b shows the estimated probability density for the
CPU utilization of the Faild kernel module calculated us-
ing Gaussian kernel density estimation [32]. We model
the distribution for each one of three phases: steady-
state, draining and refill. Data referring to host draining
and host refill was collected over the first two minutes
after the transition was triggered.

In steady-state we can observe that CPU utilization is
very low, averaging approximately 0.1%. The utiliza-
tion remains approximately constant as draining begins,
and during the drain event itself. A noticeable increase
occurs when we revert the draining operation and shift
traffic back to the drained host, which we denote as re-
filling. At this point the kernel module receives a large
number of packets in which the last two octets of the des-
tination MAC address differ, which requires a lookup in
the socket table to be able to trigger detour forwarding in
case of a miss. In spite of the increased workload, the av-
erage CPU utilization remains remarkably low, peaking
at 0.5% for a very small subset of samples. In general,
the expected utilization during refill is 0.22%.

Our two minute measurement cut-off is justified be-
cause flows usually terminate quickly after a drain event
starts. To verify this, we measured the distribution of
flow completion times from different vantage points on
our network. The resulting distributions for three of our
POPs in distinct geographic regions are plotted in Fig.
9. While these results are biased towards our customer
base and the configuration settings for their applications,
they provide us with a feel for the underlying properties
of flows in flight. Our analysis shows that most flows
are short: between 60% and 70% of flows last less than
10 seconds and between 78% and 85% last less than 1
minute. Host overhead is therefore not only small to be-
gin with, but also decays rapidly over time.
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Figure 9: Distribution of flow completion time

5.5 Load balancing accuracy
In order to achieve good load distributions, 1) switches
must provide a good enough hardware implementation of
ECMP hashing; and 2) the mix of inbound traffic must be
such that ECMP will provide sufficiently homogeneous
traffic balancing. We validate these two requirements.
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Figure 10: Granularity of ECMP load balancing

To measure load balancing quality we sample two
hosts, each one from a POP equipped with a different
switch model, and assign the same number of nexthops
to each. By measuring the traffic volume served by ei-
ther host at 5 minute intervals over a 24h period, we can
calculate the actual fraction of traffic volume served by
each host normalized by the average amount of traffic
served by all hosts for each interval. Fig. 10a shows
the distribution of this fraction for both switch models;
the density concentration around unity shows that load
balancing quality is good for both switches used in pro-
duction. As shown in Sec. 6.3, this does not always hold
(e.g. Switch C, Fig. 10b).

6 Operational experience
Faild derives much of its elegance from a core set of sim-
plifying assumptions. This section revisits our assump-
tions in light of our operational experience and highlights
their practical implications.

6.1 Recursive draining and POP upgrades
A limitation of the stateless architecture of Faild is that
hosts that are actively forwarding drained traffic cannot
be drained themselves. If any nexthops have MAC ad-
dresses with a f:r suffix (indicating that traffic for r is
already being failed over to f ), failing over host f to host
g would imply updating these suffixes to have the form
g:f, and the previous draining indirection from r to f
would be lost. If f were still forwarding ongoing connec-
tions for r at this point, they would be reset by g as they
would not have an associated open socket. This type of
recursive draining fails because it cannot be effectively
represented with our current MAC address encoding, and
this means that Faild is unable to recover when a host that
is already forwarding drained traffic fails.

While trivial to address by further overloading MAC
address semantics, in practice this shortcoming is not a
concern. For one, it is mitigated trivially by waiting for
drained traffic to decay naturally. As long as the av-
erage time between failover reconfigurations is greater
than the time needed for ongoing connections to end nat-
urally once a draining episode is started, no customer
traffic will be affected. Since edge traffic is preponder-
antly composed of small objects, flow completion time is
low and drained traffic decay is fast, as observed in Fig.
9. Additionally, the probability for overlapping draining
episodes is correspondingly low. As shown in Fig. 1,
every one of our POPs had a worst-case draining rate of
5 events per minute or lower at the 99.9th percentile, ir-
respective of underlying event cause. In our experience,
the benefits of recursive draining do not justify the result-
ing increase in operational complexity.

Faild can implement seamless addition of hosts sim-
ply by draining an appropriate number of ECMP nex-
thops to the new hosts being deployed. However, instead
of updating all MAC addresses with suffixes r:r associ-
ated with a drained host r, the ECMP nexthops to be re-
allocated are chosen from the entire forwarding table in
such a way that the resulting configuration is balanced.
After a host f is inserted, and once draining traffic has
subsided, addresses with f:X suffixes can be re-labeled
as f:f to distinguish the change as permanent. In order
to simplify the addition of hosts to a POP, Faild switches
are configured to use the maximum number of nexthops
supported by the hardware, which are then allocated to
the initial number of hosts in a balanced manner.

6.2 Scalability challenges
When scaling Faild to larger POPs, the main bottle-
neck in a single-layer topology will be the port den-
sity of switches; this can be mitigated by using alter-
native topologies with multiple switch layers. However,
a challenge arises when performing ARP table updates
on switches running Faild but not directly connected to
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hosts: bridging table changes need to be synchronized.
This can be achieved with either custom agents running
on switches or using e.g. LLDP discovery.

Although our MAC address encoding limits POP size
to 256 hosts, we have yet to come close to this limit.
The tight latency bounds crucial for edge clouds push
for geographically diverse POPs with a small number
of high-end servers, counterbalancing the economies of
scale driving conventional datacenter deployments. It
would however be simple to extend the host encoding
in MAC addresses to support larger POPs.

A further challenge arises when the maximum number
of ECMP nexthops supported by the underlying switch
hardware is insufficient to provide adequate load balanc-
ing. Recent commodity switches provide 2048+ nex-
thops, which we have found to be sufficient for our needs.

The current layer 2 architecture is attractive because
it is efficient and widely supported and tested. Further-
more, IPv6 is trivially supported and kernel packet pro-
cessing on the hosts is simpler than alternative encapsu-
lation methods. If necessary however Faild can operate
in the network layer without significant modifications.
By simply using IP-in-IP ECMP nexthops bound with
host IP addresses and with statically configured ARP
tables, all the benefits that we have described become
available in a layer 3 architecture.

6.3 ECMP hashing assumptions
While ECMP hashing plays an important role in most
load balancing solutions [17, 27], it is central to Faild.
Our original design and subsequent analysis make nu-
merous assumptions which were empirically validated in
Sec. 5. This, however, is a reflection of our own selec-
tion bias rather than representative for all switch mod-
els. While evaluating various hardware options, we came
across numerous implementation flaws.

Uneven hashing. Some switches under evaluation
were incapable of hashing evenly. The worst example
was a switch that, when configured with 256 ECMP nex-
thops for a given destination, hashes traffic according to
the ranked load distribution in Fig. 10b. For this particu-
lar switch model, the most and least heavily loaded of the
256 ECMP nexthops differ in allocated traffic share by a
factor of approximately six. The impact of this cannot be
understated, given that it is uncommon for customers to
rigorously evaluate hashing, and instead rely on vendor
claims to drive capacity planning. As a result, it is likely
that many commercial networks reliant on ECMP are far
more prone to overloading capacity than they realize.

Unusable nexthops. Some switches also have odd re-
strictions on the number of usable ECMP nexthops for
any given destination. In particular, one model we tested
appears to only support ECMP nexthop set sizes that are
of the form {1,2, . . . ,15}× 2n, presumably because of

hardware limitations. Configuring an ECMP route with
a nexthop count not of this form will result on the next
lower number of nexthops of this form to be used. For
example, configuring this switch with an ECMP route
with 63 nexthops will cause only 60 (i.e. 15×22) of the
nexthops to be used, and 3 of the nexthops will thus re-
ceive no traffic at all. As a result, a switch may hash
evenly amongst internal buckets, and yet still lead to a
skew in load distribution because of a mismatch in how
these buckets map to nexthops.

Hash polarization. For a Faild instance with multi-
ple ingress switches, each switch should be configured
to hash in the same manner. If this is not the case, an
external routing change may divert a flow through a dif-
ferent switch, which in turn may hash the flow onto a
different host leading to TCP connection resets.

Vendors however can make such hash polarization im-
possible to achieve in practice. ECMP hash polarization
is often configured unintentionally by omission, and can
lead to poor performance in networks employing multi-
ple levels of ECMP routing, as it leads to correlation be-
tween ECMP nexthop decisions made at different levels
of the network hierarchy. Some vendors have addressed
this potential misconfiguration by introducing additional
sources of entropy into their ECMP hashing functions.

Unfortunately we found that many switch models in-
clude the index of the ingress interface of a packet in that
packet’s ECMP nexthop hash computation, and in one
particular case, we found that line-card boot order was
used to seed the ECMP hashing function. If the hardware
vendor does not provide a knob to disable such behavior,
hash polarization is rendered impossible, which has dire
consequences for our use case.

6.4 Protocol assumptions
One might expect that, in the absence of routing changes,
packets belonging to the same flow follow a single net-
work path. This however assumes that any load balanc-
ing along the path, including that applied by Faild itself,
is consistent across all packets within a flow. This section
reviews cases where this does not hold.

Inbound fragmentation. If we receive a TCP seg-
ment that has been fragmented by either the originating
client or an intermediate router, its additional fragments
will not contain the TCP port numbers for the connec-
tion, which will cause the receiving switch to hash the
initial fragment and the set of additional fragments to dif-
ferent hosts in the POP.

IPv4-speaking clients that use IPv4 Path MTU Discov-
ery [23] transmit TCP segments that have the IPv4 Don’t-
Fragment bit set, and will therefore not be fragmented
by intermediate routers. Anecdotally, virtually all IPv4
clients we see traffic from implement Path MTU Discov-
ery and transmit TCP segments that are unfragmented
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and have the IPv4 Don’t-Fragment bit set. In IPv6 pack-
ets are never fragmented by intermediate routers [12],
and fragmented IPv6 TCP segments belonging to estab-
lished connections are exceedingly rare. Considering
this, we continue to allow switches to use port numbers
for hashing, as this does not appear to cause operational
problems. Nevertheless, a possible mitigation for this
problem is to configure Faild switches to exclude the re-
ceived segment’s TCP port numbers in its packet hash
computation. This would allow successful defragmenta-
tion and processing of received TCP segments, but could
harm load balancing evenness.

Outbound fragmentation. Inevitably we will receive
ICMPv4 Fragmentation Needed or ICMPv6 Packet Too
Big messages in response to outgoing TCP segments des-
tined for a network (or link) that uses an MTU lower than
the segment size. As noted in [11], such ICMP mes-
sages, and ICMP errors in general, are not guaranteed to
ECMP-hash back to the same host as the one that was
handling the corresponding TCP session. Faild handles
this by having hosts that receive certain ICMP messages
from upstream switches rebroadcast these messages to
all hosts in the local POP, and by processing received
ICMP messages that were rebroadcast in this manner as
if they were unicast to the local host. This ensures that
the host that was handling the TCP session correspond-
ing to an inbound ICMP message will receive and pro-
cess a copy of that ICMP message. Given this is a po-
tential denial-of-service vector, we also implemented a
mechanism for rate limiting broadcasts.

ECN. In 2015 we experienced an increase in reports
of connection resets coinciding with Apple enabling Ex-
plicit Congestion Notification [28] by default on iOS and
OS X. Further investigation revealed that this did not af-
fect all users; it was dependent on network path.

Prior to the deprecation of the IPv4 Type of Service
field and its redefinition as the Differentiated Services
field by RFC 2474 [24], and the reservation of the last
two bits of the DS octet for ECN by RFC 3168 [28], it
was explicitly permitted by the IPv4 router requirements
RFC [7] to involve the second-to-last bit of the TOS/DS
octet in routing decisions, and at least one major operator
in the US and several operators outside the US appeared
to have deployed network devices which take this bit into
account in ECMP nexthop selection. Given that this can
cause packets for a single ECN-using flow to follow dif-
ferent paths, there is the potential for trouble if such a
flow hits a POP where Faild is operating across multiple
switches which do not support hash polarization.

Given we are still phasing out switches which do not
support hash polarization from our network, we decided
instead to disable ECN negotiation entirely. The expec-
tation that all packets within a flow follow the same path
however is likely to be broken for ECN for a much longer

period of time, as devices hashing on ECN bits are em-
bedded in networks with long hardware refresh cycles.

SYN proxies. More recently, we uncovered a simi-
lar lack of packet affinity between our POPs and a ma-
jor cloud provider which had deployed a SYN proxy for
their enterprise platform. In this case, a software proxy
undertakes the responsibility of establishing outbound
connections, and then passes the established flow to the
proxied host. In practice, this results in separate route
lookups - one for the SYN handshake, and another for the
subsequent data. While this corner case appears similar
on the surface to ECN, it is much harder to work around.
After extended discussions with the cloud provider in
question, it was decided that it would be simpler to use
BGP to pin an ingress path until we could upgrade our
contingent switches to support hash polarization.

7 Related work
We now review how existing proposals fall short of the
load balancing requirements for POP deployments. A
comparative summary is provided in Table 1.

Consistent hashing ECMP provided by recent
switches (e.g. [2, 4]) is a typical solution adopted by
CDNs to achieve stateless load balancing but does not
make it possible to gracefully add and remove hosts.

Ananta [27] and Maglev [15] propose the use of soft-
ware load balancers, with the latter improving packet
throughput through batch processing, poll mode NIC
drivers and zero copy operations (also adopted by [13,
29]). Despite these improvements, both require per-flow
state to provide connection persistence.

Duet [17] and Rubik [16] combine the ECMP capabil-
ity of commodity switches with a software load balancer
to address the performance bottleneck of general purpose
hardware. They configure routing for heavy hitting VIPs
directly on switches, and relegate less popular VIPs to-
wards software load balancers. Although both add cur-
sory support for migrating flow state between switches
and software load balancers, this proves impractical to
implement. For one, the approach assumes that the
ECMP hash function and seed used on the switches can
be replicated on load balancer instances. This however is
typically proprietary knowledge which equipment manu-
facturers are unwilling or unable to disclose [30]. Even if
this were not the case, the resulting implementation can
still lead to flow disruption, as demonstrated in motivat-
ing the design decisions of SilkRoad [22].

SilkRoad [22] implements connection tracking in pro-
grammable switches by storing compressed flow state in
SRAM memory, which can be potentially overrun. It
also supports graceful draining of hosts without the high
latency and low throughput of software load balancers, at
the cost of requiring the switch control plane to execute a
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Table 1: L4 load balancers: suitability comparison for POP deployment

System Low latency No dedicated HW Stateless Host draining Switch draining In production
Consistent ECMP [2, 4] 3 3 3 7 3 3

Ananta [27], Maglev [15] 7 7 7 3 7 3

Duet [17], Rubik [16] 3 7 partial 3 partial 7

SilkRoad [22] 3 3 7 3 7 7

Beamer [25] 7 7 3 3 3 7

Faild 3 3 3 3 3 3

table insertion for each received SYN. As a result of both
these features, SilkRoad is vulnerable to resource ex-
haustion attacks and therefore not an appropriate match
for load balancing within a POP. SilkRoad eliminates the
need for load balancer instances to be deployed on hosts,
but in doing so hinders the ability to drain switches.

The closest approach to Faild is Beamer [26, 25].
Beamer also implements consistent hashing by mapping
a fixed number of buckets to hosts and uses detouring
to drain hosts without keeping per-flow state, but is pre-
dated by Faild on both counts [34, 35, 36, 37]. How-
ever, whereas Faild does not require any additional hard-
ware, Beamer requires dedicated hosts to run controllers
and load balancer instances, making it unsuitable for de-
ployment within a POP. Finally, the design of Faild is
informed by years of operational experience. In addition
to the benefits provided by Beamer, it provides explicit
support for SYN cookies and maintains correct operation
when facing anomalous cross-layer protocol interactions
(e.g. inbound/outbound packet fragmentation).

A number of techniques used in Faild have also been
used singularly albeit in different contexts and for dif-
ferent purposes. Extending MAC address semantics to
implement switch-to-host signaling was used in [20] to
allow switch forwarding based on application layer infor-
mation. Mapping a large number of virtual nexthops to a
much smaller number of physical nexthops was used in
[40] to implement weighted multipath forwarding. Faild
is unique in using these mechanisms to achieve graceful,
stateless load balancing and having been validated exten-
sively in production.

8 Conclusion
This paper revisits load balancing in the context of
edge clouds, which are orders of magnitude more dense
than datacenter-based cloud computing environments.
Stripped of virtually unbounded physical space, even in-
dividual failures can have a noticeable impact on avail-
ability and cost becomes primarily driven by efficiency.

In light of these issues, this paper proposed Faild,
a stateless, distributed load balancing system which
supports transport affinity, hence allowing the graceful
failover of any individual component. Constrained to
commodity hardware, Faild redefines the semantics of

existing network primitives and rethinks the allocation
of load balancing functions across network components.
We demonstrate that commodity switches can be lever-
aged to perform fast, stateless load balancing, while re-
taining the ability to signal failover forwarding informa-
tion toward the hosts.

In optimizing our design for cost, we inadvertently
implemented all functions necessary to achieve grace-
ful failover. A key insight in this paper is that all state
needed for graceful failover is readily accessible within
the host kernel itself. Previous load balancers rely on ad-
ditional per-flow state to track the allocation of flows to
hosts: a costly, unscalable design pattern which is prone
to resource exhaustion attacks. Faild instead inspects ex-
isting socket state to determine whether to failover traffic
to neighboring hosts. Our results show that this is seam-
less to clients while incurring negligible CPU overhead
and minimal delay. By keeping a tight focus on solving
the engineering challenges of edge clouds, Faild com-
bines well-known techniques in a novel way to achieve
graceful addition and removal of any component with-
out requiring per-flow state beyond that already present
in the service hosts themselves.

This paper reflects our collective experience in scal-
ing Faild over the past four years to handle in excess of
seven million requests per second for some of the most
popular content on the Internet. While the core design
principles of Faild have fared remarkably well, we have
strived to document cases where our assumptions proved
overly optimistic. In exposing hardware limitations and
unintuitive protocol interactions, we hope that with time
these issues may begin to be addressed by a wider com-
munity.
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