
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Stroboscope: Declarative Network
Monitoring on a Budget

Olivier Tilmans, Université Catholique de Louvain; Tobias Bühler, ETH Zürich;
Ingmar Poese, BENOCS; Stefano Vissicchio, University College London;

Laurent Vanbever, ETH Zürich

https://www.usenix.org/conference/nsdi18/presentation/tilmans

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Stroboscope: Declarative Network Monitoring on a Budget
https://stroboscope.ethz.ch

Olivier Tilmans
Université catholique de

Louvain

Tobias Bühler
ETH Zürich

Ingmar Poese
BENOCS

Stefano Vissicchio
University College London

Laurent Vanbever
ETH Zürich

Abstract

For an Internet Service Provider (ISP), getting an accu-
rate picture of how its network behaves is challenging.
Indeed, given the carried traffic volume and the impos-
sibility to control end-hosts, ISPs often have no other
choice but to rely on heavily sampled traffic statistics,
which provide them with coarse-grained visibility at a
less than ideal time resolution (seconds or minutes).

We present Stroboscope, a system that enables fine-
grained monitoring of any traffic flow by instructing
routers to mirror millisecond-long traffic slices in a pro-
grammatic way. Stroboscope takes as input high-level
monitoring queries together with a budget and automati-
cally determines: (i) which flows to mirror; (ii) where to
place mirroring rules, using fast and provably correct al-
gorithms; and (iii) when to schedule these rules to maxi-
mize coverage while meeting the input budget.

We implemented Stroboscope, and show that it scales
well: it computes schedules for large networks and query
sizes in few seconds, and produces a number of mirroring
rules well within the limits of current routers. We also
show that Stroboscope works on existing routers and is
therefore immediately deployable.

1 Introduction

Not all networks are created equally when it comes
to monitoring. ISP networks, in particular, suffer from
extremely poor visibility. As they do not control end-
hosts and carry huge amounts of traffic, ISP operators
often have no choice but to rely on pure in-network
solutions based on random packet sampling (i.e., Net-
Flow [1] or sFlow [2]). By design, random sampling pro-
vides no guarantee on which traffic flows will be sam-
pled, by which router and at what time. Except for few
heavy-hitters [3], even minutes-long collections of ran-
dom samples typically provide coarse-grained and inac-
curate bandwidth estimations for the large majority of

the prefixes. Moreover, the likelihood of randomly sam-
pling the same flow across the network is extremely low;
hence, it is basically impossible to use random samples
for reasoning on the network-wide forwarding behavior,
and monitoring anything else than bandwidth.

We confirmed these limitations in an actual Tier-1 ISP
by analyzing the Netflow data collected by hundreds of
routers over 10 minutes. We observed that most BGP pre-
fixes (65%) are not observed at all, 15% of them are ob-
served only twice, and just 10% of all prefixes are ob-
served more than 30 times. Even worse, 75% of these
observed flows were only seen on a single router, mak-
ing it impossible to track flows network-wide, even for
the largest heavy hitters.

As a result, ISP operators are currently incapable of
answering practical questions like: What is the ingress
router for a given packet seen at a specific node? Which
paths does the traffic follow? Is the network-wide latency
acceptable? Is traffic load-balanced as expected?

Stroboscope This paper presents Stroboscope, a scal-
able monitoring system that complements existing tools
like NetFlow, by enabling fine-grained monitoring of any
traffic flow. Stroboscope exploits the possibility to ex-
tract small traffic samples (i.e., slices) in a programmatic
way, by activating and deactivating traffic mirroring for
any destination prefix, up to a single IP address, network-
wide, and within milliseconds. Our tests confirm that
this possibility is available today, on currently deployed
routers, making Stroboscope immediately deployable.

By coordinating packet mirroring across routers, Stro-
boscope implements deterministic packet sampling: it
collects copies of the same packets from multiple lo-
cations, following such packets as they cross the net-
work. This enables Stroboscope to precisely measure
the network forwarding behavior including traffic paths,
one-way delays and load-balancing ratios. Traffic slices
with no packets are also informative: Stroboscope uses
them to determine additional forwarding properties, like
packet loss and devices not receiving specific flows.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 467

https://stroboscope.ethz.ch
mailto:olivier.tilmans@uclouvain.be
mailto:buehlert@ethz.ch
mailto:ingmar@benocs.com
mailto:s.vissicchio@cs.ucl.ac.uk
mailto:lvanbever@ethz.ch

Challenges Given a high-level query, determining which
flows to mirror, where and when is both hard and poten-
tially dangerous—especially when considering arbitrary
network dynamics (e.g., unexpected traffic shifts). Ag-
gressive mirroring strategies can lead to significant con-
gestion (e.g., if many routers mirror traffic for popular
destinations) and inaccurate results (e.g., if congestion
affects the mirrored traffic). Conversely, conservative
strategies can lead to poor coverage and slow answers.
Compilation Stroboscope tackles those challenges on
behalf of operators. From high-level queries, it automat-
ically derives how to mirror traffic so as to maximize
monitoring accuracy without exceeding a budget, while
also adapting to network dynamics in near real time.

Stroboscope’s compilation process follows three
steps. First, Stroboscope decides what (which prefixes)
to mirror for every query, dynamically adapting this de-
cision according to the amount of mirrored packets. Sec-
ond, Stroboscope computes where to activate mirroring
rules, in order to maximize coverage while minimizing
the impact on the budget. Third, Stroboscope calculates
when to mirror and for how long, producing a budget-
compliant schedule, optimized across all input queries.
Guarantees Stroboscope provides strong guarantees in
terms of budget compliance, even in the presence of un-
predictable network dynamics. In fact, traffic mirrored by
Stroboscope can only exceed the budget for at most the
few milliseconds needed to collect a single traffic slice.
Implementation We implemented Stroboscope, and
show that it scales well: it computes schedules for large
networks and query sizes in few seconds, and produces a
number of mirroring rules well within the limits of cur-
rent routers. We also demonstrate how to build practical
monitoring applications on top of Stroboscope, such as
estimating one-way delays, loss rates, or load-balancing
ratios for any destination prefix.
Contributions Our earlier work [4] showed the benefits
of mirroring thin traffic slices to monitor networks. This
paper goes further by describing the complete design,
implementation and evaluation of the corresponding sys-
tem. We make the following contributions:

• A novel fine-grained and scalable monitoring ap-
proach based on deterministic traffic sampling (§2);
• Practical algorithms to: (i) estimate unknown traf-

fic demands in real time (§3); and (ii) compute opti-
mally placed mirroring rules (§4), as well as sched-
ule them while adhering to a given budget (§5);
• A full implementation of Stroboscope (§6) along

with a thorough evaluation using benchmarks, sim-
ulations and tests on Cisco routers (§7);
• A case study demonstrating how to use Strobo-

scope measurements to estimate one-way delays,
loss rates, and load-balancing ratios (§8).

Query
MIRROR { 1.2.3.0/24 }

ON { A -> C } USING 15 Mb/s

DURING 450 ms EVERY 5 s

§4
Where?

§3
What?

Estimate(1.2.3.0/24)
= 5 Mb/s

N
ex

t
It

er
at

io
n

NetFlow Data

Control Plane 
Information

Topology

§5
When?

Slot 1

Traffic Slice Capture
Update Traffic Statistics

§6

Compilation

Processing

Application

Measurement

Database

Measurement Stream

Estimate

one-way

delays

Stroboscope

§8

Auxiliary Information

M
ai

n

In
p

u
t

Figure 1: Stroboscope translates high-level queries to
measurement streams by capturing packet slices.

2 Overview

In this section, we provide an intuitive description of
Stroboscope (see Fig. 1) using a running example.
Specifically, we consider a network operator who re-
ceives complaints from customers trying to reach one
prefix (1.2.3.0/24) through its infrastructure (see Fig. 2a).
Following up on the complaints, the operator wants to:
(i) check that the corresponding traffic follows the ex-
pected paths; and (ii) measure key performance indica-
tors, such as packet loss rate and path latencies.
Specifying queries Stroboscope allows operators to de-
fine their monitoring goals using an SQL-like language:

((MIRROR | CONFINE) <prefixes>
ON <paths>)+

USING <Gbps> DURING <sec> EVERY <sec>

These monitoring queries specify for which IP prefixes,
up to a single IP address, traffic should be mirrored
(MIRROR) or confined (CONFINE), and where (ON), e.g.,
on a specific node, along a specified path or following
the ones computed by the routing protocols (indicated
with the -> operator, e.g. A ->D). MIRROR and CONFINE
queries differ in when they mirror traffic: the former
continuously mirrors traffic while the latter only mirrors
traffic that leaves a specified region. In addition, oper-
ators can specify constraints on: (i) the maximum rate
of mirrored traffic (USING) allowed; (ii) the duration of
any measurement campaign (DURING); and (iii) the fre-
quency at which to run measurements (EVERY).
Coming back to the example above, the operator can in-
struct Stroboscope to mirror traffic along all IGP paths
between A and D using a MIRROR and a -> construct (see
Fig. 2b). Additionally, she can use a CONFINE construct
to verify that these paths are the only ones carrying traffic
towards 1.2.3.0/24.

468 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

monitored
traffic

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

border router

1.2.3.0/24

(a) Sample network.
When?

CONFINE { 1.2.3.0/24 } ON { [A -> D] }

MIRROR

Queries

Budget USING 15 Mb/s DURING 450 ms EVERY 5 s

In
p

u
t

C
o

m
p

il
a
ti

o
n

Q1

Q2

not([A B L C D])

5 Mb/s

Q1

[A B C D]
5 Mb/s

Q2a

[A L C D]

5 Mb/s

Where?

Q2b

Region

BW Estimation

What?

ON { [A -> D] }{ 1.2.3.0/24 }

(b) Compilation process translating high-level queries in a measurement campaign.

Figure 2: From high-level monitoring queries and the current network state, Stroboscope computes a measure-
ment campaign schedule meeting the monitoring budget.

While simple, our language supports several practi-
cal use cases. Among others, MIRROR queries enable
network-wide path tracing, i.e., following a given packet
as it traverses a sequence of nodes. Packet copies can
then be analyzed by monitoring applications to estimate
data-plane performance, like packet loss or path latency,
or to inspect packet payloads. CONFINE queries are es-
pecially useful to detect unwanted forwarding behavior
(e.g., traffic shifts, security policies) at runtime, and to
complement information from MIRROR queries (e.g., on
paths not taken by given traffic flows).

A three-staged compilation process From high-level
queries, Stroboscope derives measurement campaigns,
i.e., schedules of mirroring rule (de-)activations that:
(i) provide strong guarantees on budget compliance;
(ii) maximize accuracy by activating mirroring rules as
often as possible; (iii) minimize the number of mirror-
ing locations to both lower the mirrored traffic volume
and decrease the control-plane overhead. Stroboscope
derives these measurement campaigns in three stages.

Stage 1: Resolving high-level queries (§3) First, Stro-
boscope translates any input query into a concrete
one defined on actual paths and flows. To this end, it
collects routing (e.g., IGP and BGP) feeds and Net-
Flow records whenever available. It also maintains a
measurement database, storing results from past mon-
itoring campaigns. Based on this information, Strobo-
scope estimates per-prefix traffic volumes and com-
putes their forwarding paths. In our example, Strobo-
scope estimates the traffic demand for 1.2.3.0/24 to be
5 Mbps and resolves [A->D] (Q2) in two sub-queries
{[A B C D],[A L C D]} (Q2a, Q2b), one for each path.

Stage 2: Optimizing mirroring locations (§4) Second,
Stroboscope minimizes the number of mirroring rules by
optimizing their locations using two provably correct al-
gorithms. Doing so, it reduces the mirrored traffic and
the control-plane overhead to activate them.

The first algorithm (§4.1) optimizes the placement of
MIRROR queries, like Q2a and Q2b in Fig. 2b. The key
insight is to leverage properties of the complete network
topology to prune mirroring rules. For instance, for Q2a,
no mirroring rule is required on router C, as C is the only
1-hop path between B and D. By observing the TTL of
mirrored packets at B and D, we can therefore be sure
that traffic traversed C, without actually mirroring there.

The second algorithm (§4.2) deals with CONFINE
queries, like Q1. The key insight is to place heavily rate-
limited mirroring rules, all around the region specified in
the query. This way, no packets are mirrored for correct
CONFINE queries, and few packets per location are mir-
rored for incorrect queries. Our algorithm optimizes the
position of surrounding rules, as exemplified in Fig. 2b.
For example, the algorithm places only one mirroring
rule on P to detect possible packets crossing [A B] and
leaving the network at E1 or E2.

Stage 3: Computing measurement campaigns (§5)
Third, Stroboscope schedules mirroring rules over time.
These schedules use the estimated traffic volumes to
meet the budget, while packing as many measurements
as possible to increase monitoring accuracy. Comput-
ing such schedules is a variant of the bin-packing prob-
lem, which is NP-hard. To scale, Stroboscope encom-
passes fast approximation heuristics (O(n logn) where
n is the number of queries) whose results are close to
optimal. Our scheduling approach enforces determinis-
tic sampling: packets for one specific query are mirrored
from well-defined locations for a given amount of time.

In our example, Q2a and Q2b in Fig. 2 cannot be
scheduled at the same time given the specified budget of
15 Mbps. Indeed, with 4 different mirroring rules, they
would require a total of 20 Mbps. Stroboscope therefore
schedules Q2a and Q2b each for half of the timeslots. In
addition, as Q1 does not mirror any traffic unless a vio-
lation is detected, Stroboscope schedules Q1 for all the
timeslots, so that any violation to Q1 can be detected.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 469

Budget Guarantees The ability of a Stroboscope sched-
ule to meet the budget requirements inherently depends
on two assumptions, both checked at runtime. First, Stro-
boscope checks its demand estimations by monitoring
the total traffic being mirrored and stops the measure-
ment campaign when detecting a budget violation. Such
a premature termination is enforced within one mirror-
ing timeslot (a few milliseconds). Second, as CONFINE
queries are not expected to mirror traffic, and only re-
quire one packet when violated, they are rate-limited.

Outputs Stroboscope’s runtime (§6) carries out mea-
surement campaigns instructing routers to mirror query-
defined traffic flows for a specific amount of time. Stro-
boscope outputs a stream of collected packets with their
meta-data (e.g., timestamp, corresponding query), meant
to be processed by the operators or external applications.

3 From Abstract to Concrete Queries

Given an input query, the first operation performed by
Stroboscope is to concretely define the prefix and the re-
gion to monitor. We now detail how this happens.

Resolving loosely defined regions In Stroboscope’s in-
put queries (like Q2 in Fig. 2b), regions to monitor can
be specified using the -> operator. Stroboscope replaces
any expression s-> t with the forwarding paths from
router s to router t as provided by the routing protocols
(e.g., the IGP) running in the network. If no IGP path
can be found, Stroboscope returns a compilation error.
For example, in Fig. 2, [A->D] will be translated into
[A B C D] and [A L C D] if those are all the IGP forward-
ing paths from A to D for 1.2.3.0/24.

Whenever the -> operator is present at the start (resp.
end) of a query, the Stroboscope replaces it with the set
of all ingress (resp. egress) routers that receive traffic for
the prefix in the query—e.g., leveraging BGP informa-
tion if present, or static knowledge of all network border
routers. Using this feature, the queries from Fig. 2b can
be generalized to all paths terminating in D: it would be
sufficient to replace [A->D] with [->D] in the queries,
discovering on the fly which ingresses are active. Those
translations are updated at the start of each measurement
campaign, so that Stroboscope performs the following
measurements consistently with the latest available rout-
ing information, and flags the previous measurements if
collected during routing changes.

Estimating traffic volumes In order to match the bud-
get, Stroboscope needs information about traffic vol-
umes for every prefix specified in the input queries. It
is fundamentally impossible to exactly know how much
traffic will be destined to any prefix ahead of measure-
ments: in theory, any flow can unpredictably vary over
time. Stroboscope does not require traffic estimation to

be 100% accurate, as it includes runtime mechanisms to
bound the amount of excessive traffic (see §5.2). Yet,
for Stroboscope to avoid computing infeasible sched-
ules, we would like traffic estimation to be as close to the
real demands as possible. To this end, Stroboscope im-
plements a dynamic traffic estimation technique, based
on data collected during past measurement campaigns.
For each prefix involved in any input query, the measure-
ment database stores the maximum demand measured by
Stroboscope over a customizable number of minutes (5,
by default). Stroboscope then uses such value as a con-
servative estimate of the traffic that will be received for
that prefix during the next iteration.

The above procedure is applicable if Stroboscope has
historical data for all the queried prefixes. This condi-
tion might not hold in several cases, e.g., for prefixes
not recently mirrored and those in CONFINE queries (for
which no or few packets are mirrored, as discussed in
§2). Stroboscope solves the absence of historical data in
two ways. First, it can infer estimates from sampled traf-
fic (e.g., as collected by NetFlow). In this case, Strobo-
scope sets the peak value recorded by random sampling
as initial traffic estimation for the prefixes tracked in a
significant number of samples (e.g., more than 30 in 5
minutes). This way, it exploits random sampling for what
it is good at: bandwidth estimation for heavy hitters [3].
Second, for all the prefixes not covered by enough ran-
dom sampling data, Stroboscope runs a specific, boot-
strapping measurement campaign to estimate their traf-
fic volume. In particular, Stroboscope reserves one mini-
mal timeslot per prefix, and activates mirroring on all the
routers in the region specified by the query (e.g., on all
routers in [A, B, C, D] for Q2a in Fig. 2). If no traffic is
captured, more timeslots are reserved to the same prefix.

We stress that the risk of significantly exceeding the
budget by running bootstrapping campaigns is limited.
First, those measurements are targeted to prefixes that are
likely to carry a limited amount of traffic since they gen-
erated few or no observations over minutes of random
sampling. In addition, traffic for each prefix is mirrored
for a minimal timeslot, which would last about 25 ms in
our current implementation (see §7).

Stroboscope also outputs packets collected during
bootstrapping campaigns with convenient meta-data.
This enables operators and special-purpose applications
to select sub-prefixes of the queried destinations that best
match the query purpose.

4 Optimizing Mirroring Locations

Stroboscope runs distinct algorithms to select mirroring
locations for MIRROR (§4.1) and CONFINE (§4.2) queries.
These algorithms minimize the number of mirroring lo-
cations while also providing high accuracy guarantees

470 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of the produced measurements (e.g., packets violating
CONFINE queries are never missed). Reducing the mir-
roring locations let Stroboscope: (i) answer more queries
at the same time within the input budget; and (ii) decrease
the control-plane overhead by changing less mirroring
rules during measurement campaigns.

Stroboscope’s algorithms take as input the operator-
specified queries and the complete network topology, in-
cluding all currently down links and nodes. Consider-
ing all possible links and nodes ensures that the algo-
rithms always guard against all possible network paths,
and never select mirroring locations breaking the accu-
racy guarantees due to transient topology changes.

4.1 Key-points Sampling algorithm
We developed the key-points sampling (KPS) algorithm.
Stroboscope uses the KPS algorithm to select mirroring
locations for MIRROR queries.

Goal Given a MIRROR query on a path P, KPS selects a
set of routers which will capture traffic crossing P, while
also enabling to distinguish packets forwarded outside P,
which would violate the query.

Note that this goal cannot be achieved through the
naive solution of mirroring only at the extremes of the
path. For example, if a MIRROR query is defined on path
[A B C D] in Fig. 2a would only place mirroring rules on
A and D, packets forwarded over [A B C D] would be in-
distinguishable from those flowing over [A L C D].

General solution By default, KPS returns all the routers
in the path. This guarantees that the resulting measure-
ment campaigns track all packets crossing any subset of
routers in the path. For each mirrored packet, Strobo-
scope checks if there exists a sequence of routers such
that the Time-To-Live (TTL) of the packet is decreased
exactly by 1 at each hop in the sequence. Assuming that
every router decreases packets’ TTL by 11, a mirrored
packet must have followed the path in the query if and
only if Stroboscope finds such a sequence for that packet.

Optimizations KPS goes beyond this general solution
whenever mirroring locations can be reduced according
to the complete network topology. To this end, it exploits
the following theorem, proven in Appendix A.1.

Theorem 1. Let a forwarding path P be the concatena-
tion of sub-paths Q1, . . . ,Qn. MIRROR queries on P can
be correctly answered by mirroring only on the endpoints
si and ti of all Qi such that no other forwarding path from
si to ti has the same length as Qi.

As an illustration, consider Fig. 2a. The path [A B C D]
can be seen as the concatenation of [A B] and [B C D].

1This assumption is consistent with the default behavior of com-
mercial routers for both IP and MPLS packets [5, 6].

Also, [B C D] is the only path in the topology of length 3
from B to D. Theorem 1 states that we can skip C as mir-
roring location. This is intuitively true because we can
distinguish packets traversing [B C D] as the only ones
whose TTL in D is equal to the TTL in B minus 2.

Algorithm Given a path P, KPS checks all the concate-
nations of sub-paths that result in P. For each concatena-
tion, KPS checks if Theorem 1 holds on each sub-path,
performing a depth-first search on the network graph
truncated at a depth equal to the sub-path length2. KPS
then stores the first and last router in the sub-paths com-
pliant with Theorem 1 plus all the routers in the other
sub-paths as the set of mirroring points for that concate-
nation. Finally, it returns a set with minimal cardinality.

For example, for the path [A B C D], KPS sequentially
considers the concatenations [A B C D], [A B][B C D],
[A B C][C D], and [A B][B C][C D]. By following this or-
der, the first concatenation is the minimal one, as a con-
catenation with n elements requires at least n+1 mirror-
ing locations, corresponding to the first and last routers
in every sub-path. For instance, if Theorem 1 was apply-
ing to [A B C D], KPS would immediately return A and
D as mirroring locations. Instead, as [A L C D] has the
same length than [A B C D], Theorem 1 does not hold.
This implies that at least 3 mirroring locations will be
needed (e.g., {A,B,D} is the minimum set of locations for
[A B][B C D]).

KPS is theoretically inefficient, since any of the depth-
first search it runs can potentially explore an exponential
number of paths. However, our evaluation (§7.1) shows
that KPS takes milliseconds to process paths in real net-
works, due to their sparsity and the limited path lengths.

Stroboscope also supports MIRROR queries defined
on regions, i.e., connected components of the network
graph. Such queries are answered by creating sub-queries
for all the paths in the region and applying the above pro-
cedure to each sub-query.

4.2 Surrounding algorithm
To find mirroring locations to answer CONFINE queries,
Stroboscope runs the surrounding algorithm.

Goal Given a CONFINE query on a region R (which we
call confinement region), the surrounding algorithm se-
lects mirroring locations (routers or network interfaces)
which will mirror any packet exiting the region.

Computing these locations while complying with the
above goal is trickier than what it may look like. One
challenge is to avoid capturing interfering traffic, that is,
packets for the prefix in the query not traversing the con-
finement region. In Fig. 2, for example, P could not be a

2The result of this check is cached, to possibly skip the depth-first
search while re-evaluating the same sub-path in other concatenations.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 471

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

outgoing 
interface  
mirroring

confinement
region

(a) Default mirroring locations computed by the
surrounding algorithm on CONFINE queries de-
fined on the region [A B L C D].

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

per-node
mirroring

(b) Optimized placement if no flow for the
queried destination crosses neighbors of the
region [A B L C D] (no interfering traffic).

A L

F

C

B

J

H

I

U

D

P

K

E1

E2

E3

(c) Optimized placement in the absence of
both interfering traffic and network anoma-
lies (blackholes, forwarding loops).

Figure 3: Depending on properties of the network graph and knowledge about the correctness of the network,
we can reduce the number of mirroring locations and keep the same guarantees.

mirroring location for Q1 if additional traffic (not shown
in the figure) for 1.2.3.0/24 enters in E1 and is forwarded
on the path [E1 P E2]—remember that the region speci-
fied in the query may not include all and only the actual
forwarding paths for a prefix.

General solution Given a confinement region R, we de-
fine the edge surrounding of R as the set of directed edges
(r,n) such that r ∈ R and n 6∈ R. By default, the surround-
ing algorithm returns as mirroring locations the set of
outgoing interfaces of routers in R that correspond to any
element of the edge surrounding. Fig. 3a visualizes the
output of this algorithm for Q1 in Fig. 2. The following
theorem (proved in Appendix A.2) states that the default
output of the surrounding algorithm is correct.

Theorem 2. CONFINE queries on a region R can be cor-
rectly answered if and only if the set of mirroring loca-
tions is the edge surrounding of R.

Intuitively, the theorem holds because: (i) to exit R, any
packet must be forwarded from a router in R to another
outside R, hence over a link in the edge surrounding; and
(ii) all the captured packets are mirrored when exiting R.

First optimizations Mirroring on links in the edge sur-
rounding of the confinement region copies no packet if
traffic is indeed confined to that specified region. Never-
theless, a minimal number of locations would reduce the
control-plane overhead, as Stroboscope periodically re-
installs mirroring rules—keeping them alive while guar-
anteeing their autonomous deactivation (§6).

The surrounding algorithm uses routing information
(when available) to reduce the number of mirroring loca-
tions. Knowing all the possible forwarding paths for the
queried prefixes can indeed enable to safely push mir-
roring locations one hop away, from outgoing interfaces
of routers in R to neighboring routers. In Fig. 3a for in-
stance, if no forwarding path for 1.2.3.0/24 (from Fig. 2a)

crosses F, F itself can be added to the set of mirroring
locations and we can remove all the outgoing interfaces
facing F—saving 2 mirroring rules.

We define the node surrounding of a region R as the
set of routers that are directly connected to at least one
router in R. Starting from the edge surrounding of R, the
surrounding algorithm systematically replaces links end-
ing on any router x in the node surrounding of R every
time x is part of no forwarding path for the prefix in the
query. Possibly, the entire edge surrounding is replaced
by the node surrounding, as shown in Fig. 3b assuming
that the region defined by A, B, L, C and D contains all
forwarding paths for 1.2.3.0/24. A simple extension of
Theorem 2 proves the correctness of this selection.
Optimal solution The surrounding algorithm further re-
duces the number of mirroring rules in the guaranteed
absence of forwarding anomalies3, that is, no blackholes
and no forwarding loops within the monitored network.

We define a mixed-egress path for a region R as a sim-
ple path starting from a router in R, traversing at least
one router outside R and ending in any egress point. The
following theorem holds, as proved in Appendix A.3.

Theorem 3. In the absence of forwarding anomalies, a
CONFINE query on a region R can be correctly answered
if and only if every mixed-egress path for R contains at
least one mirroring location. 4

The proof of Theorem 3 is based on the fact that in
general, any packet exiting a region R either reaches an
egress point (including those in R), or is dropped before.
In the absence of forwarding anomalies, only the former
case can happen, hence it is sufficient and necessary for
mirroring locations to cover all the paths ending in an

3This property can for example be checked by leveraging the results
of other MIRROR queries given as input to our system.

4This statement does not conflict with Theorem 2, since edge and
node surroundings guarantee that the condition of Theorem 3 holds.

472 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

egress point and not entirely in R. Consider, for exam-
ple, Fig. 3c. If nodes P, H, and F mirror traffic, then
no packet can exit the region [A B L C D] without travers-
ing some mirroring location, or incurring a forwarding-
anomaly—e.g., looping on some routers to re-enter the
region, or be incorrectly discarded by an internal router.

Algorithm Determining the default set of mirroring lo-
cations in the presence and absence of interfering traffic
mainly requires to compute edge and node surroundings,
respectively: both sets can be calculated by simply iter-
ating over all the links of the input network.

In the absence of forwarding anomaly, the surround-
ing algorithm returns a minimal set of locations compli-
ant with Theorem 3. To this end, it computes a set of
nodes disconnecting the input region from every egress.
This is a variant of the minimal multi-terminals cut prob-
lem. Stroboscope solves this variant in polynomial time
running the algorithm described in [7].

The algorithm in [7] requires an upper bound of the
size of the cut to be computed. In our case, the cardinal-
ity of the node surrounding would provide such a bound.
To further improve its efficiency, Stroboscope however
computes a tighter bound by heuristically removing re-
dundant elements from the node surrounding. It initial-
izes the cut to the node surrounding. For every node n in
the current cut, Stroboscope computes a simplified graph
that does not include any node in the current cut except
n, nor any link in the confinement region. For example,
when considering router U in Fig. 3b, the algorithm re-
moves F , K, J, H (as they are in the node surround-
ing) and all the links in the region {A, B, L, C, D}. On this
simplified graph, the algorithm computes the connected
component including n—which is, U, C in our example.
If there is no path in this connected component between
any node in the component and an egress point (as it is
for U in our example), all mixed-egress paths must in-
clude at least another router in the current cut; hence,
being redundant n is removed from the current cut.

5 Computing Measurement Campaigns

Combining the information on the prefix to monitor (§3)
and the result of the location algorithms (§4), we end
up with a group of mirroring rules for every query. The
next step performed by Stroboscope is to schedule those
groups of rules, producing measurement campaigns.

Answering a query requires to simultaneously activate
all its mirroring rules during a given amount of time.
Also, to maximize the accuracy of measurements across
queries, different groups of rules should be packed to-
gether as much as possible, but respecting the traffic and
time budget. We detail how Stroboscope computes a mir-
roring schedule in §5.1, and adapts it at runtime in §5.2.

5.1 Building a Measurement Schedule

Any schedule computed by Stroboscope is made of a fi-
nite number of timeslots, and assigns every group of mir-
roring rules to one or more timeslots. A timeslot repre-
sents an interval of time, not overlapping with any other
timeslot; all the mirroring rules assigned to a timeslot s
must be active during the time corresponding to s.

To meet the traffic budget, Stroboscope assigns a cost
to every rule, reflecting the expected rate (e.g., 5 Mb/s) of
traffic mirrored when the rule is active. For every MIRROR
query on a prefix p, the corresponding rules are expected
to mirror traffic for p; hence, the cost assigned to such
rules is equal to the traffic rate for p, as estimated in the
query pre-processing (see §3), multiplied by the num-
ber of mirroring locations (see §4.1). The cost of any
CONFINE query is set to zero. In fact, mirroring rules for
a CONFINE query are heavily rate-limited, hence at most
a few packets per mirroring location are mirrored in the
worst case—and zero if the query is correct. Note that
setting the cost of CONFINE queries to zero implies that
Stroboscope always schedules these queries in all times-
lots. Stroboscope’s scheduling problem then consists in
assigning the groups of rules corresponding to MIRROR
queries to every timeslot, so that the sum of the costs of
all rules scheduled at every timeslot does not exceed the
traffic budget defined in the queries.

Stroboscope first derives the number of timeslots, du-
ration and spacing from the router-to-collector latencies
and the monitoring time defined in the query through
the DURING keyword. Then, to scale to a large num-
ber of queries and schedule sizes, Stroboscope splits the
scheduling problem in two phases (see Fig. 4): a first
phase where rules are scheduled as tight as possible, in a
schedule of minimal duration; and a second phase, where
the minimal schedule is replicated as much as possible, to
maximize the usage of the budget, hence increasing mon-
itoring accuracy. In both phases, Stroboscope can restrict
to an approximate solution (e.g., for fast inclusion of new
queries), as shown in the bottom part of Fig. 4.

Timeslot duration and spacing Timeslot durations
must be long enough to ensure that packets copied at the
ingress routers of any MIRROR query can also be mirrored
at the corresponding egress routers. Stroboscope derives
the duration of timeslots in a schedule from: (i) the mini-
mal traffic slice duration, according to the used mirroring
technology (see §6 and §7.3); and (ii) the observed max-
imal latency in the network, either defined statically or
estimated as shown in §8. Also, to let in-flights packets
arrive at the collector at the end of a timeslot, schedules
generated by Stroboscope must include spacing between
consecutive timeslots. We conservatively set this spacing
to the maximum router-to-collector latency.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 473

Monitoring
budget

Input query
costs

Preferred query

Minimal sub-schedule
extraction

Upper-bound
estimation

Optimal
bin-packing

Schedule
replication

Maximal
filling

Budget usage
maximisation

Faster approximation

More optimized schedule

Figure 4: Stroboscope scheduling algorithm.

Minimal schedule extraction In the first phase, the
scheduling algorithm assigns each group of rules to ex-
actly one timeslot, with the goal of minimizing the num-
ber of timeslots. This is a bin packing problem, and it
is therefore NP-hard. To improve time efficiency, Stro-
boscope first computes an upper bound on the size of
the minimal schedule, using the well studied First-Fit-
Decreasing heuristic—which has been proved to ap-
proximate optimum solutions with a tight bound of ∼
1.22OPT [8]. The computed upper bound is then ex-
ploited to compute a minimal schedule, using a standard
Integer Linear Program (ILP) formulation for bin pack-
ing problems (as detailed in Appendix B.1).

Budget usage maximization In the second phase, the
scheduling algorithm replicates the minimal schedule as
much as possible, increasing the number of timeslots al-
located to all queries in an uniform way. The duration
of the schedule might not be fully consumed by such
replication—for example, the schedule in Fig.4 encom-
passes 5 timeslots, which allows to replicate its mini-
mal schedule at most twice while wasting 1 timeslot.
To fill the remaining timeslot(s), Stroboscope solves an-
other ILP, whose objective function is to fit the maximum
number of groups of rules into the input timeslots. Ap-
pendix B.2 contains a detailed description of this ILP.

5.2 Adapting the Schedule at Runtime
There are two possible outcomes for the scheduling just
described. If Stroboscope cannot compute a schedule,
it returns an error to the operator specifying the reason
why the schedule could not be computed (e.g., because
the time or bandwidth budget are too low). Otherwise,
it starts mirroring packets according to the computed
schedule. While collecting packets, it further adapts the
schedule in specific cases, that we now detail.

Guarantees on limited budget overflow Stroboscope
schedules rule activations to match the budget on the ba-
sis of traffic estimations which can be wrong (e.g., unpre-

dictable traffic variations). While estimation errors can
balance across different prefixes, using a static schedule
comes with the risk of mirroring much more traffic than
the budget if the predictions are greatly underestimating
the actual traffic volume for some prefix.

To minimize budget overflow, Stroboscope tracks the
total amount of traffic mirrored after every timeslot.
Then, it compares such a total with the budget for 1 sec-
ond (e.g., 1 Gb if the budget is 1 Gbps). Whenever the to-
tal mirrored traffic exceeds the 1-second budget, Strobo-
scope stops the ongoing measurement campaign, waits
for the remaining time in the 1-second interval while
computing a new schedule, and finally runs a new cam-
paign. For example, if it detects that 1.1 Gb of traffic are
mirrored in 0.7 seconds, for queries with a budget of
1 Gb/s, Stroboscope stops the measurement campaign,
waits for 0.3 seconds, and then starts a new campaign.

Since the inter-timeslot spacing ensures that the col-
lector receives all the mirrored packets before starting the
next measurements (see §5.1), the runtime behavior just
described yields the following property.

Property 1. Stroboscope exceeds the budget in any
query for at most 1 timeslot per measurement campaign.

Note that traffic estimates are updated after the
stopped campaign, so the successive campaign is much
more likely not to exceed the budget again.

6 Implementation

We built a complete prototype of Stroboscope in∼ 5,000
lines of Python code, and 650 of C code5. Our implemen-
tation covers the entire compilation pipeline along with
the logic to trigger mirroring rules on routers (Cisco or
Linux-based), as well as benchmarks.
Mirroring packets Packet mirroring is supported by
most commercial routers [9, 10]. It enables routers to du-
plicate packets matching given criteria (expressed using
route-maps) and to send such copies to another device
(e.g., over a GRE tunnel) directly in the data plane. Since
packet mirroring is typically implemented in hardware,
it has been experimentally shown to work at scale, with
negligible CPU load and without degrading forwarding
performance of mirroring routers [11].

Unfortunately, most routers only support 2 criteria to
be used on all mirroring rules at the same time [9], which
would prevent Stroboscope from capturing more than 2
flows per router, hence answer many real queries.

Stroboscope overcomes this limitation by indirectly
triggering the mirroring of a flow, complementing mir-
ror matching criteria with dynamic ACLs. More specif-
ically, packet duplication primitives are pre-configured

5available at https://github.com/net-stroboscope

474 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/net-stroboscope

to match a single specific tag (e.g., a VLAN tag or a
DSCP value), which we call mirroring tag. Stroboscope
then dynamically updates ACLs to add that tag to all
and only the packets to be mirrored. We use two dif-
ferent tag values: one for MIRROR queries, and another
one for CONFINE queries which is heavily rate-limited.
As CONFINE queries only need a single packet from a
flow to report a violation, this mitigates the increase of
mirrored traffic without losing information.

Our implementation activates mirroring rules by exe-
cuting a pre-loaded script on each router, as readily possi-
ble in commercial routers (see, e.g., [12, 13]). The script
takes two arguments: (i) a list of flows; and (ii) a mirror-
ing duration. When invoked, it dynamically configures
the ACL to tag all the packets in the input flow list. It then
sets a timer based on the provided mirroring duration. On
its expiration, it removes the configured ACL, deactivat-
ing the mirroring process. This technique requires only
a single interaction between Stroboscope and the router,
and no separate deactivation message. The deactivation
after the predefined time interval is guaranteed.

Mechanisms like configuring ACLs through BGP
Flowspec [14] or Netconf [15], or directly programming
the IGP [16] to switch between VLANs [4], can all be
used in Stroboscope, instead of our current in-router
scripting approach. However, such alternatives impose a
bigger overhead and cannot guarantee a slice duration
(as the mirroring process has to be stopped remotely).
We experimentally confirmed that our implementation
can activate a large number of mirroring rules in a short
amount of time (e.g., consistently with [17]), and evalu-
ated the control over the slice duration in §7.3.

Processing mirrored packets For each mirrored packet,
Stroboscope’s implementation extracts: (i) the router ID
originating it; (ii) its original destination IP; and (iii) the
NIC timestamp at which it was received. At the end of
each timeslot, Stroboscope outputs the collected traf-
fic slices (possibly empty), grouped by queries, with all
meta-data associated to the mirrored packets. Further-
more, it includes if packets were following the expected
paths, and which packets match others.

7 Evaluation

We now evaluate our implementation of Stroboscope.
First, we start by evaluating the algorithmic pipeline us-
ing synthetic benchmarks on realistic ISP topologies, to
confirm that: (i) it can compute measurement campaigns
in a timeframe suitable for online use; and (ii) it is able
to maximize the accuracy of each query. We observe that
the placement algorithms (§7.1) optimize mirroring lo-
cations in milliseconds, and reduces the number of mir-
roring rules by up to 50%. While the scheduling algo-

rithm (§7.2) approximates schedules in milliseconds, op-
timized schedules increase accuracy by 15% for half the
experiments. Second, we present measurements on real
routers (§7.3) which confirm their ability to capture traf-
fic slices as small as 23 ms. Finally, we validate the abil-
ity of Stroboscope to react to unexpected traffic changes
within one timeslot using Mininet [18] (§7.4).

7.1 Placement algorithms performance

Fig. 5 shows execution time and mirroring location re-
duction of the placement algorithms (see §4) when run
on all Rocketfuel topologies [19] and on the largest
topologies from the Internet Topology Zoo [20]. We per-
formed more than 4,000 experiments for each algorithm.
We remind that the speed of the algorithms affects Stro-
boscope’s ability to recompute a new schedule online
(i.e., to react to routing changes). However, reducing mir-
roring locations enables to increase the number of times-
lots per schedule, hence the accuracy of query answers.

Key-points sampling (§4.1) We evaluate the algorithm
by defining monitoring paths as random shortest-paths
(according to the IGP weights for the Rocketfuel topolo-
gies, and edge count on the Topology Zoo ones), and
random deviations from these (i.e., paths longer by up
to 50% with the same end points).

Fig. 5a shows box plots of the measured execution
time in function of the path length. As expected, the al-
gorithm exhibits an exponential behavior. Yet, even for
longer paths, it still completes in milliseconds: paths of
13 hops have a median runtime of only ∼ 20 ms. Fig. 5b
displays the CDF of the mirroring-rule reduction with re-
spect to mirroring on every hop in the input path (i.e.,
1− output

input). We see that∼ 80% of the experiments resulted
in a gain of over 30%. KPS returned only 2 to 4 mirroring
rules in most of the experiments.

Surrounding algorithm (§4.2) We run the surrounding
algorithm in similar experiments as above, except that
for each topology, we randomly select connected compo-
nents as regions to monitor, and 25% of the nodes having
2 or less outgoing edges as egress points.

Fig. 5c shows the measured execution times, in func-
tion of the region size. We observe that: (i) computing
node surrounding runs in hundreds of microseconds, and
is an order of magnitude faster than the further optimized
placement; and (ii) execution times do not depend on the
input region but rather on the network size and its aver-
age node degree. Fig. 5d shows the measured optimiza-
tion gains with respect to edge surrounding. Both algo-
rithms reduce the number of mirroring locations by at
least 30% in half of the experiments, and the optimal one
can provide an extra gain of 20%.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 475

3 5 7 9 11 13 15
Input path length

0.01

0.1

1

10

100
200

1000

Ti
m

e
[m

s]

(a) The key-points sampling algo-
rithm runs quickly, even for longer
input paths in large graphs.

10 30 50 70 90
Optimization gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
ex

pe
rim

en
ts

(b) The key-points sampling algo-
rithm reduced the number of mir-
roring rules in all experiments.

15 20 25 30 40 50 60
Region size

0.05
0.1

1

5
15

50
100

Ti
m

e
[m

s]

Minimal surrounding
Node surrounding

(c) The surrounding algorithm run-
ning times depend on the size of the
graph and not the input region.

10 30 50 70
Optimization gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
ex

pe
rim

en
ts Minimal surrounding

Node surrounding

(d) The surrounding algorithm re-
duce greatly the number of mirror-
ing rules.

Figure 5: Computing mirroring rule locations is fast, and the total number of mirroring rules can be drastically
reduced, minimizing the mirroring cost for each query and enabling to increase the overall accuracy.

10 50 100 200 500 1000
Input query count

0.0001
0.001

0.01

1
10

100
1000

Ti
m

e
[s

]

Approximation
Optimized

(a) The scheduling pipeline can
produce an approximation at a
time-scale suited for online recom-
putations, even on larger inputs.

0 10 20 30 40 50 60 70 80
Optimization gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
ex

pe
rim

en
ts

(b) By increasing the total number
of slot allocations, the optimized
schedule maximizes the accuracy
of the measurement campaign.

Figure 6: Stroboscope can compute a quick approxi-
mated schedule, or one that maximizes accuracy.

7.2 Scheduling performance
We now evaluate the scalability of our scheduling
pipeline on an increasing number of queries. We se-
lect a random, normally distributed cost for each query.
We vary the time budget for all queries between 20 and
400 timeslots (corresponding to 10 s and 500 ms respec-
tively), and the maximal bandwidth usage per slot be-
tween 2 to 100 times the average query cost. We use 10
of those selections per query size.

Fig. 6a shows the running times of the approximated
and optimized scheduling algorithm. We confirm that
the approximated schedule can indeed be used for on-
line events, as it is computed in microseconds, even
for 1,000 queries. The large variance of the optimized
pipeline is due to the variation of the maximal band-
width usage across experiments. If this value is low, it
increases the estimated upper bound for the bin-packing
problem, which makes computing an optimized schedule
exponentially slower. The optimized schedule, however,
leads to improved accuracy. Fig. 6b shows the CDF of
the relative increase of slot allocation (number of times
a query is scheduled in a timeslot), when using the op-
timized pipeline instead of the approximation. For about

half of the experiments the optimized schedule contains
15% more slot allocations than the approximated one, up
to 40% for 10% of the experiments.

7.3 Real routers mirroring performance
We now present experimental measures on two physi-
cal routers (Cisco C7018). Each router mirrors packets
to Stroboscope. We connect a traffic generator on the
first router, and send test traffic towards the IP address
of Stroboscope which is connected to the second router.
Slice size We first measure the minimal achievable traf-
fic slice (i.e., activating and immediately deactivating the
underlying ACL) and estimate the precision with which
we could control the slice duration (by delaying the deac-
tivation of the ACL). Fig. 7 shows the measured duration
of the traffic slices depending on the deactivation delay.
Each experiment is repeated 50 times. The minimal slice
duration is 23−25ms. We verify that we precisely con-
trol the duration of the traffic slice as it linearly increases
with the deactivation delay.
Mirroring delay We then measure the time needed by
routers to mirror packets by computing the delay be-
tween the arrival time of the original and the mirrored
packet. The mean mirroring delay over roughly 100,000
measurements is µ = 2.6 µs, with a standard deviation
of σ = 1.6 µs. Such small values indicate that routers
mirror packets in constant time.

7.4 Reaction to unexpected traffic volume
Finally, we experimentally validate the ability of Strobo-
scope to react to unexpected traffic increases. In an emu-
lated environment, we configured Stroboscope to mirror
a flow of 1 Mb/s at two locations, using at most 5 Mb/s.
We then evaluate the ability of Stroboscope to quickly
adapt traffic mirroring during a sudden throughput in-
crease. We configured the time during which recorded
peak values are used for traffic estimations to 5 seconds.

476 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9 10
Pre-specified delay before

automatic deactivation in ms

23

26

29

32

35

S
lic

e
du

ra
tio

n
in

m
s

Figure 7: Existing Cisco routers (C7018) have a min-
imal slice duration of 23 ms.

Fig. 8 shows the evolution of (i) the real traffic volume
of the monitored flow; (ii) its predicted traffic demand;
and (iii) the volume of mirrored traffic. Initially, the pre-
diction starts at the budget value, causing little mirrored
traffic as Stroboscope performs the estimation described
in §3. After 1 s, the prediction is updated to reflect the
last observed peak demand. This increases the amount
of mirrored traffic as the query is scheduled more often.
At t = 10s, the real traffic volume spikes, increasing the
mirrored traffic. Eventually, the mirrored traffic exceeds
the predicted volume, and measurements are interrupted.
Traffic prediction is then updated. The same happens af-
ter t = 11s, where the query exceeds the monitoring bud-
get during one timeslot. This causes the traffic estimation
from t = 12s to t = 17s to be the whole budget, schedul-
ing the query in a single timeslot. In total, the mirrored
traffic exceeded the budget for 25 ms.

8 Case study: Monitoring transit traffic

We implemented three monitoring applications building
upon the measurement stream provided by Stroboscope.
Namely, we run our Stroboscope implementation on the
queries from Fig. 2 and attach it to router U in the em-
ulated network. Each link has a delay of 5 ms and a
loss probability of 1%. We stress that the flow towards
1.2.3.0/24 in the example can be any flow—even a tiny
one, extremely unlikely to be captured by NetFlow.

Estimating loss rates Stroboscope can estimate losses
over paths by combining MIRROR and CONFINE queries.
Indeed, there are only three reasons causing a packet cap-
tured at the ingress of a path (A) to not have a match-
ing copy at the egress (D): (i) the timeslot completed be-
fore the packet reached the egress, which only happens
if no packet afterwards is seen at both A and D; (ii) the
CONFINE query detected a violation; or (iii) the packet
was dropped. Using this information, we estimated loss
rates across [A->D] to be 7%—slightly higher than the
real value (5%) as some mirrored packets were also lost.

0 1 10 12 20
Time [s]

50
1000
2000

5000

Tr
af

fic
Vo

lu
m

e
[K

b/
s] real

mirrored
predicted

11.225 11.25

Figure 8: Stroboscope dynamically estimates traffic
demands and swiftly reacts upon budget violation.

Estimating load-balancing ratios ECMP hash function
polarization [21] causes suboptimal network usage and
is hard to detect. We confirmed that Stroboscope can de-
tect such issues by computing a load-balancing ratio: in
this setup, the ratio of matching packets seen at {A,B,C}
over those seen only at {A,C}, which should be close to
50%. In our case, the monitored prefix had a single flow
causing the computed ratio to be about 90% (recall that
there are losses in the network). This unusual ratio should
prompt operators to observe the captured packet headers.

Estimating one-way delays First, Stroboscope esti-
mates router-to-collector latencies. For that, each router
has a mirroring rule matching its own loopback address.
The collector sends probes towards these loopbacks, and
receives copies echoed by the NIC (with no CPU fall-
back on the routers). Stroboscope finds the router-to-
collector latency by comparing the probe and echo time-
stamps. Second, Stroboscope estimates one-way delays
between routers (A and D) by: (i) identifying matching
packets in their traffic slices; (ii) reconstructing the time
at which the packets traversed each router by subtract-
ing the router-to-collector latency from the time at which
the mirrored packet copy was received at the collec-
tor; (iii) computing the difference between these traver-
sal times. Using this procedure, we confirmed that the
latency of [A->D] was 15 ms. Note that this estimation
does not require to use any form of clock synchronization
between the routers and the collector.

9 Related Work

Stream-based monitoring Stroboscope relates to Gi-
gascope [24], a stream-based system which provides a
SQL-like query language to stream packet-based mea-
surements from any router interface. In contrast to Stro-
boscope, Gigascope lacks higher-level constructs such as
path-based queries and the ability to adhere to a moni-
toring budget. It also supports fewer concurrent queries
as changing the packet dissectors they execute on the
routers is slow.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 477

Feature Stro
bosco

pe

Everfl
ow [22]

Plan
ck

[23]

Query-based mirroring 3 3 7

Monitoring on a budget 3 7 7

Runs on commodity hardware 3 3 3

Independence from active probing 3 7 3

Independence from header bits 3 7 3

Table 1: Comparison between Stroboscope and other
mirroring-based techniques.

Mirroring-based monitoring Stroboscope is not the
first system to use packet mirroring for monitoring
purposes. For example, [11] relies on packet mirror-
ing to selectively monitor control-plane traffic. In Ta-
ble 1, we compare Stroboscope with Everflow [22] and
Planck [23], the two mirroring-based systems which are
the closest to Stroboscope. Only Stroboscope can com-
ply with a mirroring budget. Also, Stroboscope does not
require active packet marking or special header flags as
Everflow’s [22] “guided probe” approach does.
Monitoring with programmable hardware Progress
in programmable hardware (e.g., P4 [25]) and virtual
network devices (e.g., Open vSwitch [26]) enables new
monitoring possibilities. SketchVisor [27] is a sketch-
based measurement framework built on virtual switches.
Basat et al. [28] present a randomized constant time algo-
rithm to identify hierarchical heavy hitters. NetQRE [29]
uses regular expressions over packet streams to express
flow-level and application-level policies. All three ap-
proaches could directly be built on top of Stroboscope.
Other works focus on compiling high-level queries into
specific actions of programmable devices. In [30, 31],
path queries are supported by encoding the path traversed
by packets in the packets header. Narayana et al. [32]
introduce a performance query language, Marple, inter-
acting with a key-value store running on the switches.
By scheduling mirroring rules network-wide, Strobo-
scope supports path or Marple queries without the need
for rewriting packets or special network data structures.
More generally, our work shows that hardware capa-
bilities of current routers are sufficient to build pro-
grammable monitoring systems.
Monitoring flow statistics Tools like NetFlow [1] are of-
ten used in ISP networks and provide coarse-grained flow
statistics by randomly sampling traffic. FlowRadar [33]
and ProgME [34] provide per-flow packet counters.
While they can also bound the monitoring overhead,
these approaches lack the capability of Stroboscope to
track individual packets across the network, and thus
cannot measure fine-grained statistics such as one-way
delays or load-balancing ratios.

Data-center monitoring Many research contributions
on network monitoring provide fine-grained traffic vis-
ibility in settings different from ISPs, mainly data cen-
ters. They exploit degrees of freedom that are unavail-
able in ISP networks, especially control of end-hosts,
e.g., to collect fine-grained statistics [35] or probe the
network [36]. Stroboscope is a more general in-network
solution, viable in any network, including ISP ones. We
note that some Stroboscope building blocks can be use-
ful in other settings as well. For example, its internal al-
gorithms could be used in a new version of Everflow [22]
which keeps the mirrored traffic volume under control.
Network Verification Stroboscope complements recent
initiatives in data-plane [37, 38, 30, 39, 40, 41] and
control-plane [42, 43, 44, 45] verification by enabling
dynamic testing of runtime-based predicates such as per-
formance metrics (e.g., measuring packet loss). Strobo-
scope similarly complements recent efforts for building
debugging tools for software defined networks [46, 47].

10 Conclusions

As networks grow in complexity, they require flexible
monitoring tools able to measure precise metrics about
their traffic flows while scaling to ever-growing traf-
fic volumes. In this paper, we show how Stroboscope
achieves these objectives by combining the visibility
benefits of traffic mirroring with the scalability of traf-
fic sampling. Specifically, Stroboscope enables to collect
fined-grained measurements of any traffic flow while ad-
hering to a monitoring budget. Stroboscope works with
existing routers, and is well-suited for ISP networks. We
believe that Stroboscope monitoring capabilities could
address the visibility needs of many future network ap-
plications, including self-driving network control loops.

Acknowledgements

We are grateful to NSDI anonymous reviewers, our shep-
herd Boon Thau Loo, Lynne Salameh and Roland Meier
for their insightful comments. O. Tilmans is supported
by a grant from F.R.S.-FNRS FRIA. This project has
received funding from the European Union’s Horizon
2020 research and innovation programme under grant
agreement No 688421, and was supported by the Swiss
State Secretariat for Education, Research and Innovation
(SERI) under contract number 15.0268. The opinions
expressed and arguments employed reflect only the au-
thors’ views. The European Commission is not respon-
sible for any use that may be made of that information.
Further, the opinions expressed and arguments employed
herein do not necessarily reflect the official views of the
Swiss Government.

478 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Benoit Claise. Cisco Systems NetFlow Services Export Version

9. RFC 3954 (Informational), October 2004. http://www.
ietf.org/rfc/rfc3954.txt.

[2] Peter Phaal, Sonia Panchen, and Neil McKee. InMon Corpora-
tion’s sFlow: A Method for Monitoring Traffic in Switched and
Routed Networks. RFC 3176 (Informational), September 2001.
http://www.ietf.org/rfc/rfc3176.txt.

[3] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and
Carsten Lund. Online identification of hierarchical heavy hitters:
algorithms, evaluation, and applications. In SIGCOMM, pages
101–114, 2004.

[4] Olivier Tilmans, Tobias Bühler, Stefano Vissicchio, and Laurent
Vanbever. Mille-Feuille: Putting ISP Traffic Under the Scalpel.
In HotNets, pages 113–119, 2016.

[5] Jon Postel. Internet protocol darpa internet program protocol
specification. RFC 791, September 1981. https://tools.
ietf.org/rfc/rfc791.txt.

[6] Puneet Agarwal and Bora Akyol. Time To Live (TTL) Process-
ing in Multi-Protocol Label Switching (MPLS) Networks. RFC
3443, January 2003. https://tools.ietf.org/rfc/
rfc3443.txt.

[7] Jianer Chen, Yang Liu, and Songjian Lu. An improved parame-
terized algorithm for the minimum node multiway cut problem.
Algorithmica, 55:1–13, 2009.

[8] György Dósa. The tight bound of first fit decreasing bin-packing
algorithm is ffd (i) ≤ 11/9 opt (i)+ 6/9. Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies, pages 1–
11, 2007.

[9] Cisco Systems. Configuring ERSPAN, 2016. https://goo.
gl/h3qaGL.

[10] Juniper Networks. Layer 2 Port Mirroring Overview, 2014.
https://goo.gl/YxgZuY.

[11] Stefano Vissicchio, Luca Vergantini, Luca Cittadini, Valerio Mez-
zapesa, Maurizio Pizzonia, and Maria Luisa Papagni. Beyond the
Best: Real-time Non-invasive Collection of BGP Messages. In
INM/WREN, 2010.

[12] Cisco Python API. http://bit.ly/2fMgyKP.

[13] Junos Automation Scripts Overview, 2017. https://goo.
gl/WpjAcX.

[14] Pedro Marques, Nischal Sheth, Robert Raszuk, Barry Greene,
Jared Mauch, and Danny McPherson. Dissemination of Flow
Specification Rules. RFC 5575 (Proposed Standard), August
2009. http://www.ietf.org/rfc/rfc5575.txt.

[15] R. Enns et al. NETCONF Configuration Protocol. RFC
4741, December 2006. https://tools.ietf.org/rfc/
rfc4741.txt.

[16] Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jen-
nifer Rexford. Central Control Over Distributed Routing. In SIG-
COMM, pages 43–56, 2015.

[17] A. Bobyshev, P. DeMar, and D. Lamore. Effect of dynamic ACL
(access control list) loading on performance of Cisco routers. In
Computing in High Energy Physics, 2004.

[18] Mininet: An Instant Virtual Network on your Laptop (or other
PC). 2012. http://www.mininet.org/.

[19] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring
ISP Topologies with Rocketfuel. In SIGCOMM, pages 133–145,
2002.

[20] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bow-
den, and Matthew Roughan. The internet topology zoo. IEEE
Journal on Selected Areas in Communications, 29:1765 –1775,
2011.

[21] Cisco Tech Support. CEF Polarization. 2013. https://goo.
gl/b7ZSMy.

[22] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan
Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y.
Zhao, and Haitao Zheng. Packet-Level Telemetry in Large Data-
center Networks. In SIGCOMM, pages 479–491, 2015.

[23] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Fel-
ter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. Planck:
Millisecond-scale Monitoring and Control for Commodity Net-
works. In SIGCOMM, pages 407–418, 2014.

[24] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and
Vladislav Shkapenyuk. Gigascope: a stream database for network
applications. In SIGMOD, pages 647–651, 2003.

[25] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44:87–95, 2014.

[26] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy
Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer,
Pravin Shelar, et al. The Design and Implementation of Open
vSwitch. In NSDI, pages 117–130, 2015.

[27] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-
Chao Chen, and Gong Zhang. SketchVisor: Robust Network
Measurement for Software Packet Processing. In SIGCOMM,
pages 113–126, 2017.

[28] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C. Luizelli,
and Erez Waisbard. Constant Time Updates in Hierarchical
Heavy Hitters. In SIGCOMM, pages 127–140, 2017.

[29] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev
Alur, and Boon Thau Loo. Quantitative Network Monitoring with
NetQRE. In SIGCOMM, pages 99–112, 2017.

[30] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Vargh-
ese, Nick McKeown, and Scott Whyte. Real Time Network Pol-
icy Checking Using Header Space Analysis. In NSDI, pages 99–
111, 2013.

[31] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David
Walker. Compiling Path Queries. In NSDI, pages 207–222, 2016.

[32] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyaku-
mar, and Changhoon Kim. Language-Directed Hardware Design
for Network Performance Monitoring. In SIGCOMM, pages 85–
98, 2017.

[33] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A Better NetFlow for Data Centers. In NSDI, pages
311–324, 2016.

[34] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. Progme:
towards programmable network measurement. IEEE/ACM Trans-
actions on Networking (TON), 19:115–128, 2011.

[35] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vah-
dat. Trumpet: Timely and Precise Triggers in Data Centers. In
SIGCOMM, pages 129–143, 2016.

[36] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A Large-Scale Sys-
tem for Data Center Network Latency Measurement and Analy-
sis. In SIGCOMM, pages 139–152, 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 479

http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc3176.txt
https://tools.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/rfc/rfc3443.txt
https://tools.ietf.org/rfc/rfc3443.txt
https://goo.gl/h3qaGL
https://goo.gl/h3qaGL
https://goo.gl/YxgZuY
http://bit.ly/2fMgyKP
https://goo.gl/WpjAcX
https://goo.gl/WpjAcX
http://www.ietf.org/rfc/rfc5575.txt
https://tools.ietf.org/rfc/rfc4741.txt
https://tools.ietf.org/rfc/rfc4741.txt
http://www.mininet.org/
https://goo.gl/b7ZSMy
https://goo.gl/b7ZSMy

[37] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the
Data Plane with Anteater. SIGCOMM Comput. Commun. Rev.,
41:290–301, 2011.

[38] Peyman Kazemian, George Varghese, and Nick McKeown.
Header Space Analysis: Static Checking for Networks. In NSDI,
pages 113–126, 2012.

[39] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar,
and P. Brighten Godfrey. VeriFlow: Verifying Network-Wide In-
variants in Real Time. In NSDI, pages 49–54, 2013.

[40] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Ja-
yaraman, and George Varghese. Checking Beliefs in Dynamic
Networks. In NSDI, pages 499–512, 2015.

[41] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. SymNet: Scalable Symbolic Execution for Modern Net-
works. In SIGCOMM, pages 314–327, 2016.

[42] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan,
Ramesh Govindan, Ratul Mahajan, and Todd Millstein. A Gen-
eral Approach to Network Configuration Analysis. In NSDI,
pages 469–483, 2015.

[43] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella,
and Ratul Mahajan. Fast Control Plane Analysis Using an Ab-
stract Representation. In SIGCOMM, pages 300–313, 2016.

[44] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst,
Arvind Krishnamurthy, and Zachary Tatlock. Scalable Verifica-
tion of Border Gateway Protocol Configurations with an SMT
Solver. ACM SIGPLAN Notices, 51:765–780, 2016.

[45] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.
A General Approach to Network Configuration Verification. In
SIGCOMM, pages 155–168, 2017.

[46] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja
Feldmann. OFRewind: Enabling Record and Replay Trou-
bleshooting for Networks. In USENIX ATC, pages 15–17, 2011.

[47] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David
Mazières, and Nick McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot Networks. In
NSDI, pages 71–85, 2014.

480 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Proofs for the placements algorithms

A.1 Proof for Theorem 1
Theorem. Let a forwarding path P be the concatena-
tion of sub-paths Q1, . . . ,Qn. MIRROR queries on P can
be correctly answered by mirroring only on the endpoints
si and ti of all Qi such that no other forwarding path from
si to ti has the same length as Qi.

Proof. First, we show that if any Q ⊆ P is the only path
of length x from p to s, we can always distinguish mir-
rored packets that have been forwarded over Q by just
mirroring on p and s. Let l be the length of Q, and let
tp and ts be the TTL values of any packet mirrored from
p and s. Under the assumption that the TTL is properly
decreased (by one) at each forwarding hop, we can un-
ambiguously determine if the packet has been forwarded
over Q: If ts = tp− l, then Q must be the traversed sub-
path because Q is the only path of length l between p and
s by hypothesis.

The statement of the theorem then follows by noting
that the same property applies to any sub-path Qi, as well
as to their concatenation—i.e., P.

A.2 Proof for Theorem 2
Theorem. CONFINE queries on a region R can be cor-
rectly answered if and only if the set of mirroring loca-
tions is the edge surrounding of R.

The following lemma proves Theorem 2.

Lemma 1. Given a region R, its edge surrounding E(R)
and any prefix d, it is guaranteed to capture all and only
packets for d that exit R if and only if mirroring rules
matching d are active on every edge in E(R).

Proof. We first show that all packets exiting R are cap-
tured if and only if rules are placed on all the edges in
S(R). Consider any packet p entering from an ingress
node i in R. For p to exit R, there must be a node r in
R (possibly r = i) that forwards p to a node o outside R.
The packet will then traverse the edge (r,o) with r ∈ R
and o 6∈ R. If mirroring rules are active on all the edges
in S(R), then p is detected, by definition of S(R). In con-
trast, if a mirroring rule is not active on any edge (rm,o1)
with rm ∈ R and o1 6∈ R, then a packet p′ will not be
mirrored if it exits R through (rm,o1) and never enters
R again – e.g., following a path [r1 . . .rmo1 . . .ok], where
∀i = 1, . . . ,m ri ∈ R and ∀ j = 1, . . . ,k o j 6∈ R.

In addition, if a packet is captured by a rule placed
on an edge (x,y) in S(R), then it must have crossed a
node x in R and be forwarded to a node y outside R, by
definition of S(R). This implies that only packets leaving
R are mirrored, which yields the statement.

A.3 Proof for Theorem 3
Theorem. In the absence of forwarding anomalies, a
CONFINE query on a region R can be correctly answered
if and only if every mixed-egress path for R contains at
least one mirroring location.

The following lemma proves Theorem 3.

Lemma 2. In the absence of forwarding anomalies, any
packet not confined to a region R is guaranteed to be
mirrored if and only if every simple path starting from a
node in R, traversing a node outside R and ending in any
egress point crosses at least one active mirroring rule
matching the packet destination.

Proof. We separately prove sufficiency and necessity of
the condition expressed by the theorem.

Sufficiency: Proof by contradiction. Assume that some
packets not confined to R are not mirrored despite mir-
roring rules matching the condition in the theorem state-
ment. In the absence of forwarding anomalies, those
packets are guaranteed to be delivered to an egress
point. Not to be confined to R, they must follow a path
[r1 . . .rno1 . . .ol . . .e], where e is an egress point, nodes
ri ∈ R ∀i = 1, . . . ,n, and nodes o j 6∈ R ∀ j = 1, . . . , l. By
hypothesis, an active mirroring rule must be on this path
and must mirror the packets, contradicting the assump-
tion that packets are not mirrored.

Necessity: Proof by contradiction. Assume that it is
guaranteed to mirror all packets confined to R but no mir-
roring rule is active on a given path P = [rm . . .o . . .e]
from a node rm ∈ R to an egress point e including a
node o 6∈ R (possibly o = e). Consider now any path
[r1 . . .rm], where m≥ 1, r1 is an ingress point, and ri ∈ R
∀i = 1, . . . ,m. This path must exist since a region is de-
fined as a connected component (see §2). Packets for-
warded on the concatenation of the previous two paths
(i.e., [r0 . . .rm . . .o . . .e]) are not confined to R, as they
cross o 6∈ R. However, they are not mirrored, contradict-
ing the assumption.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 481

B Scheduling ILP formulations

B.1 Optimal bin-packing

Input All queries and their associated costs, an upper
bound on the number of of timeslots needed.

Decision Variables Let Q be the set of input queries and
S the set of all time slots in the measurement campaign.
We define:

Rqs as the binary variable representing the decision to
schedule the query q ∈ Q in timeslot s ∈ S when
Rqs = 1;

Us as the binary variable representing whether the times-
lot s ∈ S has any assigned query when Us = 1.

Parameters

B The maximal available bandwidth in a single timeslot;

aq The expected traffic volume generated by the mirror-
ing rules for the query q.

Objective Function Minimize the length of the sub-
schedule

min
S

∑
s

Us

Constraints

C1 In any timeslot s, the expected traffic generated by
the mirroring rules across all queries activated in s
must be lesser or equal than the budget.

∀s :
Q

∑
q
(Rqsaq)≤UsB

C2 Every query must be scheduled.

∀q :
S

∑
s

Rqs = 1

C3 Track used slots.

∀q, s : Us ≥ Rqs

C4 Timeslots should be used in sequence
(tie-breaking constraint).

∀s, s′, s < s′ : Us ≤ Ss′

B.2 Maximal filling

Input A list of queries and their associated cost, a list
of time slot and leftover budget. Queries are pruned such
that any query whose cost is greater than the biggest left-
over budget available is excluded.
Decision Variables Let Q be the set of input queries and
S the set of all time slots in the measurement campaign.
We define:

Rqs as the binary variable representing the decision to
schedule the query q ∈ Q in timeslot s ∈ S when
Rqs = 1;

M as the continuous variable representing the minimal
number of slots allocated to any query.

Parameters

βs The available leftover bandwidth in the timeslot s,
thus βs ≤ B;

Ω The spreading factor, which lets the operator favor
schedules where all queries have a similar number
of timeslots (high value) or schedules maximizing
the absolute number of allocation;

wq The preference level of the query q. Queries with
a higher preference are scheduled preferably to
queries with a lower preference;

aq The expected traffic volume generated by the mirror-
ing rules for the query q.

Objective Function Maximize the utilization of the bud-
get, either by maximizing the number of allocations of
some queries, according to their preference level, or by
spreading the budget across all queries (thus maximizing
the minimal allocation).

max

[
Q

∑
q

(
S

∑
s

Rqs

)
wq + MΩ

]

Constraints

C1 In any timeslot s, the expected traffic generated by
the mirroring rules across all queries activated in s
must be lesser or equal than the leftover budget.

∀s :
Q

∑
q
(Rqsaq)≤Usβs

C2 M should represent the minimal number of allo-
cated slots across all queries.

∀q : M ≤
S

∑
s

Rqs

482 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Overview
	From Abstract to Concrete Queries
	Optimizing Mirroring Locations
	Key-points Sampling algorithm
	Surrounding algorithm

	Computing Measurement Campaigns
	Building a Measurement Schedule
	Adapting the Schedule at Runtime

	Implementation
	Evaluation
	Placement algorithms performance
	Scheduling performance
	Real routers mirroring performance
	Reaction to unexpected traffic volume

	Case study: Monitoring transit traffic
	Related Work
	Conclusions
	Proofs for the placements algorithms
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3

	Scheduling ILP formulations
	Optimal bin-packing
	Maximal filling

