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Abstract

In order to achieve higher I/O throughput and better
overall system performance, it is necessary for commer-
cial storage systems to fully exploit the increasing core
counts on modern systems. At the same time, legacy
systems with millions of lines of code cannot simply be
rewritten for improved scalability. In this paper, we de-
scribe the evolution of the multiprocessor software ar-
chitecture (MP model) employed by the Netapp® Data
ONTAP® WAFL® file system as a case study in incre-
mentally scaling a production storage system.

The initial model is based on small-scale data partition-
ing, whereby user-file reads and writes to disjoint file
regions are parallelized. This model is then extended
with hierarchical data partitioning to manage concurrent
accesses to important file system objects, thus benefit-
ing additional workloads. Finally, we discuss a fine-
grained lock-based MP model within the existing data-
partitioned architecture to support workloads where data
accesses do not map neatly to the predefined partitions.
In these data partitioning and lock-based MP models,
we have facilitated incremental advances in parallelism
without a large-scale code rewrite, a major advantage
in the multi-million line WAFL codebase. Our results
show that we are able to increase CPU utilization by as
much as 104% on a 20-core system, resulting in through-
put gains of up to 130%. These results demonstrate
the success of the proposed MP models in delivering
scalable performance while balancing time-to-market re-
quirements. The models presented can also inform scal-
able system redesign in other domains.

1 Introduction

To maintain a competitive advantage in the storage mar-
ket, it is imperative for companies to provide cutting-
edge platforms and software to maximize the returns
from such systems. Recent technological trends have
made this prospect more difficult, as increases in CPU
clock speed have been abandoned in favor of increasing
core counts. Thus, to achieve continuing performance
gains, it has become necessary for storage systems to

scale to an ever-higher number of cores. As one of the
primary computational bottlenecks in storage systems,
the file system itself must be designed for scalable pro-
cessing.

Due to time-to-market objectives, it is simply not feasible
to rewrite the entire code base of a production file sys-
tem to use a new multiprocessor (MP) model. Reimple-
menting such a system to use explicit fine-grained lock-
ing would require massive code inspection and changes
and would also carry with it the potential for introduc-
ing races, performance issues caused by locking over-
head and contention, and the risk of deadlocks. In this
paper, we present a series of techniques that have al-
lowed us to simultaneously meet scalability and schedule
requirements in the WAFL file system over the course
of a decade and to minimize the code changes required
for parallelization. In particular, all of our approaches
emphasize incremental parallelization whereby common
code paths can be optimized without having to make
changes in less critical code paths. Although we eval-
uate these techniques in a file system, the approaches are
not inherently limited to that context.

The first technique we discuss—referred to as Classi-
cal Waffinity—applied data partitioning to fixed-size re-
gions of user files. This approach provided a mech-
anism to allow read and write operations to different
ranges of user files to occur in parallel without requir-
ing substantial code rewrite, because the use of data par-
titioning minimized the need for explicit locking. Ex-
tending this model, Hierarchical Waffinity further par-
allelized operations that modify systemwide data struc-
tures or metafiles, such as the creation and deletion of
files, by implementing a hierarchical data partitioning
infrastructure. Compared to Classical Waffinity, Hierar-
chical Waffinity improves core usage by up to 38% and
achieves 95% average utilization across a range of criti-
cal workloads.

Finally, we have extended Hierarchical Waffinity to han-
dle workloads that do not map neatly to these parti-
tions by adding a fine-grained lock-based MP model
within the existing data-partitioned architecture. This in-
novative model—called Hybrid Waffinity—provides sig-
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nificant parallelism benefits for previously problematic
access patterns while not requiring any code changes
for workloads where Hierarchical Waffinity already ex-
celled. That is, the hybrid model introduces minimal ex-
plicit locking in narrowly defined cases to overcome spe-
cific scalability limitations in Hierarchical Waffinity to
increase core usage by up to 104% and improve through-
put by as much as 130%. Using these techniques has
allowed WAFL to scale to the highest-end Data ONTAP
platforms of their time (up to 20 cores) while constrain-
ing modifications to the code base.

The primary contributions of this paper are:

e We present a set of multiprocessor software archi-
tectures that facilitate incremental parallelization of
large legacy code bases.

e We discuss the application of these techniques
within a high-performance, commercial file system.

e We evaluate each of our approaches in the context of
a real production storage system running a variety
of realistic benchmarks.

Next, we present a short background on WAFL. Sec-
tions 3 through 5 present the evolution of the WAFL
multiprocessor model through the various steps outlined
above, and Section 6 evaluates each of the new models.
Section 7 presents related work, and we conclude in Sec-
tion 8.

2 Background on the WAFL File
System

WAFL implements the core file system functionality
within the Data ONTAP operating system. WAFL
houses and exports multiple file systems called NetApp
FlexVol® volumes from within a shared pool of storage
called an aggregate and handles file system operations to
them. In WAFL, all metadata and user data (including
logical units in SAN protocols) is stored in files, called
metafiles and user files, respectively. The file system is
organized as a tree rooted at the super block. File sys-
tem operations are dispatched to the WAFL subsystem in
the form of messages, with payloads containing pertinent
parameters. For detailed descriptions of WAFL, see Hitz
et al. [17] and Edwards et al. [13].

Data ONTAP itself was first parallelized by dividing each
subsystem into a private domain, where only a single
thread from a given domain could execute at a time. For
example, domains were created for RAID, networking,
storage, file system (WAFL), and the protocols. Com-
munication between domains used message passing. Do-
mains were intentionally defined such that data sharing

was rare between the threads of different domains, so this
approach allowed scaling to multiple cores with minimal
code rewrite, because little locking was required. The file
system module executed on a dedicated set of threads in
a single domain, such that only a single thread could run
at a time. This simplistic model provided sufficient per-
formance because systems at the time had very few cores
(e.g., four), so parallelism within the file system was not
important. Over time, each of these domains has become
parallel, but in this paper we focus on the approaches
used to parallelize WAFL.

3 Classical Waffinity

As core counts increased, serialized execution of file
system operations became a scalability bottleneck be-
cause such operations represented a large fraction of
the computational requirements in our system. To pro-
vide the initial parallelism in the file system, we im-
plemented a multiprocessor model called Waffinity (for
WAFL affinity), the first version of which was called
Classical Waffinity and shipped with Data ONTAP 7.2
in 2006.

In Classical Waffinity, the file system message sched-
uler defined message execution contexts called affinities.
User files were then partitioned into file stripes that cor-
responded to a contiguous range of blocks in the file (ap-
proximately 2MB in size), and these were rotated over
a set of Stripe affinities. This model ensured that mes-
sages operating in different Stripe affinities were guar-
anteed to be working on different partitions of user files,
so they could be safely executed in parallel by threads
executing on different cores. In contrast, any two mes-
sages that were operating on the same region of a file
would be enqueued within the same affinity and would
therefore execute sequentially. This data partitioning
provided an implicit coarse-grained synchronization that
eliminated the need for explicit locking on partitioned
objects, thereby greatly reducing the complexity of the
programming model and the development cost of paral-
lelizing the file system. Some locking was still required
to protect shared global data structures that could be ac-
cessed by multiple affinities.

In Waffinity, we introduced a set of threads to exe-
cute the messages in each affinity, and we allowed the
thread scheduler to simultaneously run multiple Waffin-
ity threads. The Waffinity scheduler maintained a FIFO
list of affinities with work; that is, affinities that had
been sent messages that operated within that partition.
Any running thread dynamically called into the Waffin-
ity scheduler to be assigned an affinity from which to
execute messages. The number of Stripe affinities was
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empirically tuned to be 12 and the number of Waffinity
threads was defined per platform to scale linearly with
the number of cores. NetApp storage systems at the time
maxed out at 8 cores, which ensured more affinities than
threads. Having more affinities than threads and creat-
ing a dynamic association between them decreased the
likelihood of any thread being unable to find work.

The benefit of this model comes from the fact that
most performance-critical messages at the time, such as
user file reads and writes, could be executed in Stripe
affinities, because they operated within a single user-file
stripe. However, reads and writes across file stripes or
operations such as Open and Close that touch file sys-
tem metadata could not be performed in parallel from
the Stripe affinities. To handle such cases, we provided
a single-threaded execution context—called the Serial
affinity—such that when it was scheduled, no Stripe
affinities were scheduled and vice versa. This approach
is analogous to a Reader-Writer Lock, where the Serial
affinity behaves like a writer with exclusive file system
access and the Stripe affinities behave like readers with
shared access. Therefore, any messages requiring access
to data that was unsafe from the Stripe affinities could
be assured exclusive access to all file system data struc-
tures by executing in the Serial affinity. Use of the Serial
affinity excessively serialized many operations; however,
it allowed us to incrementally optimize the file system
by parallelizing only those messages found to be perfor-
mance critical. This approach also provided an option
whereby unsafe code paths could be dynamically re-sent
to the Serial affinity (called a slowpath).

Classical Walffinity exposed sufficient concurrency to ex-
ploit high-end NetApp platform core counts at the time,
i.e., 8 cores. That is, further parallelizing file system op-
erations would not have had a major impact on overall
performance because the cores were already well used.
Howeyver, as the number of cores increased, limitations in
the partitioning provided by the model led to scalability
bottlenecks. For example, an SFS2008 benchmark run-
ning on 12 cores saw the Serial affinity in use 48% of the
time, as a result of the metadata operations such as Se-
tattr, Create, and Remove. This serialization resulted in
considerable core idle time, as evaluated in Section 6.1.1,
which reduced potential performance. Further, most of
the work remaining could not be moved to a Stripe affin-
ity due to the strict rules of what can run there (i.e.,
operating within a single user file stripe). With higher
core counts, serialized execution had a larger impact on
performance, because the speedup achieved through par-
allelism was limited by the serial time, in accordance
with Amdahl’s law. Thus, although sufficient at the time,
Classical Walffinity as first designed was simply unable
to provide the required performance going forward.

Serial

[so [s1]s2]sa]ss]s5]s6|s7]s8][se]s10]s11]

Figure 1: The structure of Classical Waffinity with the Serial
affinity on top and the twelve Stripe affinities below.
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Figure 2: The Hierarchical Waffinity hierarchy rooted at the
Serial affinity.

4 Hierarchical Waffinity

Hierarchical Waffinity builds on top of the Classical
Waffinity model to enable increased levels of parallelism.
This model, which first shipped with Data ONTAP 8.1
in 2011, greatly reduces the increasingly critical single-
threaded path by providing a way to parallelize addi-
tional work. Further, the model offers insight into pro-
tecting hierarchically structured systems in other do-
mains [22] by using data partitioning.

4.1 The Affinity Hierarchy

An alternative view of the Serial and Stripe affinities of
Classical Waffinity is as a hierarchy, as shown in Fig-
ure 1, where a node is mutually exclusive with its chil-
dren but can run in parallel with other nodes at the same
level. Hierarchical Waffinity facilitates additional paral-
lelism by extending this simple 2-level hierarchy to ef-
ficiently coordinate concurrent accesses to other funda-
mental file system objects beyond data blocks of user
files.

Each affinity is associated with certain permissions, such
as access to metadata files, that serialized execution in
the file system in Classical Waffinity (Figure 2 and Ta-
ble 1). The new affinity scheduler enforces execution
exclusivity between a given affinity and its children, so
Hierarchical Waffinity only restricts the execution of an
affinity’s ancestors and descendants (hierarchy parents
and children, respectively); all other affinities can safely
run in parallel. For example, if the Volume Logical affin-
ity is running, then its Stripe affinities are excluded along
with its parent Volume, Aggregate, and Serial affinities.
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This design ensures that no two messages with conflict-
ing data accesses run concurrently, because they would
run in affinities that exclude one another. Hierarchical
Waffinity is analogous to a hierarchy of Reader-Writer
Locks, where running in any affinity acquires the lock as
a writer and thus prevents any readers (i.e., descendants)
from running concurrently, and vice versa.

The WAFL file system is itself hierarchical (i.e., buffers
within inodes within FlexVol volumes within aggre-
gates), making Hierarchical Waffinity a natural fit.
Knowledge of the specific data access patterns that are
most common in WAFL informed the decision of affin-
ity layout in the hierarchy and the mapping of specific
object accesses to those affinities.

As a general rule, client-facing data, such as user files,
logical units, and directories, is mapped to the Volume
Logical branch of the hierarchy and internal metadata is
mapped to Volume VBN—so named because it is typi-
cally indexed by volume block number (VBN). This al-
lows parallelism between client-facing and internal oper-
ations within a single volume. The Aggregate, Volume,
Stripe, and Range affinity types have multiple instances,
which allows parallel execution of messages operating
on disjoint data, such as any two operations in different
aggregates, FlexVol volumes, or regions of blocks in a
file. Each file system object is mapped to a particular in-
stance in the affinity hierarchy, based on its location in
the file system. The number of instances of each affin-
ity as well as the mapping of objects to instances can
be adapted to the observed workload to maximize per-
formance. Further, new affinity types can be (and have
been) added to the hierarchy over time in response to new
workloads and data access patterns.

4.2 Affinity Access Rules

The affinity permissions required by a message are de-
termined by the type of objects being accessed and the
access types. We used knowledge of the system to
derive affinity permissions that allowed performance-
critical operations to run with the most parallelism. In
WAFL, any access is associated with a specific affinity,
using the rules shown in Table 1. Exclusive access to
an object ensures that no concurrently running affinities
can access that object. The fundamental objects that are
protected by data partitioning in Walffinity are buffers,
files, Flex Vol volumes, and aggregates. Accesses to other
object types are infrequent but are protected with fine-
grained locking, and deadlock is prevented through the
use of lock hierarchies.

Each FlexVol volume and aggregate is mapped to a Vol-
ume and Aggregate affinity when it comes online. In the
WAFL file system, files are represented by inodes, which

are mapped to an affinity within the hierarchy of the vol-
ume or aggregate in which they reside. Inodes can be
accessed in either exclusive or shared mode. In exclu-
sive mode, only one message has access to the inode and
consequently can change any inode property or free the
inode. In shared mode, the inode’s fundamental prop-
erties remain read-only, but the majority of an inode’s
fields can be modified and are protected from concurrent
accesses by fine-grained locking. Similar distinctions are
in place for FlexVol volumes and aggregates.

Blocks are represented in memory by a buffer header and
a 4KB payload. Details of the WAFL buffer cache archi-
tecture have previously been published [11]. Accesses to
buffers fall into the following four categories:

e Insert: A new buffer object is allocated and the pay-
load is read in from disk. The buffer becomes asso-
ciated with the corresponding inode.

e Read: The payload of an in-memory buffer is read.
No disk I/O is required in this case.

e Write: The payload of the in-memory buffer is mod-
ified in memory. The buffer header is also modified
to indicate that it is dirty.

e Eject: The buffer is evicted from memory.

Each of these access modes is mapped to a specific affin-
ity instance for a given buffer. For Write, Insert, and
Eject accesses, our data partitioning model requires that
only a single operation perform any of these accesses
at a time. Thus, operations must run in the designated
affinity for a given access mode or its ancestor. On the
other hand, read accesses are safe in parallel with each
other, but it is necessary to ensure that the buffer will not
be ejected underneath it, so that it can run in any ances-
tor or descendant of the Eject affinity. Typically, Write
and Eject access are equivalent, which similarly prevents
concurrent reads and writes. The affinity mappings for
buffers are chosen to allow maximum parallelism, while
ensuring access to the buffers from all necessary affini-
ties. For example, user file reads and writes run in the
Stripe affinities because the relevant buffers map to these
affinities.

4.3 Mapping Operations to Affinities

Messages are sent to a predetermined affinity based on
the required permissions of the operation, as identified
by the software developer. If a message requires the per-
missions assigned to multiple affinities, then it is directed
to an affinity that is an ancestor of each. For example, an
operation that requires privileges assigned to a particular
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Affinity Name

Access Privileges Provided

Stripe

Provides exclusive access to a predefined, distinct set of blocks. Enables concurrent access
to sub-file-level user data.

Volume Logical

Provides exclusive access to most client-visible files (and directories) within a volume and
to certain file system internal metadata.

Volume VBN Provides exclusive access to most file system metadata, such as those files that track block
usage. Such files are typically indexed by volume block number (VBN).

Volume VBN | Provides access to specific ranges of blocks within files belonging to Volume VBN.

Range

Volume Provides exclusive access to all files within a volume as well as per-volume metadata that
lives in the containing aggregate.

Aggregate VBN Similarly to Volume VBN, provides access to most file system metadata in an aggregate.

Aggregate VBN
Range

Provides access to specific ranges of blocks within files belonging to Aggregate VBN.

Aggregate

Provides exclusive access to files in an aggregate.

Serial

Inherits the access rights of all other affinities and provides access to other global data.

Table 1: The affinities and the access rights that they provide.

Stripe affinity and to a Volume VBN affinity could safely
execute in the Volume affinity. As in Classical Waffin-
ity, if a message is routed to a particular affinity and later
determines that it requires additional permissions, it may
be dynamically re-sent (i.e., slowpath) to a coarser (i.e.,
less parallel) affinity that provides the necessary access
rights. Object accesses are achieved through a limited
set of APIs that we have updated to enforce the required
affinity rules, including slowpathing if necessary. Thus,
the programming model helps ensure code correctness.
The more access rights required by a message, the higher
in the affinity hierarchy it must run and the more it lim-
its parallelism by excluding a larger number of affinities
from executing. Thus, it is preferable to run in as fine
an affinity as possible. For this reason, we have selected
data mappings that allow the most common operations
to be mapped to fine affinities, and objects that are fre-
quently accessed together are given similar mappings.

Figure 3 shows several example affinity mappings of op-
erations under a single Volume affinity. For simplic-
ity, we assume a file stripe size of 100 contiguous user
blocks, or 10 blocks in metafiles. Reads and writes
within a file stripe map to a Stripe affinity. However, a
user file deletion (“Remove: A”) runs in the Volume Log-
ical affinity, because it requires exclusive access to that
user file, as does a write operation that spans multiple
file stripes (“W: A[100..200]”). Running in this affinity
prevents the execution of any reads or writes to blocks
in that file. However, reads and writes to files in other
volumes are not impacted, nor are operations on file sys-
tem metadata within the same volume. Note that “W:
A, MD” must run in Volume affinity to write to both a
user file and metafile. As noted earlier, key message pa-

Volume
Remove:V
W:A, MD
Volume Logical Volume VBN
Remove: A Create: MD
W: A[100..200] W: MD[10..20]
Stripe0 Stripe1 Stripe2 VVRO VWR1
W: A[100] W: A[200] W: B[100] W: MD[20]) W: MD[10]
R: B[200] R: A[200] R: A[300] R: MD[20] R:MD[10]

Figure 3: Example affinity mappings of Read (“R”), Write
(“W”), Remove, and Create operations to user files A and B,
metadata file MD, and FlexVol V. A block offset of 100 with
file A is denoted as A[100].

rameters are tracked in the message payload. When a
message is sent into WAFL, its payload is inspected to
determine the type of the message and other data from
which the destination affinity is calculated. Effectively,
each message exposes the details of its data accesses to
the scheduler so that MP safety can be enforced at this
level, similar to some language constructs for task-based
systems [3, 34]. For example, a write message exposes
the offsets being written and thus the required affinity for
execution.

4.4 Development Experience with Hierar-
chical Waffinity

Hierarchical Waffinity allows parallelization at the gran-
ularity of a message type, running all other message
types in the Serial affinity, allowing incremental opti-
mization over time. Thus, parallelization effort scales
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with the size of the message, rather than requiring the
entire code base to be updated at once. A typical mes-
sage handler is on the order of hundreds or thousands of
lines of code, whereas the file system is on the order of
millions. Further, a message can first be parallelized into
one affinity and later moved to a finer affinity when need
arises and the extra development cost can be justified.

Messages often require only minimal code changes dur-
ing parallelization because data access guarantees are
provided by the model. In such cases, after a detailed
line-by-line code inspection to evaluate multiprocessor
safety, messages can be moved into fine affinities just
by changing the routing logic that computes the target
affinity. For example, parallelizing the Link operation to
run in the Volume Logical affinity required fewer than
20 lines of code to be written, none of which were ex-
plicit synchronization. In other cases, major changes are
required to safely operate within a single affinity, for ex-
ample by restructuring data accesses, thus requiring po-
tentially thousands of lines of code changes. In WAFL,
the underlying infrastructure required to implement the
affinities, scheduling, and rule enforcement amounted to
approximately 22K lines of code. Compared to the alter-
native of migrating the whole file system to fine-grained
locking, which would involve inspecting and updating a
large fraction of the millions of lines of code, these costs
are relatively small.

Software systems in many domains employ hierarchical
data structures (such as linear algebra [12] and computa-
tional electromagnetics [14]), and a variety of techniques
have been developed to provide multiprocessor safety in
such cases [15, 22]. Hierarchical Waffinity offers an al-
ternative architecture that is capable of incremental par-
allelization. In applying this approach to other systems,
the types of affinities to create, the number of instances of
each type, and the mapping of objects to affinities would
be based on domain-specific knowledge of the data ac-
cess patterns. In practice, this approach applies most nat-
urally to message passing systems where a subset of mes-
sage handlers could be parallelized while leaving others
serialized, or alternatively to task-based systems such as
Cilk++ [26].

4.5 Hierarchical Scheduler

The Hierarchical Waffinity scheduler is an extension
of the Classical Waffinity scheduler that maps the now
greater set of runnable affinities to the Waffinity threads
for execution while enforcing the hierarchical exclusion
rules. As before, Waffinity threads are exposed to the
general CPU scheduler, and when they are selected for
execution, they begin by calling into the Waffinity sched-
uler for work. A running thread then begins processing

the messages queued up to that affinity for the duration
of an assigned quantum, after which the thread calls back
into the scheduler to request another affinity to run.

As messages are sent into WAFL and processed by the
Waffinity threads, the Waffinity scheduler tracks the sets
of affinities that are runnable (i.e., with work and not ex-
cluded), running, or excluded by other executing affini-
ties. When threads request work, the scheduler selects an
affinity from the runnable list, assigns it to the thread, and
updates the scheduler state to reflect the newly running
affinity. In particular, the scheduler maintains a queue of
affinities that is walked in FIFO order to find an affinity
that is not excluded. An excess of work in coarse affini-
ties manifests in the scheduler as a shortage of runnable
affinities, resulting in situations where available threads
cannot find work to do and must sit idle, which in turn
results in wasted CPU cycles. We also track the number
of runnable affinities and ensure that the optimal num-
ber of threads are in flight any time an affinity begins
or ends execution. To prevent the starvation of coarse
affinities, we periodically drain all running affinities and
ensure that all affinities run with some regularity. Fig-
ure 4 shows a sample scheduler state. In this example,
there are seven affinities currently running and five more
that can be selected for execution by the affinity sched-
uler.

4.6 Waffinity Limitations and Alternatives

Fundamental in the Waffinity architecture is a mapping
of file system objects to a finite set of affinities, often
causing independent operations to unnecessarily become
serialized. For example, any two operations that require
exclusive access to two user files in the same volume
(such as deletion) are serialized. As long as sufficient
parallelism is found to exploit available cores on the tar-
get platforms, this limitation is acceptable in the sense
that increasing available parallelism will not result in in-
creased performance. Two other scenarios that can result
in significant performance loss are 1) when frequently
accessed objects directly map to a coarse affinity; and
2) when two objects mapped to different affinities must
be accessed by the same operation. These scenarios are
not well handled in Hierarchical Waffinity and result in
poor scaling in several important workloads, as shown in
Section 6.

An alternative to the Waffinity architecture would be to
use fine-grained locking to provide MP safety. In such
an approach, all file system objects would be protected
by using traditional locking, and no limits need to be
imposed on which operations can be executed in paral-
lel. This would provide additional flexibility in the pro-
gramming model; however, it carries many drawbacks
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Figure 4: Sample hierarchical affinity scheduler state.

that led to the decision to implement Classical and Hi-
erarchical Waffinity. Reimplementing the file system to
exclusively use fine-grained locks would require a mas-
sive code rewrite and would carry with it the potential for
introducing races, performance issues caused by locking
overhead and contention, and the risk of deadlocks. In-
stead, our approach reduces the overall amount of lock-
ing required, and even allows messages to run in coarse
affinities without locking.

S Hybrid Waffinity

The next step in the multiprocessor evolution of WAFL is
Hybrid Waffinity, which shipped with Data ONTAP 9.0
in 2016. This model is designed to scale workloads for
which Hierarchical Waffinity is not well suited, due to a
poor mapping of data accesses to affinities, as discussed
in Section 4.6. This model supports fine-grained locking
within the existing hierarchical data partitioned architec-
ture to protect particular objects when accesses do not
map neatly to fine partitions. At the same time, we con-
tinue to use partitioning where it already excels, such as
for user file reads and writes. Overall, Hybrid Waffinity
leverages both fine-grained locking and data partitioning
in cases where each approach excels. Although this may
seem like an about-face from the data partitioned mod-
els, in fact it is merely an acknowledgement that in some
cases fine-grained locking is required for effective scal-
ing. Retaining partition-based protection in most cases is
critical so that only the code that scales poorly with data
partitioning needs to be updated.

In Hybrid Waffinity, we allow buffers in a few select
metafiles to be protected by locking, while the vast ma-
jority of buffers, as well as all other file system objects,
continue to use data partitioning for protection. The
result is a hybrid model of MP-safety where different
buffer types have different protection mechanisms. The
use of locking allows these buffers to be accessed from

finer affinities; however, we continue to allow lock-free
access from a coarser affinity. That is, because all object
accesses occur within some affinity subtree, a message
running in the root of that subtree can safely access the
object without locking.

5.1 Hybrid-Insert

With Hierarchical Waffinity, each buffer is associated
with a specific Insert affinity that protects the steps in-
volved in inserting that buffer. This mandates that all
messages working on inserting the buffer will run in the
same affinity to be serialized. This design is effective
in the common case where a single buffer is accessed or
multiple buffers with similar affinity mappings are ac-
cessed. However, in cases where a message accesses
multiple buffers in different partitions, the message must
run in a coarser affinity that provides all of the necessary
permissions. Figure 5 illustrates a scenario in which both
User file buffers and Metafile buffers must be accessed,
which happens when replicating a FlexVol volume (dis-
cussed in Section 6.2.3). This operation must run in
the AGGRI1 affinity, rather than the more parallel S1 or
AVRI1 affinity. In such cases, parallelism in the system is
reduced, because time spent running in coarse affinities
limits the available affinities that can be run concurrently,
potentially starving threads and cores of work.

We overcome these shortcomings with Insert by allow-
ing Hybrid-Insert access to certain buffers from multiple
fine affinities. Only a few buffer types are frequently
accessed in tandem with other buffers, and we apply
Hybrid-Insert only in such cases. Thus, a message ac-
cessing two buffers now runs in the traditional (fine) In-
sert affinity of one buffer and protects the second buffer
by using Hybrid-Insert, rather than in a coarse affinity
with Insert access to both buffers. Allowing multiple
affinities to insert a buffer means that two messages can
simultaneously insert the same buffer, but Hybrid-Insert
resolves such races and synchronizes all callers of any
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Figure 6: Hybrid Waffinity model where User data access con-
tinues to be in S1, but Metadata access is permitted from any
descendant of AGGR1.

insert code path. Referring back to Figure 5, the User
data can continue to be protected with partitioning in S1
and the Metadata can now be accessed from the S1 affin-
ity (for example) with explicit synchronization, as shown
in Figure 6. Further, noncritical messages that operate on
Metadata can run in AGGR1 without being rewritten, be-
cause the scheduler will not run any other messages that
access this data.

For explicit synchronization, Hybrid-Insert uses what we
refer to as MP-barriers. MP-barriers employ a set of
spin-locks that are hashed based on buffer properties.
The insert process consists of a series of critical sections
of varying lengths. Short critical sections can simply
hold the spin-lock for their duration. However, longer
critical sections avoid holding the lock for long periods
by instead stamping the buffer with an in-progress flag
under the lock at the beginning of the critical section and
clearing it at the end. Other messages that encounter the
in-progress flag can then block, knowing that a message
is already moving this buffer toward insertion.

5.2 Hybrid-Write

The next buffer access mode we consider is Write, which
involves changing the contents of a buffer and updating
associated metadata. Hierarchical Waffinity serializes all

readers and writers to the same buffer by mapping all
such operations to the same affinity. Thus, Write ac-
cess made it safe for writers to modify the buffer without
locking and for readers to know that no writes were hap-
pening concurrently to the buffer. However, as with In-
sert access, messages requiring access to multiple buffers
with different affinity mappings needed to run in a coarse
affinity, thereby limiting parallelism.

Hybrid-Write allows writes to certain types of buffers
from multiple affinities so that messages routed to an
affinity for Write access to one buffer will also be able to
access a different buffer by using Hybrid-Write, again as
in Figure 6. Thus, readers and writers must synchronize
by using fine-grained locking to ensure MP-safety and
data consistency. In the new model, we have retained
the traditional Write affinity in which an operation can
run without locking. Read access has been redefined for
Hybrid-Write buffer types such that it now maps to the
traditional Write affinity, thereby providing (slow) read
access to the buffer without any locking. New access
modes called Shared-Write and Shared-Read have been
added to provide access from finer affinities, and only by
explicitly using these access modes—and thus implicitly
agreeing to add the necessary locking—is any additional
parallelism achieved. Thus, Hybrid-Write uses an opt-
in model wherein legacy code remains correct by default
until it is manually optimized.

Hybrid-Write uses spin-locks to protect buffer data and
metadata. Spin-locks are sufficient here because the crit-
ical sections for reads and writes are typically small. The
introduction of fine-grained locking increases complex-
ity; however, it can be done incrementally as required by
specific messages without a large-scale code rewrite. As
an example of the increased complexity, buffer state ob-
served at any time in Hierarchical Waffinity could always
be trusted because the entire message execution was un-
der the implicit locking of the scheduler. In contrast,
buffer state observed inside an explicit critical section
can no longer be trusted once the lock is released.

5.3 Hybrid-Eject

The final buffer access mode is Eject, which provides ex-
clusive access and allows arbitrary updates to the buffer,
including evicting the buffer from memory. Thus, Eject
access maps to an affinity that excludes all affinities
with access to this buffer. Hybrid-Eject instead uses
fine-grained locking to provide exclusive access from a
finer affinity. Unlike Hybrid-Insert and Hybrid-Write,
we compute a single Hybrid-Eject affinity for each buffer
to serialize all code paths. While Hybrid-Eject could al-
ways be used in place of Hybrid-Write, the semantics of
Hybrid-Eject are more restrictive and would limit perfor-
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Figure 7: Waffinity model where traditional Eject access maps
to AGGR1, but Hybrid-Eject maps to a specific fine affinity S1.

mance. We have also retained the traditional Eject affin-
ity to minimize required code changes. Figure 7 shows
a sample hierarchy with Eject affinity in AGGR1 and
Hybrid-Eject in S1.

Simply protecting each buffer with a spin-lock would not
be feasible for Hybrid-Eject because messages can read
many buffers, each of which must be protected from ejec-
tion. Instead, we track a global serialization count that
is incremented at periodic serialization points within the
file system. Whenever a reference to a buffer is taken,
it is stamped with the current serialization count under a
spin-lock and is said to have an active stamp. Buffers
with active stamps cannot be evicted and are implic-
itly unlocked when the serialization count is next incre-
mented. Because message execution cannot span seri-
alization points, buffers with stale stamps can be safely
ejected. Preventing the ejection of a buffer for this du-
ration is excessive but practical, since only 0.002% of
buffers considered for ejection had an active stamp dur-
ing an experiment with heavy load on a high-end plat-
form.

To extend this infrastructure beyond buffer ejection, we
also define an exclusive stamp that prevents any concur-
rent access at all. A message requiring exclusive access
can simply put this value on the buffer and all subsequent
accesses to the buffer spin until the exclusive stamp has
been cleared. Spinning is acceptable in practice, since
only 0.007% of exclusive stamp attempts encountered an
active stamp in an experiment with heavy load.

5.4 Development Experience with Hybrid
Waffinity

Adopting Hybrid Waffinity within WAFL involved cre-
ating the underlying infrastructure and then paralleliz-
ing individual messages to take advantage of it. For
each of the access modes, we required approximately 3K
lines of code changes, which included extensive rule en-
forcement and checking. As in the case of Hierarchi-

cal Waffinity, the effort involved in each specific mes-
sage parallelization varied widely. Leveraging Hybrid-
Insert and Hybrid-Eject requires few code changes be-
cause the infrastructure is primarily embedded within ex-
isting APIs. Hybrid-Write, on the other hand, requires
more code changes due to the addition of fine-grained
locking throughout the message handler. For example,
all three messages that we optimized using Hybrid-Eject
required fewer than 20 lines of code changes. In con-
trast, two messages parallelized using Hybrid-Insert and
Hybrid-Write required a few thousand lines of changes.

We have already begun to apply this technique to other
objects within WAFL. In particular, a project is under
way to further parallelize access to certain inodes in
WAFL by using Hybrid Waffinity, and we have found
the code changes to be relatively modest. We are opti-
mistic that the ease with which this technique was ap-
plied to inodes will translate to other software systems.
The techniques of Hybrid Waffinity can potentially be
applied in any data partitioned system, not only those that
are hierarchically arranged. Prior work has discussed
the difficulty in operating on data from different parti-
tions [21, 38], and our approaches can be used in such
cases to improve parallelism. For example, consider a
scientific code operating on two arrays. Tasks could be
divided up based on a partitioning of one array, and ac-
cess to the other array could be protected through fine-
grained locking.

6 Performance Analysis

6.1 Hierarchical Waffinity Evaluation

To highlight the improvements provided by Hierarchical
Waffinity, we chose two performance benchmarks that
emphasize the limitations of Classical Waffinity. Hier-
archical Walffinity was released in 2011 as part of Data
ONTAP 8.1, and we used this software to evaluate its
benefits. In this section, the benchmarks were run on a
12-core experimental platform that was the highest-end
Data ONTAP platform available at the time this feature
shipped. Many changes were made in Data ONTAP be-
tween releases, so we cannot directly compare the ap-
proaches. Instead, we used an instrumented kernel that
runs messages in the same affinities as would Classical
Waffinity for our baseline to isolate the impact of our
changes. We used multiple FlexVol volumes in these ex-
periments because this is representative of the majority
of customer setups.
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Figure 8: Throughput and core usage improvements with Hi-
erarchical Waffinity compared to Classical Waffinity on a Spec
SFS2008 workload.

6.1.1 Spec SFS2008

We first measured performance using the Spec SFS2008
benchmark [35] using NFSv3 on 64 FlexVol volumes.
This workload generates mixed workloads that simulate
a “typical” file server, including Read, Write, Getattr,
Lookup, Readdir, Create, Remove, and Setattr opera-
tions. Several of these operations involve modification
of file attributes, so the corresponding messages were
forced to run in the Serial affinity in the Classical Waffin-
ity model. Hierarchical Waffinity allowed us to move
Create and Setattr into the Volume Logical affinity and
Remove to the Volume affinity. Since there are eight
Volume affinities, up to eight Create/Setattr/Remove op-
erations can now run in parallel with each other and can
also run in parallel with the remaining client operations
in Stripe affinities.

Figure 8 shows the throughput and core usage improve-
ments of Hierarchical Waffinity over Classical Waffinity
for SFS2008. As noted, in Classical Waffinity many op-
erations ran in the Serial affinity, thereby serializing all
file system operations and resulting in idle cores. In the
baseline, the Serial affinity was busy 48% of the time,
thus limiting parallel execution to only 52% of the time.
In contrast, by providing additional levels of parallelism,
the hierarchical model was able to reduce Serial affinity
usage to 9%. Alleviating this significant scalability bot-
tleneck increased the system-wide core usage by 2.59 out
of 12 cores, showing that parallelism is significantly im-
proved through the ability to process operations on meta-
data in parallel with each other and with reads and writes.
Most importantly, the additional core usage successfully
translated into a 23% increase in throughput. That is,
Hierarchical Waffinity effectively exploits the additional
processing bandwidth to improve performance.

6.1.2 Random Overwrite

We next evaluate the benefit of Hierarchical Waffinity on
a 64 FlexVol volume random overwrite workload. Block
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Figure 9: Throughput and core usage improvements with Hier-
archical Waffinity compared to Classical Waffinity on a random
overwrite workload.

overwrites in the file system are particularly interesting
because WAFL always writes data to new blocks on disk.
Thus, for each block overwritten, the previously used
block on disk must be freed and the corresponding file
system metadata tracking block usage must be updated.
It is not the write operation itself that is of interest in this
experiment, because that was parallelized even in Classi-
cal Waffinity. This benchmark instead demonstrates the
gains from parallelizing block free operations that used
to run in the Serial affinity, because they involve updat-
ing file system metadata. With Hierarchical Waffinity,
these messages can now run in the Volume VBN and
Aggregate VBN affinities (when freeing in a Flex Vol vol-
ume and aggregate, respectively) because these affinities
provide access to all of the required metafiles. Thus,
the changes provided in Hierarchical Waffinity 1) allow
block free messages to run concurrently with each other
on different FlexVol volumes because each volume has
its own Volume VBN affinity; and 2) allow block free
messages to run in parallel with client operations in the
Stripe affinities.

Here again, Hierarchical Waffinity demonstrates a signif-
icant reduction in Serial affinity usage, from 27% to 7%,
as a result of parallelizing the block free operations. This
reduction in serialization made it possible for the same
workload to scale to an additional 2.88 cores compared
to Classical Waffinity, as shown in Figure 9. This ex-
tra core usage allowed an overall improvement in bench-
mark throughput of 28%. The random write workload
is interesting because it demonstrates the benefits of run-
ning internally generated metadata operations in Volume
VBN affinity in parallel with front-end client traffic in
the Stripe affinities, which was not possible in Classical
Waffinity.

6.1.3 Overall CPU Scaling

The above analysis of Hierarchical Waffinity showed a
substantial improvement in the number of cores used,
but 1.5 cores were still idle. These benchmarks were se-
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Figure 10: Core usage with Hierarchical Waffinity on a variety
of workloads under increasing levels of load.

lected to illustrate the benefits of Hierarchical Waffinity
compared to Classical Waffinity, not maximum utiliza-
tion. Idle cores could have been driven down still further
by parallelizing even the remaining 9% of Serial execu-
tion in SFS2008 and 7% in random write, but this was
not required to meet performance and scaling objectives
at the time.

In subsequent releases, we have further parallelized
many operations, resulting in the improved CPU scala-
bility shown in Figure 10. These parallelization efforts
have included both reducing Serial affinity usage and
moving already parallelized work into still finer affini-
ties. In particular, the graph shows the achieved core
usage at increasing levels of load (i.e., load points) for
a variety of workloads on 64 FlexVol volumes on a 20-
core storage server running Data ONTAP 9.0. The key
takeaways are the low core usage that occurs at low load
and the high core usage achieved in the presence of high
load. In particular, four of the six benchmarks achieve a
utilization of 19+ cores, with all benchmarks reaching at
least 18 cores. This data demonstrates that Hierarchical
Waffinity is able take advantage of computational band-
width up to 20 cores in a broad spectrum of important
workloads, and cores are not starved for work by an ex-
cess of computation in coarse affinities. In Section 6.3,
we discuss the issue of continued scaling on future plat-
forms.

6.2 Hybrid Waffinity Evaluation

Although the previous section demonstrated the success
of Hierarchical Waffinity across a wide range of work-
loads, there are also cases where its scalability is lim-
ited. Thus, we next evaluate the benefits of the Hybrid
Waffinity model by considering benchmarks that empha-
size cases where the hierarchical model falls short. We
focus on single FlexVol volume scenarios because any
coarse affinity utilization significantly limits parallelism;

however, we also consider the scalability with multiple
FlexVol volumes where Hierarchical Waffinity itself is
typically very effective already. Single-volume config-
urations are less common, but they are still a very im-
portant customer setup. This section describes analysis
done with Data ONTAP 9.0 on a 20-core platform, the
highest-end system available in 2016.

6.2.1 Sequential Overwrite

We first look at the benefits of Hybrid Waffinity on a se-
quential overwrite workload. As discussed above, block
overwrites are interesting in WAFL because they result
in block frees. In Hierarchical Waffinity, block free work
runs in the Volume VBN affinity, because it requires up-
dating various file system metadata files, so it already
runs in parallel with front-end traffic in the Stripe affini-
ties. However, if the system is unable to keep up with
the block free work being created, then client operations
must perform part of the block free work, which hurts
performance. This problem is exacerbated on single-
volume configurations where all block free work in the
system must go through the single active Volume VBN
affinity, which can become a major bottleneck.

Increasing the parallelism of this workload requires run-
ning block free operations in Volume VBN Range (or
simply Range) affinities. Certain metafile buffers re-
quired for tracking free blocks can be mapped to spe-
cific Range affinities, but other metafiles need to be up-
dated from any Range affinity, so the operation must run
in an affinity that excludes both relevant affinities. For-
tunately, this is an ideal scenario for Hybrid-Insert and
Hybrid-Write, in that buffers from certain metafiles can
be mapped to a specific Range affinity and others can be
protected by using locking from any Range affinity. Us-
ing a combination of partitioning and fine-grained lock-
ing to protect its buffer accesses, Hybrid Waffinity allows
the block free operation to run in 1) a finer affinity and
2) an affinity of which there are multiple instances per
FlexVol volume.

We evaluate a single-volume sequential overwrite bench-
mark on a 20-core platform with all flash drives. Fig-
ure 11 shows the throughput achieved and core usage at
increasing levels of sustained load from a set of clients
(i.e., the load point). Comparing peak load points shows
a 62.8% improvement in throughput from the use of 4.8
additional cores. Under sufficient load, the Hierarchi-
cal Waffinity performance falls off, because block free
work is unable to keep pace with the client traffic gener-
ating the frees. Hybrid Waffinity prevents this from hap-
pening by increasing the computational bandwidth that
can be applied to block free work on a single FlexVol
volume. This experiment demonstrates scalability up to
13.2 cores; however, repeating the test with 64 volumes
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Figure 11: Throughput and core usage improvements at var-
ious levels of server load with Hybrid Waffinity compared to
Hierarchical Waffinity for a sequential overwrite workload.

shows the system scaling further to 16.6 cores due to the
activation of additional Volume affinity hierarchies. Hy-
brid Waffinity benefits throughput by only 7.5% and core
usage by 1.6 cores in the multi-volume case because Hi-
erarchical Waffinity is already so effective.

6.2.2 NetApp SnapMirror

The next workload we consider is NetApp SnapMirror®,
a technology that replicates the contents of a Flex Vol vol-
ume to a remote Data ONTAP storage server for data
protection [33]. During the “init” phase, the entire con-
tents of the volume are transferred to the destination
and subsequent “update” transfers replicate data that has
changed since the last transfer. In particular, SnapMirror
operates by loading the blocks of a metadata file repre-
senting the entire contents of the volume on the source,
sending the data to a remote storage server, and writ-
ing to the same metafile on the destination volume. Ex-
clusive access to this file’s buffers belongs to the Vol-
ume affinity, which results in substantial serialization,
because such work serializes all processing within the
volume. Hybrid-Eject allows these buffers to instead be
processed in the Stripe affinities.

Figure 12 shows the benefits of Hybrid-Eject on a single-
FlexVol SnapMirror transfer. The transfer is destination-
limited, so we evaluate core usage on the destination.
During the init phase, core usage goes up by 1.1 cores
and the throughput is improved by 24.2%. Similarly, the
update phase uses an additional 0.7 cores, resulting in a
32.4% gain in throughput. Despite the benefit, core us-
age is low in the single-volume case; however, an exper-
iment replicating 24 volumes scales to 12.5 cores (init)
and 9.8 cores (update), at which point the workload be-
comes bottlenecked elsewhere and Hybrid Waffinity pro-
vides no benefit beyond the hierarchical model alone.
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Figure 12: Throughput and core usage improvements with Hy-
brid Waffinity compared to Hierarchical Waffinity for a Snap-
Mirror workload. Core usage is out of 20 available cores.
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Figure 13: Throughput and core usage improvements with Hy-
brid Waffinity compared to Hierarchical Waffinity for a Snap-
Vault workload. Core usage is out of 20 available cores.

6.2.3 NetApp SnapVault

We conclude our analysis by looking at the performance
benefits of all three hybrid access modes together. An-
other Data ONTAP technology for replicating FlexVol
volumes, called SnapVault®, writes to both user files
and metafiles on the destination server. In Hierarchical
Waffinity, the operations run in a coarse affinity (such
as Volume or Volume Logical) with access to both types
of buffers. With Hybrid Waffinity, user file buffers re-
main mapped to Stripe affinities, but Hybrid-Write and
Hybrid-Insert allow the metafile buffers to be accessed
by any child of the Volume affinity. Thus, SnapVault op-
erations can run in the Stripe affinity of their user file
accesses and use locking to protect metadata accesses.
Further, the metafile buffers map to Volume Logical for
Eject access, which can be optimized by using Hybrid-
Eject to facilitate processing in the Stripe affinities.

Figure 13 presents the improvements in throughput and
core usage of Hybrid Waffinity on a single-volume Snap-
Vault transfer. The new model facilitated a throughput
gain of 130% in the init phase on an extra 4.29 cores
used out of 20 available. Update performance is simi-
larly improved by 112% on a core usage increase of 1.83
cores. Increasing the transfer to 8 volumes increases the
total core usage to 17.7 cores (init) and 10.6 cores (up-
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date), at which point the primary bottlenecks move to
other subsystems. Even here, the hybrid model improves
scalability by 0.5 cores and 3.1 cores and throughput by
20.2% and 18.1%, for init and update, respectively.

In summary, Hybrid Waffinity is able to greatly improve
performance in single-volume scenarios where Hierar-
chical Waffinity struggles most, and even improves scal-
ing in certain multi-volume workloads.

6.3 Discussion of Future Scaling

The analysis described in this paper was conducted on
the highest-end platforms available at the time each fea-
ture was released. These platforms drive the scalability
investment that is made, because scaling beyond avail-
able cores does not add customer value. New platforms
with higher core counts will continue to enter the market
in the future and our requirements will continue to in-
crease as a result. We expect that the infrastructure now
in place will continue to pay rich dividends as future par-
allelization investments focus on utilizing the techniques
discussed in this paper to greater degrees rather than in-
venting new ones. That is, the bottlenecks on the horizon
are not a limitation of the architecture itself. Internal sys-
tems with more cores are currently undergoing extensive
tuning, and the techniques discussed in this paper have
already allowed scaling well beyond 30 cores.

7 Related Work

Operating system scalability for multicore systems has
been the subject of extensive research. Recent work
has emphasized minimizing the use of shared memory
in the operating system in favor of message passing be-
tween cores that are dedicated to specific functional-
ity [2, 4, 18, 27, 40]. Such designs allow scaling to
many-core systems; however, their new designs cannot
be easily adopted in legacy systems because they require
the re-architecting of major kernel components and prob-
ably are best suited for new operating systems. So al-
though such research is crucial to the OS community, our
approaches for incremental scaling are also required in
practice. A recent study [5] investigated the scalability of
the Linux operating system and found that traditional OS
kernel designs, such as that of Data ONTAP, can scale ef-
fectively for near-term core counts, despite the presence
of specific scalability bugs in the CPU scheduler [29]. In
contrast, Min, et al. [31] analyze the scalability of five
production file systems and find many bottlenecks, in-
cluding some that may require core design changes.

Recently, many file system and operating system designs
have been offered to improve scalability. NOVA [41]

is a log-structured file system designed to exploit non-
volatile memories that allows synchronization-free con-
currency on different files. Hare [19] implements a scal-
able file system designed for non-cache-coherent multi-
core processors. The work most similar to our own mit-
igates contention for shared data structures by running
multiple OS instances within virtual machines [7, 36]. In
a similar way, MultiLanes [23] and SpanFS [24] create
independent virtualized storage devices to eliminate con-
tention for shared resources in the storage stack. Other
approaches to OS scaling on multicore systems include
reducing OS overhead by collectively managing “many-
core” processes [25], tuning the scheduler to optimize
use of on-chip memory [6], and even exposing vector
interfaces within the OS to more efficiently use parallel
hardware [39].

One obvious alternative to data partitioning is the use of
fine-grained synchronization, to which many optimiza-
tions have been applied. Read-copy update is an ap-
proach to improve the performance of shared access to
data structures, in particular within the Linux kernel [30].
Both flat combining [16] and remote core locking [28]
improve the efficiency of synchronization by assigning
particular threads the role of executing all critical sec-
tions for a given lock. Specifically in the context of hi-
erarchical data structures, intention locks [15] synchro-
nize access to one branch of a hierarchy, and Dom-
Lock [22] makes such locking more efficient. Our ap-
proach provides lock-free access to hierarchical struc-
tures in the common case, although the locking intro-
duced by Hybrid Waffinity certainly stands to benefit
from some of these optimizations. Parallel execution can
also be provided via runtime systems that infer task data-
independence without explicit data partitions [3, 34].

The database community has long used data partitioning
to facilitate parallel and distributed processing of trans-
actions. Many algorithms exist for deploying a scalable
database partitioning [1]. The process of defining parti-
tions for optimal performance can also be done on the fly
while monitoring workload patterns [20]. The Dora [32]
and H-Store [37] models provide data partitions such that
operations in a partition can be performed without re-
quiring fine-grained locking. Other work [21, 38] seeks
to address the problem of accesses to multiple partitions
in a partitioned database. In these proposals, operations
with a partition are serialized (and therefore lock-free),
but transactions applied to multiple partitions are facil-
itated through use of a two-phase commit protocol (or
similar). In our Hierarchical Waffinity model, we instead
superimpose a locking model on top of the partitioned
data such that the operation can run safely from within a
single partition.

Hierarchical data partitioning has also been explored. In
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most cases, the partitioning model is optimized around
the presence of a hierarchical computational substrate [8,
9, 10, 12]. In contrast, our work focuses on the hierarchy
inherent in the data itself in order to provide ample lock-
free parallelism on traditional multicore systems. Similar
work has been done to optimize scientific applications by
using a hierarchical partitioning of the input data [14].

8 Conclusion

In this paper, we have presented the evolution of the mul-
tiprocessor model in WAFL, a high-performance produc-
tion file system. At each step along the way we have al-
lowed continued multiprocessor scaling without requir-
ing significant changes to the massive and complicated
code base. Through this work we have 1) provided a
simple data partitioning model to parallelize the major-
ity of file system operations; 2) removed excessive seri-
alization constraints imposed by Classical Waffinity on
certain workloads by using hierarchical data partition-
ing; and 3) implemented a hybrid model based on the
targeted use of fine-grained locking within a larger data-
partitioned architecture. Our work has resulted in sub-
stantial scalability and performance improvements on a
variety of critical workloads, while meeting aggressive
product release deadlines, and it offers an avenue for con-
tinued scaling in the future. We also believe that the tech-
niques discussed in this paper can influence other sys-
tems, because the hierarchical model is relevant to any
hierarchically structured system and the hybrid model
can be employed in insufficiently scalable systems based
on partitioning.

References

[1] Sanjay Agrawal, Vivek Narasayya, and Beverly
Yang. Integrating vertical and horizontal partition-
ing into automated physical database design. In
Proceedings of the Internal Conference on Man-
agement of Data (SIGMOD), 2004.

[2] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schupbach, and Akhilesh
Signhania. The multikernel: A new OS architec-
ture for scalable multicore systems. In Proceedings
of the Symposium on Operating System Principles
(SOSP), 2009.

[3] Micah J. Best, Share Mottishaw, Craig Mustard,
Mark Roth, Alexandra Federova, and Andrew
Brownsword. Synchronization via scheduling. In
Proceedings of the ACM SIGPLAN Conference on

[4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

[12]

[13]

Programming Language Design and Implementa-
tion (PLDI), 2011.

Silas Boyd-Wickizer, Haibo Chen, Rong Chen,
Yandong Mao, M. Frans Kaashoek, Robert Mor-
ris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua
Dai, Yang Zhang, and Zheng Zhang. Corey: An
operating system for many cores. In Proceedings
of the Symposium on Operating System Design and
Implementation (OSDI), 2008.

Silas Boyd-Wickizer, Austin T. Clemens, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert
Morris, and Nikolai Zeldovich. An analysis of linux
scalability to many cores. In Proceedings of the
Symposium on Operating System Design and Im-
plementation (OSDI), 2010.

Silas Boyd-Wickizer, Robert Morris, and M. Frans
Kaashoek. Reinventing scheduling for multicore
systems. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), 2012.
Edouard Bugnion, Scott Devine, Kinshuk Govil,
and Mendel Rosenblum. Disco: Running com-
modity operating systems on scalable multiproces-
sors. ACM Transaction on Computer Systems,
15(4), 1997.

M. Chu, K. Fan, and S. Mahlke. Region-based hier-
archical operation partitioning for multicluster pro-
cessors. In ACM SIGPLAN Notices, 2003.

M. Chu, R. Ravindra, and S. Mahlke. Data access
partitioning for fine-grain parallelism on multicore
architectures. In Proceedings of the International
Symposium on Microarchitecture (MICRO), 2007.

D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa.
Hierarchical partitioning algorithm for scientific
computing on highly heterogeneous CPU+GPU
clusters. In Proceedings of the European Confer-

ence on Parallel and Distributed Computing (Euro-
Par), 2012.

Peter Denz, Matthew Curtis-Maury, and Vinay De-
vadas. Think global, act local: A buffer cache de-
sign for global ordering and parallel processing in
the WAFL file system. In Proceedings of the In-
ternal Conference on Parallel Processing (ICPP),
2016.

H. Dutta, F. Hannig, and J. Teich. Hierarchical par-
titioning for piecewise linear algorithms. In Paral-
lel Computing in Electrical Engineering, 2006.

John K. Edwards, Daniel Ellard, Craig Ever-
hart, Robert Fair, Eric Hamilton, Andy Kahn,
Arkady Kanevsky, James Lentini, Ashish Prakash,
Keith A. Smith, and Edward Zayas. FlexVol: flex-
ible, efficient file volume virtualization in WAFL.
In USENIX Annual Technical Conference (ATC),

432

12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

2008.

O. Ergul and L. Gurel. A hierarchical partitioning
strategy for an efficient parallelization of the mul-
tilevel fast multipole algorithm. In IEEE Transac-
tions on the and Propagation, 2009.

J. N. Gray, R. A. Lorie, and G. R. Putzolu. Granu-
larity of locks in a shared data base. In Proceedings
of the International Conference on Very Large Data
Bases (VLDB), 1975.

Danny Hendler, Itai Incze, Nir Shavit, and Moran
Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In Proceedings of the Sym-
posium on Parallelism in Algorithms and Architec-
tures (SPAA), 2010.

Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance. In
USENIX Winter Technical Conference, 1994.

David A. Holland and Margo I. Seltzer. Multicore
OSes: Looking forward from 1991, er, 2011. In
Proceedings of the Workshop on Hot Topics in Op-
erating Systems (HotOS), 2011.

Charles Gruenwald III, Filippo Sironi, M. Frans
Kaashoek, and Nickolai Zeldovich. Hare: a file
system for non-cache-coherent multicores. In Pro-
ceedings of the European Conference on Computer
Systems (EuroSys), 2015.

A. Jindal and J. Dittrich. Relax and let the database
do the partitioning online. In Enabling Real-Time
Business Intelligence, 2012.

Evan P. C. Jones, Daniel J. Abadi, and Sameul
Madden. Low overhead concurrency control for
partitioned main memory databases. In Proceed-

ings of the Internal Conference on Management of
Data (SIGMOD), 2010.

Saurabh Kalikar and Rupesh Nasre. DomLock:
A new multi-granularity locking technique for hi-
erarchies. In Proceedings of the Symposium on
Principles and Practices of Parallel Programming
(PPoPP), 2016.

Junbin Kang, Benlong Zhang, Tianyu Wo, Chun-
ming Hu, and Jinpeng Huai. MultiLanes: Provid-
ing virtualized storage for OS-level virtualization
on many cores. In Proceedings of Conference on
File and Storage Technologies (FAST), 2014.

Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren
Yun, Lian Du, Shuai Ma, and Jinpeng Huai.
SpanFS: A scalable file system on fast storage de-
vices. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC), 2015.

Kevin Klues, Barret Rhoden, Andrew Waterman,
David Zhu, and Eric Brewer. Processes and re-
source management in a scalable many-core OS. In

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

Proceedings of the Workshop on Hot Topics in Par-
allelism (HotPar), 2010.

Charles E. Leiserson. The Cilk++ concurrency plat-
form. In Proceedings of the Design Automation
Conference (DAC), 2009.

Min Li, Sudharshan S. Vazhkudai, Ali R. Butt, Fei
Meng, Xiaosong Ma, Youngjae Kim, Christian En-
gelmann, and Galen Shipman. Functional partition-
ing to optimize end-to-end performance on many-
core architectures. In Proceedings of the Interna-
tional Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2010.
Jean-Pierre Lozi, Florian David, Gael Thomas, Ju-
lia Lawall, and Gilles Muller. Remote core locking:
Migrating critical-section execution to improve the
performance of multithreaded applications. In Pro-
ceedings of the USENIX Annual Technical Confer-
ence (ATC), 2012.

Jean-Pierre Lozi, Baptiste Lepers, Justin Fun-
ston, Fabien Gaud, Vivien Quema, and Alexandra
Federova. The Linux scheduler: a decade of wasted
cores. In Proceedings of the European Conference
on Computer Systems (EuroSys), 2016.

Paul E. McKenney, Dipankar Sarma, Andrea Ar-
cangeli, Andi Kleen, Orran Krieger, and Rusty Rus-
sell. Read copy update. In Proceedings of the Ot-
tawa Linux Symposium, 2002.

Changwoo Min, Sanidhya Kashyap, Steffen Maass,
Woonhak Kang, and Taesoo Kim. Understanding
manycore scalability of file systems. In Proceed-
ings of the USENIX Annual Technical Conference
(ATC), 2016.

I. Pandis, R. Johnson, N. Hardavellas, and A. Aila-
maki. Data-oriented transaction execution. In Pro-
ceedings of the VLDB Endowment (PVLDB), 2010.
Hugo Patterson, Stephen Manley, Mike Feder-
wisch, Dave Hitz, Stever Kleiman, and Shane
Owara. SnapMirror: File system based asyn-
chronous mirroring for disaster recovery. In Pro-
ceedings of Conference on File and Storage Tech-
nologies (FAST), 2002.

Martin C. Rinard and Monica S. Lam. The de-
sign, implementation, and evaluation of Jade. ACM
Transaction on Programming Languages and Sys-
tems, 20(1), 1998.

SPEC SFS (System File Server) benchmark. www.
spec.org/sfs2008. 2014.

Xiang Song, Haibo Chen, Rong Chen, Yuanxuan
Wang, and Binyu Zang. A case for scaling appli-
cations to many-core with OS clustering. In Pro-

ceedings of the European Conference on Computer
Systems (EuroSys), 2011.

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation

433



[37] M. Stonebraker, S. Madden, D. J. Abadi, S. Hari-
zopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), 2007.

[38] Alexander Thomson, Thaddeus Diamond, Shu-
Chun Weng, Kun Ren, Philip Shao, and Daniel J.
Abadi. Calvin: fast distributed transactions for par-
titioned database systems. In Proceedings of the
Internal Conference on Management of Data (SIG-
MOD), 2012.

[39] Vijay Vasudevan, David G. Andersen, and Michael
Kaminsky. The case for VOS: The vector operating
system. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), 2011.

[40] David Wentzlaff and Anant Agarwal. Factored op-
erating systems (fos): The case for a scalable op-
erating system for multicores. Operating Systems
Review, 43(2), 2009.

[41] Jian Xu and Steven Swanson. NOVA: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of Con-
ference on File and Storage Technologies (FAST),
2016.

Copyright notice

NetApp, the NetApp logo, Data ONTAP, FlexVol, Snap-
Mirror, SnapVault, and WAFL are trademarks or regis-
tered trademarks of NetApp, Inc. in the United States
and/or other countries. All other brands or products
are trademarks or registered trademarks of their respec-
tive holders and should be treated as such. A current
list of NetApp trademarks is available on the web at
http://www.netapp.com/us/legal/netapptmlist.aspx.

434 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



