
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Simplifying Datacenter Network Debugging
with PathDump

Praveen Tammana, University of Edinburgh; Rachit Agarwal, Cornell University;
Myungjin Lee, University of Edinburgh

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/tammana

Simplifying Datacenter Network Debugging with PathDump

Praveen Tammana
University of Edinburgh

Rachit Agarwal
Cornell University

Myungjin Lee
University of Edinburgh

Abstract
Datacenter networks continue to grow complex due to
larger scales, higher speeds and higher link utilization.
Existing tools to manage and debug these networks are
even more complex, requiring in-network techniques like
collecting per-packet per-switch logs, dynamic switch
rule updates, periodically collecting data plane snapshots,
packet mirroring, packet sampling, traffic replay, etc.

This paper calls for a radically different approach
to network management and debugging: in contrast to
implementing the functionality entirely in-network, we
should carefully partition the debugging tasks between the
edge devices and the network elements. We present the
design, implementation and evaluation of PathDump, a
minimalistic tool that utilizes resources at edge devices
for network debugging. PathDump currently runs over
a real network comprising only of commodity hardware,
and yet, can support a surprisingly large class of network
debugging problems. Evaluation results show that Path-
Dump requires minimal switch and edge resources, while
enabling network debugging at fine-grained time scales.

1 Introduction
Datacenter networks are essential to online services in-
cluding web search, social media, online commerce, etc.
Network outages and performance degradation, even if
short-lived, can severely impact these services [1, 2, 3, 6].
Unsurprisingly, there has been a tremendous effort in
building tools that allow network operators to efficiently
manage networks and debug (the inevitable) network
problems [17, 22, 24, 26, 30, 36, 39, 41].

As datacenter networks evolve to larger scales, higher
speeds and higher link utilization, new classes of net-
work problems emerge. Accordingly, over the years,
network debugging tools have incorporated increasingly
complex in-network techniques — capturing per-packet
per-switch logs [17], collecting snapshots of entire data
plane state [20, 21, 22, 26], dynamically updating switch
rules [30], selective packet mirroring [33, 41], packet
sampling [8, 16, 39, 41], active packet probes [9, 40, 41],
traffic replay [37], a potpourri [41] — and this list barely
scratches the surface of all the sophisticated techniques

that have been proposed to be implemented on network
switches for debugging purposes.

In this paper, we do not add to this impressive collec-
tion of techniques. Instead, we ask whether there are a
non-trivial number of network debugging problems that
obviate the need of sophisticated in-network techniques.
To explore this question, we argue for a radically differ-
ent approach: in contrast to implementing the debugging
functionality entirely in-network, we should carefully par-
tition the functionality between the edge devices and the
network switches. Thus, our goal is not to beat existing
tools, but to help them focus on a smaller set of nails
(debugging problems) that we need a hammer (debugging
techniques) for. The hope is that by focusing on a smaller
set of problems, the already complex networks1 and the
tools for managing and debugging these networks can be
kept as simple as possible.

We present PathDump, a network debugger that
demonstrates our approach by enabling a large class of de-
bugging problems with minimal in-network functionality.
PathDump design is based on tracing packet trajectories
and comprises of the following:

• Switches are simple; they neither require dynamic rule
updates nor perform any packet sampling or mirroring.
In addition to its usual operations, a switch checks for
a condition before forwarding a packet; if the condition
is met, the switch embeds its identifier into the packet
header (e.g., with VLAN tags).

• An edge device, upon receiving a packet, records the
list of switch identifiers in the packet header on a local
storage and query engine; a number of entries stored
in the engine (used for debugging purposes) are also
updated based on these switch identifiers.

• Entries at each edge device can be used to trigger and
debug anomalous network behavior; a query server can
also slice-and-dice entries across multiple edge devices
in a distributed manner (e.g., for debugging functional-
ities that require correlating entries across flows).

1as eloquently argued in [41]; in fact, our question about simpler
network management and debugging tools was initially motivated by
the arguments about network complexity in [41].

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 233

PathDump’s design, by requiring minimal in-network
functionality, presents several benefits as well as raises a
number of interesting challenges. The benefits are rather
straightforward. PathDump not only requires minimal
functionality to be implemented at switches, but also uses
minimal switch resources; thus, the limited switch re-
sources [14, 28] can be utilized for exactly those tasks that
necessitate an in-network implementation2. PathDump
also preserves flow-level locality — information about all
packets in the same flow is recorded and analyzed on the
same end-host. Since PathDump requires little or no data
transfer in addition to network traffic, it also alleviates the
bandwidth overheads of several existing in-network de-
buggers [17, 33, 41].

PathDump resolves several challenges to achieve the
above benefits. First challenge is regarding generality
— what class of network problems can PathDump debug
with minimal support from network switches? To get a
relatively concrete answer in light of numerous possible
network debugging problems, we examined all the prob-
lems discussed in several recent papers [17, 18, 30, 41]
(see Table 2 in the appendix). Interestingly, we find that
PathDump can already support more than 85% of these
problems. For some problems, network support seems
necessary; however, we show that PathDump can help
“pinpoint” these problems to a small part of the network.
We discuss the design, implementation and evaluation of
PathDump for the supported functionality in §2.3 and §4.

PathDump also resolves the challenge of packets not
reaching the edge devices (e.g., due to packet drops or
routing loops). A priori, it may seem obvious that Path-
Dump must not be able to debug such problems without
significant support from network switches. PathDump
resolves the packet drop problem by exploiting the fact
that datacenters typically perform load balancing (using
ECMP or packet spraying [15]); specifically, we show that
the difference between number of packets traversing along
multiple paths allows identifying spurious packet drops.
PathDump can in fact debug routing loops by leveraging
the fact that commodity SDN switches recognize only two
VLAN tags in hardware and processing more than two
tags involves switch CPU (§4.5).

2As PathDump matures, we envision it to incorporate (potentially
simpler than existing) in-network techniques for debugging problems
that necessitate an in-network implementation. As network switches
evolve to provide more powerful functionalities (e.g., on-chip sampling)
and/or larger resource pools, partitioning the debugging functionality be-
tween the edge devices and the network elements will still be useful to
enable capturing network problems at per-packet granularity — a goal
that is desirable and yet, infeasible to achieve using today’s resources.
Existing in-network tools that claim to achieve per-packet granularity
(e.g., Everflow [41]) have to resort to sampling to overcome scalability
issues and thus, fail to achieve per-packet granularity.

Finally, PathDump carefully optimizes the use of data
plane resources (e.g., switch rules and packet header
space) and end-host resources (e.g., CPU and memory).
PathDump extends our prior work, CherryPick [36], for
per-packet trajectory tracing using minimal data plane re-
sources. For end-host resources, we evaluate PathDump
over a wide range of network debugging problems across
a variety of network testbeds comprising of commodity
network switches and end-hosts; our evaluation shows
that PathDump requires minimal CPU and memory at
end-hosts while enabling network debugging over fine-
grained time scales.

Overall, this paper makes three main contributions:
• Make a case for partitioning the network debugging

functionality between the edge devices and the network
elements, with the goal of keeping network switches
free from complex operations like per-packet log gen-
eration, dynamic rule updates, packet sampling, packet
mirroring, etc.

• Design and implementation of PathDump3, a network
debugger that demonstrates that it is possible to support
a large class of network management and debugging
problems with minimal support from network switches.

• Evaluation of PathDump over operational network
testbeds comprising of commodity network hardware
demonstrating that PathDump can debug network
events at fine-grained time-scales with minimal data
plane and end-host resources.

2 PathDump Overview
We start with an overview of PathDump interface (§2.1),
and PathDump design (§2.2). We then provide several ex-
amples on using PathDump interface for debugging net-
work problems (§2.3, §2.4).

2.1 PathDump Interface
PathDump exposes a simple interface for network debug-
ging; see Table 1. We assume that each switch and host
has a unique ID. We use the following definitions:

• A linkID is a pair of adjacent switchIDs (〈Si,Sj〉);
• A Path is a list of switchIDs (〈Si,Sj, . . .〉);
• A flowID is the usual 5-tuple (〈srcIP, dstIP, srcPort,

dstPort, protocol〉);
• A Flow is a (〈flowID, Path〉) pair; this will be useful

for cases when packets from the same flowID may
traverse along multiple Paths.

• A timeRange is a pair of timestamps (〈ti, tj〉);

3Available at: https://github.com/PathDump.

234 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/PathDump

Host API Description

getFlows(linkID, timeRange) Return list of flows that traverse linkID during specified timeRange.
getPaths(flowID, linkID, timeRange)Return list of Paths that include linkID, and are traversed by flowID

during specified timeRange.
getCount(Flow, timeRange) Return packet and byte counts of a flow within a specified timeRange.
getDuration(Flow, timeRange) Return the duration of a flow within a specified timeRange.
getPoorTCPFlows(Threshold) Return the flowIDs for which protocol = TCP and the number of con-

secutive packet retransmissions exceeds a threshold.
Alarm(flowID, Reason, Paths) Raise an alarm regarding flowID with a reason code (e.g., TCP performance

alert (POOR_PERF)), and corresponding list of Paths.

Controller API Description

execute(List〈HostID〉,Query) Execute a Query once at each host specified in list of HostIDs; a Query
could be any of the ones from Host API.

install(List〈HostID〉,Query,Period) Install a Query at each host specified in list of HostIDs to be executed at
regular Periods. If the Period is not set, the query execution is triggered
by a new event (e.g., receiving a packet).

uninstall(List〈HostID〉,Query) Uninstall a Query from each host specified in list of HostIDs

Table 1: PathDump Interface. See §2.1 for definitions and discussion.

PathDump supports wildcard entries for switchIDs
and timestamps. For instance, (〈?,Sj〉) is interpreted
as all incoming links for switch Sj and (〈ti,?〉) is inter-
preted as “since time ti”.

Note that each host exposes the host API in Table 1 and
returns results for “local” flows, that is, for flows that have
this host as their dstIP. To collect the results distributed
across PathDump instances at individual end-hosts, the
controller may use the controller API — to execute a
query, to install a query for periodic execution, or to
uninstall a query.

2.2 PathDump Design Overview
The central idea in PathDump is to trace packet trajecto-
ries. To achieve this, each switch embeds its switchID in
the packet header before forwarding the packet. However,
naïvely embedding all the switchIDs along the packet
trajectory requires large packet header space, especially
when packets may traverse a non-shortest path (e.g., due
to failures along the shortest path) [36]. PathDump uses
the link sampling idea from CherryPick [36] to trace
packet trajectories using commodity switches. However,
CherryPick supports commonly used datacenter network
topologies (e.g., FatTree, VL2, etc.) and does not work
with arbitrary topologies. Note that this limitation on
supported network topologies is merely an artifact of to-
day’s hardware — as networks evolve to support larger
packet header space, PathDump will support more gen-
eral topologies without any modification in its design and
implementation.

An edge device, upon receiving a packet, extracts the
list of switchIDs in the packet header and records them on
a local storage and query engine (along with associated
metadata, e.g., flowID, timestamps, number of packets,
number of bytes, etc.). Each edge device stores:
• A list of flow-level entries that are used for debugging

purposes; these entries are updated upon each event
(e.g., receiving a packet).

• A static view of the datacenter network topology,
including the statically assigned identifiers for each
switch. This view provides PathDump with the “ground
truth” about the network topology and packet paths.

• And, optionally, network configuration files specifying
forwarding policies. These files are also used for mon-
itoring and debugging purposes (e.g., ensuring packet
trajectories conform to specified forwarding policies).
The operator may also push these configuration files to
the end-hosts dynamically using the Query installation
in controller API.

Finally, each edge device exposes the API in Table 1
for identifying, triggering and debugging anomalous net-
work behavior. The entries stored in PathDump (within
an edge device or across multiple edge devices) can be
sliced-and-diced for implementing powerful debugging
functionalities (e.g., correlating entries across flows going
to different edge devices). PathDump currently disregards
packet headers after updating the entries to avoid latency
and throughput bottlenecks in writing to persistent stor-
age; extending PathDump to store and query at per-packet
granularity remains an intriguing future direction.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 235

2.3 Example applications
We now discuss several examples for network debugging
applications using PathDump API.

Path conformance. Suppose the operator wants to check
for policy violations on certain properties of the path taken
by a particular flowID (e.g., path length no more than 6,
or packets must avoid switchID). Then, the controller
may install the following query at the end-hosts:
Paths = getPaths(flowID, <*, *>, *)
for path in Paths:

if len(path)>=6 or switchID in path:
result.append (path)

if len(result) > 0:
Alarm (flowID, PC_FAIL, result)

PathDump executes the query either upon each packet
arrival, or periodically when a Period is specified in the
query; an Alarm() is triggered upon each violation.

Load imbalance. Understanding why load balancing
works poorly is of interest to operators because uneven
traffic splits may cause severe congestion, thereby hurting
throughput and latency performance. PathDump helps di-
agnose load imbalance problems, independent of the un-
derlying scheme used for load balancing (e.g., ECMP or
packet spraying). The following example constructs flow
size distribution for each of two egress ports (i.e., links)
of interest on a particular switch:

result = {}; binsize = 10000
linkIDs = (l1, l2); tRange = (t1, t2)
for lID in linkIDs:

flows = getFlows (lID, tRange)
for flow in flows:

(bytes, pkts) = getCount (flow, tRange)
result[lID][bytes/binsize] += 1

return result

Through cross-comparison of the flow size distributions
on the two egress ports, the operator can tell the degree
of load imbalance. Even finer-grained diagnosis on load
balancing is feasible; e.g., when packet spraying is used,
PathDump can identify whether or not the traffic of a flow
in question is equally spread along various end-to-end
paths. We demonstrate these use cases in §4.2.

Silent random packet drops. This network problem oc-
curs when some faulty interface at switch drops packets at
random without updating the discarded packet counters at
respective interfaces. It is a critical network problem [41]
and is often very challenging to localize.

PathDump allows a network operator to implement a
localization algorithm such as MAX-COVERAGE [23].
The algorithm, as input, requires logs or observations on

a network problem (that is, failure signatures). Using
PathDump, a network operator can install a TCP per-
formance monitoring query at the end-hosts for periodic
monitoring (e.g., period set to be 200 ms):
flowIDs = getPoorTCPFlows()
for flowID in flowIDs:
Alarm (flowID, POOR_PERF, [])

Every time an alarm is triggered, the controller sends
the respective end-host (by parsing flowID) the following
query and collects failure signatures (that is, path(s) taken
by the flow that suffers serious retransmissions):
flowID = (sIP, sPort, dIP, dPort, 6)
linkID = (*, *); tRange = (t1, *)
paths = getPaths (flowID, linkID, tRange)
return paths

The controller receives the query results (that is, paths that
potentially include faulty links), locally stores them, and
runs the MAX-COVERAGE algorithm implemented as
only about 50 lines of Python code. This procedure re-
peats whenever a new alert comes up. As more path data
of suffering TCP flows get accumulated, the algorithm lo-
calizes faulty links more accurately.

Traffic measurement. PathDump also allows to write
queries for various measurements such as traffic matrix,
heavy hitters, top-k flows, and so forth. The following
query computes top-1000 flows at a given end-host:
h = []; linkID = (*, *); tRange = (t1, t2)
flows = getFlows (linkID, tRange)
for flow in flows:
(bytes, pkts) = getCount (flow, tRange)
if len(h) < 1000 or bytes > h[0][0]:

if len(h) == 1000: heapq.heappop (h)
heapq.heappush (h, (bytes, flow))

return h

To obtain top-k flows from multiple end-hosts, the con-
troller can execute this query at the desired subset of
the end-hosts.

2.4 Reducing debugging space
As discussed in §1, some network debugging problems
necessitate an in-network implementation. One such
problem is network switches incorrectly modifying the
packet header — for some corner case scenarios, it seems
hard for any end-host based system to be able to debug
such problems.

One precise example in case of PathDump is switches
inserting incorrect switchIDs in the packet header. In case
of such network anomalies, PathDump may not be able
to identify the problem. For instance, consider the path
conformance application from §2.3 and suppose we want
to ensure that packets do not traverse a switch s1 (that

236 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controller

Trajectory Information

Base (TIB)

AgentOVS

Update

Extract

trajectory info

Request

& Reply

Packet carries its trajectory information

in its header

Debugging

Applications

Packet

stream

Raise alarm

TIB

PathDump

APIs

Lookup

TCP Perf

Monitoring

(e.g., loop)

Trap packets traversing

suspiciously long paths

Figure 1: System overview.

is, switchID=s1 in the example). Suppose the packet
trajectory {src,s1,s2,...,dst} actually involves s1
and hence, PathDump must raise an alarm.

The main problem is that if s1 inserts a wrong
switchID, say s′1, then PathDump will not raise an
alarm. However, in many cases, the trajectory
{src,s′1,s2,...,dst} in itself will be infeasible —
either because s′1 is not one of the switchIDs or because
the switch with ID s′1 does not connect directly to either
src or s2. In such cases, PathDump will be able to trig-
ger an alarm stating that one of the switches has inserted
incorrect switchID; this is because PathDump continually
compares the extracted packet trajectory to the ground
truth (network topology) stored in PathDump.

3 PathDump Implementation
PathDump implementation comprises of three main com-
ponents (Figure 1):

• In-network implementation for tracing packet trajec-
tories using packet headers and static network switch
rules (§3.1); PathDump’s current implementation relies
entirely on commodity OpenFlow features for packet
trajectory tracing.

• A server stack that implements a storage and query en-
gine for identifying, triggering and debugging anoma-
lous network behavior (§3.2); we use C/C++ and
Python for implementing the stack.

• A controller running network debugging applications
in conjunction with the server stack (§3.3). The cur-
rent controller implementation uses Flask [5] — a mi-
cro framework supporting a RESTful web service —
for exchange of query-responses messages between the
controller and the end-hosts.

We describe each of the individual components below. As
mentioned earlier, PathDump implementation is available
at https://github.com/PathDump.

3.1 Tracing packet trajectory
PathDump traces packet trajectories at per-packet gran-
ularity by embedding into the packet header the IDs of
switches that a packet traverses. To achieve this, Path-
Dump resolves two related challenges.

First, the packet header space is a scarce resource. The
naïve approach of having each switch embed its switchID
into the header before forwarding the packet would re-
quire large packet header space, especially when packets
can traverse non-shortest paths (e.g., due to failures along
the shortest path). For instance, tracing a 8-hop path on
a 48-ary FatTree topology would require 4 bytes worth of
packet header space, which is not supported using com-
modity network components4. PathDump traces packet
trajectories using close to optimal packet header space by
using the link sampling idea presented in our preliminary
work, CherryPick [36]. Intuitively, CherryPick builds
upon the observation that most frequently used datacen-
ter network topologies are very structured (e.g., FatTree,
VL2) and this structure enables reconstructing an end-to-
end path by keeping track of a few carefully “sampled”
links along any path. We provide more details below.

The second challenge that PathDump resolves is imple-
mentation of packet trajectory tracing using commodity
off-the-shelf SDN switches. Specifically, PathDump uses
the VLAN and the MPLS tags in packet headers along
with carefully constructed network switch rules to trace
packet trajectories. One key challenge in using VLAN
tags is that the ASIC of SDN switch (e.g., Pica8 P-3297)
typically offers line rate processing of a packet carrying
up to two VLAN tags (i.e., QinQ). Hence, if a packet
somehow carries three or more tags in its header, a switch
attempting to match TCP/IP header fields of the packet
would trigger a rule miss and usually forward it to the
controller. This can hurt the flow performance. We show
that PathDump can enable per-packet trajectory tracing
for most frequently used datacenter network topologies
(e.g., FatTree and VL2), even for non-shortest paths (e.g.,
up to 2 hops in addition to the shortest path), using just
two VLAN tags. Note that these limitations on supported
network topologies and path lengths are merely an arti-
fact of today’s hardware — PathDump achieves what is
possible with today’s networks, and as networks evolve to
support larger packet header space, PathDump will sup-
port more general topologies (e.g., Jupiter network [34])
and/or longer path lengths without any modification in its
design and implementation.

4We believe networks will evolve to support larger packet header
space. We discuss how PathDump could exploit this to provide even
stronger functionality. However, we do note that even with availability to
larger packet header space, ideas in PathDump may be useful since this
additional packet header space will be shared by multiple applications.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 237

https://github.com/PathDump

However, not all non-shortest paths need to be saved
and examined at end-hosts. In particular, when a path is
suspiciously long, instant inspection at the controller is
desirable while packets are on the fly; it may indeed turn
out to be a serious problem such as routing loop. Path-
Dump allows the network operator to define the number
of hops that would constitute a suspiciously long path (we
use 4 hops in addition to the shortest path length as de-
fault because packets rarely traverse such a long path in
datacenter networks).

To keep the paper self-contained, we briefly review the
ideas from CherryPick [36] below; we refer the readers
to [36] for more detailed discussion and evaluation. We
then close the subsection with a discussion on identifying
and trapping packets traversing a suspiciously long path.

Tracing technique: CherryPick [36]. The need for tech-
niques like CherryPick is clear; a naïve approach of em-
bedding link ID of each hop into the packet header sim-
ply does not work [36]. Assuming 48-port switches, em-
bedding a 6-hop path requires 36 bits in the header space
whereas two VLAN tags only allow 24 bits.

The core idea of CherryPick is to sample links that suf-
fice in representing an end-to-end path. One key challenge
is that sampling links makes a local identifier inapplicable.
Instead, each link should be assigned a global identifier.
Clearly, the number of physical links is far more than that
of available link IDs (c.f., 4,096 unique link IDs expressed
in a 12 bit VLAN identifier vs. 55,296 physical links in a
48-ary fat-tree topology).

In addressing the issue, the following observation is
used: aggregate switches between different lower level
blocks (e.g., pods) must be interconnected only through
core switches. Therefore, instead of assigning global IDs
for the links in each pod, it becomes possible to share
the same set of global IDs across pods. In addition, the
scheme efficiently assigns IDs to core links by applying
an edge-coloring technique [13]. The following describes
how the links should be picked for fat-tree and VL2:

• Fat-tree: A key observation in it is that given any
4-hop path, when a packet reaches a core switch, the
ToR-aggregate link it traversed becomes easily known,
and there is only a single route to destination from the
core switch. Hence, to build the end-to-end path, it is
sufficient to pick one aggregate-core link that the packet
traverses. When the packet is diverted from its original
shortest path, the technique selects one extra link every
additional 2 hops. Thus, two VLAN tags make it fea-
sible to trace any 6-hop path. The mechanism is easily
converted into OpenFlow rules (see [36]). The number of
rules at switch grows linearly over switch port density.

Topology

Packet

stream

Link ID

extraction

Trajectory

construction

Trajectory

memory

Open vSwitch

User-level

to upper stack

Export per-path flow record

Create/Update per-path flow record with link IDs

Trajectory Information Base (TIB)

Trajectory

cache

Lookup

Update

<flow ID, path, stime, etime, #bytes, #pkts>

TIB record

Figure 2: Trajectory information update procedure.

• VL2: VL2 requires to sample three links for tracing
any 6-hop path. Hence, we additionally use DSCP field.
However, because the field is only 6-bits long, we use it in
order to sample an ToR-aggregate link in pod where there
are only k links. After the DSCP field is spent, VLAN
tags are being used over a subsequent path. If a packet
travels over a 6-hop path, it carries one DSCP value and
two VLAN tags at the end. In this way, rule misses on data
plane is prevented for packets traversing a 6-hop path. We
need two rules per ingress port: one for checking if DSCP
field is unused, and the other to add VLAN tag otherwise,
thus still keeping low switch rule overheads.

Given a 12-bit link ID space (i.e., 4,096 link IDs), the
scheme supports a fat-tree topology with 72-port switches
(about 93K servers). Since DSCP field is additionally
used for VL2, the scheme can support a VL2 topology
with 62-port switches (roughly 19K servers).

Instant trap of suspiciously long path. PathDump by
design supports identifying and trapping packets travers-
ing a suspiciously long path. When a packet traverses one
such path, it cannot help but carry at least three tags. An
attempt to parse IP layer for forwarding at switch ASIC
would cause a rule miss and the packet is sent to the con-
troller. The controller then can immediately identify the
suspiciously long path. We leverage this ability of Path-
Dump to implement a real-time routing loop detection ap-
plication (see §4.5).

3.2 Server stack
The modules in the server stack conduct three tasks
mainly. The first is to extract and store the path infor-
mation embedded in the packet header. Next, a query pro-
cessing module receives queries from the controller, con-
sumes the stored path data and provides responses. The
final task is to do active monitoring of flows’ performance
and prompt raise of alerts to the controller.

238 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Trajectory information management. The trajectory in-
formation base (TIB) is a repository where packet trajec-
tory information is stored. Because storing path informa-
tion of individual packets can waste too much disk space,
we do per-path aggregation given a flow. In other words,
we maintain unique paths and their associated counts for
each flow. First, a packet is classified based on the usual 5-
tuple flow ID (i.e., <srcIP, dstIP, srcPort, dstPort, proto>).
Then, a path-specific classification is conducted. Figure 2
illustrates an overall procedure of updating TIB.

When a packet arrives at a server, we first retrieve its
metadata (flow ID, path information (i.e., link IDs) and
bytes). Because the path information is irrelevant to the
upper layer protocols, we strip it off from the packet
header in Open vSwitch (OVS) before it is delivered to
the upper stack via the regular route. Next, using the flow
ID and link IDs together as a key, we create or update a
per-path flow record in trajectory memory. Note that link
IDs do not represent a complete end-to-end path yet. Each
record contains flow ID, link IDs, packet and byte counts
and flow duration. That is, one per-path flow record cor-
responds to statistics on packets of the same flow that tra-
versed the same path. Thus, at a given point in time, more
than one per-path flow record can be associated with a
flow. Similar to NetFlow, if FIN or RST packet is seen or
a per-path flow record is not updated for a certain time pe-
riod (e.g., 5 seconds), the flow record is evicted from the
trajectory memory and forwarded to the trajectory con-
struction sub-module.

The sub-module then constructs an end-to-end path
with link IDs in a per-path flow record. It first looks up
the trajectory cache with srcIP and link IDs. If there is a
cache hit, it immediately converts the link IDs into a path.
If not, the module maps link IDs to a series of switches by
referring to a physical topology, and builds an end-to-end
path. It then updates the trajectory cache with (srcIP, link
IDs, path). In this process, a “static” physical network
topology graph suffices, and there is no need for dynam-
ically updating it unless the topology changes physically.
Finally, the module writes a record (<flow ID, path, stime,
etime, #bytes, #pkts>) to TIB.

We add to OVS about 150 lines of C code to support the
trajectory extraction and store function, and run the mod-
ified OVS on DPDK [4] for high-speed packet processing
(e.g., 10 Gbps). The module is implemented with roughly
600 lines of C++ code. We build TIB using MongoDB [7].

Query processing. PathDump maintains TIB in a dis-
tributed fashion (across all servers in the datacenter). The
controller sends server agents a query, composed of Path-
Dump APIs (§2.1), which in turn processes the TIB data

Controller

Server

Server

execute

Alarm (..., POOR_PERF, …)

Event-driven

debugging

Applications

On-demand

debugging

Applications

Operator

Figure 3: Workflow of PathDump.

and returns results to the controller. The querying mecha-
nism is composed of about 640 lines of Python code.

Depending on debugging applications, the controller
needs to consult more than one TIB. For instance, to check
path conformance of a packet or flow, accessing only one
TIB is sufficient. On the other hand, some debugging
queries (e.g., load imbalance diagnosis; see §4.2) need
path information from all distributed TIBs.

To handle these different needs properly, we imple-
ment two types of query mechanisms: (i) direct query and
(ii) multi-level query. The former is a query that is di-
rectly sent to one specific TIB by the controller. Inspired
by Dremel [27] and iMR [25], we design a multi-level
query mechanism whereby the controller creates a multi-
level aggregation tree and distributes it alongside a query.
When a server receives query and tree, it performs two
tasks: (i) query execution on local TIB and (ii) redistribu-
tion of both query and tree. The query results are aggre-
gated from the bottom of the tree. However, the current
implementation is not fully optimized yet; and improving
its efficacy is left as part of our future work.

In general, multi-level data aggregation mechanisms
including ours can be ineffective in improving response
times when the data size is not large and there is no much
data reduction during aggregation along the tree. In §5,
we present the tradeoff through two multi-level queries—
flow size distribution and top-k flows.

Finally, when a query is executed, the latest TIB records
relevant to the query may reside in the trajectory memory,
yet to be exported to the TIB. We handle this by creating
an IPC channel and allowing the server agent to look up
the trajectory memory. Not all debugging applications re-
quire to access the trajectory memory. Instead, the alerts
raised by Alarm() trigger the access to the memory for
debugging at even finer-grained time scales.

Active monitoring module. Timely triggering of a de-
bugging process requires fast detection of symptoms on
network problems. Servers are a right vantage point to
instantly sense the symptoms like TCP timeouts, high re-
transmission rates, large RTT and low throughput.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 239

A B

S1

S4

S5

S2 S6

S3 S7

Expected path Actual path

Src MAC S6-S7 S2-S3Dst MAC

Two VLAN tags containing trajectory info

Link failure

X

Figure 4: An example of path conformance check. The
dotted green line is an expected path and the red line
is an actual path that packet traverses.

We thus implement a monitoring module at server that
checks TCP connection performance, and promptly raises
alerts to the controller in the advent of abnormal TCP
behavior. Specifically, by using tcpretrans script in
perf-tools5, the module checks the packet retransmission
of individual flows at regular intervals (configured by in-
stalling a query). If packet retransmissions are observed
more than a configured frequency, an alert is raised to
the controller, which can subsequently take actions in re-
sponse. Thus, this active TCP performance monitoring al-
lows fast troubleshooting. We exploit the alert functional-
ity to expedite debugging tasks such as silent packet drop
localization (§4.3), blackhole diagnosis (§4.4) and TCP
performance anomaly diagnosis (§4.6).

In addition, network behavior desired by operators
can be expressed as network invariants (e.g., maximum
path length), which can be installed on end-hosts using
install(). This module uses Alarm() to inform any
invariant’s violation as depicted in §2.3.

3.3 PathDump controller
PathDump controller plays two roles: installing flow rules
on switches and executing debugging applications.

It installs flow rules in switches that append link IDs
in the packet header (using push_vlan output action)
in order to enable packet trajectory tracing. This is one-
time task when the controller is initialized, and the rules
are not modified once they are installed. We use switches
that support a pipeline of flow tables and that are therefore
compatible with OpenFlow specification v1.3.0.

Debugging applications can be executed under two con-
texts as depicted in Figure 3: (i) event-driven, and (ii) on-
demand. It is event-driven when the controller receives
alerts from the active monitoring module at end-hosts.
The other, obvious way is that the operator executes de-
bugging applications on demand. Queries and results are

5https://github.com/brendangregg/perf-tools

Pod 1 Pod 2 Pod 3 Pod 4

SAgg

SC1 SC2

Link 1

Link 2

(a) SAgg poorly load-balances traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Imbalance rate (%)

(b) Load imbalance rate

 0

 0.2

 0.4

 0.6

 0.8

 1

102 104 106 108

C
D

F

Flow size (bytes)

Link 1
Link 2

(c) Flow size distribution

Figure 5: Load imbalance diagnosis. (a) illustrates a
load imbalance case. (b) shows, as reference, the load
imbalance rate between links 1 and 2. (c) shows the
flow size distribution built by querying all TIBs.

exchanged via direct query or multi-level query. The con-
troller consists of about 650 lines of Python code.

4 Applications
PathDump can support various debugging applications
for datacenter network problems including both persistent
and transient ones (see Table 2 in the appendix for a com-
prehensive list of debugging applications). In this section,
we highlight a subset of those applications.

4.1 Path conformance check
A path conformance test is to check whether an actual
path taken by a packet conforms to operator policy. To
demonstrate that, we create an experimental case shown
in Figure 4. In the figure, the intended path of a packet is
a 4-hop shortest path from server A to B. However, a link
failure between switches S3 and S4 makes S3 forward the
packet to S6 (we implement a simple failover mechanism
in switches with a few flow rules). As a result, the packet
ends up traversing a 6-hop path. The PathDump agent in
B is configured with a predicate, as a query (as depicted
in §2.3), that a 6-hop or longer path is a violation of the
path conformance policy. The agent detects such packets
in real time and alerts the controller to the violation along
with the flow key and trajectory.

240 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brendangregg/perf-tools

 10

 20

 30

 40

 50

Path1 Path2 Path3 Path4

B
y
te

s
 (

M
B

) Balance
Imbalance

Figure 6: Traffic distribution of a flow along four dif-
ferent paths under balanced and imbalanced cases.

4.2 Load imbalance diagnosis
Datacenter networks employ load-balancing mechanisms
such as ECMP and packet spraying [15] to exploit numer-
ous equal-cost paths. However, when these mechanisms
work poorly, uneven load splits can hurt throughput and
flow completion time. PathDump can help narrow down
the root causes of load imbalance problems, which we
demonstrate using two load-balancing mechanisms: (i)
ECMP and (ii) packet spraying.

ECMP load-balancing. This scenario (Figure 5(a)) as-
sumes that a poor hash function always creates collisions
among large flows. For the scenario, we configure switch
SAgg in pod 1 such that it splits traffic based on flow size.
Specifically, if a flow is larger than 1 MB in size, it is
pushed onto link 1. If not, it is pushed onto link 2. Based
on the web traffic model in [10], we generate flows from
servers in pod 1 to servers in the remaining pods. As a
metric, we use imbalance rate, λ = (Lmax/L− 1)× 100
(%) where Lmax is the maximum load on any link and L is
the mean load over all links [31].

Figure 5(b) shows the load imbalance rate between the
two links measured every 5 seconds for 10 minutes. Dur-
ing about 80% of the time, the imbalance rate is 40% or
higher. With the load imbalance diagnosis application in
§2.3, PathDump issues a multi-level query to all servers
and collects byte counts of flows that visited those two
links. As shown in Figure 5(c), flow size distributions on
the two links are sharply divided around 1 MB. With flow
IDs and their sizes in the TIBs, operators can reproduce
this load imbalance scenario for further investigation.

This scenario illustrates how PathDump handles a per-
sistent problem. The application can be easily extended
for tackling transient ECMP hash collisions among long
flows by exploiting the TCP performance alert function.

Packet spraying. In this scenario, packets of a flow
are split among four possible equal-cost paths between a
source and destination. For demonstration, we create two
cases: (i) a balanced case and (ii) an imbalanced case.
In a balanced case, the split process is entirely random,
thereby ensuring fair load-balance, whereas in an imbal-
anced case, we configure switches so that more packets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

A
vg

 re
ca

ll

Time (sec)

4
2
1

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

A
vg

 p
re

ci
si

on

Time (sec)

4
2
1

(b) Precision

Figure 7: Performance of the silent random packet
drop debugging algorithm. Average recall and preci-
sion are presented over 10 runs. The network load is
set to 70% and each faulty interface drops packets at
1% rate. The numbers (i.e., 1, 2 and 4) in legend de-
note the number of faulty interfaces.

 0

 20

 40

 60

 80

 1 2 3 4

Ti
m

e
(s

ec
)

Loss rate (%)

4
2
1

(a) Network load = 70%

 0

 40

 80

 120

 160

 200

 30 50 70 90

Ti
m

e
(s

ec
)

Network load (%)

4
2
1

(b) Loss rate = 1%

Figure 8: Time taken to reach 100% recall and preci-
sion. The numbers (i.e., 1, 2 and 4) in legend denote
the number of faulty interfaces. The error bar is stan-
dard error, i.e., σ/

√
n where σ is standard deviation

and n is the number of runs (= 10).

are deliberately forwarded to one of the paths (i.e., Path 3
in Figure 6). The flow size is set to 100 MB. Figure 6 is
drawn using per-path statistics of the flow obtained from
the destination TIB. As shown in the figure, operators can
check whether packet spraying works well or not. In case
of poor load-balancing, they can tell which path (more
precisely, which link) is under- or over-utilized. The per-
packet path tracing ability of PathDump allows this level
of detailed analysis. For real-time monitoring, it is suffi-
cient to install a query (using install()) that monitors
the traffic amount difference among subflows.

4.3 Silent random packet drops
We implement the silent packet drop debugging applica-
tion as described in §2.3 and conduct experiments in a 4-
ary fat-tree topology, where each end-host generates traf-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 241

S1

S2

S3 S5

A B
S6

S4

Controller

(a) A routing loop case

S2-S3

S1

S2

S3 S5

A B
S6

S4

Controller

(b) Step 1

S1

S4-S5 S2-S3

S2

S3 S5

A B
S6

S4

Controller

(c) Step 2

S1 S6

Controller

S2

S3 S5

S4

S4-S5 S2-S3S2-S3

A B

(d) Step 3

Figure 9: Debugging a routing loop. (a) A routing loop is illustrated. (b) A packet carries a VLAN tag whose
value is an ID for link S2− S3 appended by S3. (c) S4 bounces the packet to S5; S5 forwards the packet to one
remaining egress port (to S2) while appending an ID for link S4−S5 to the packet header. (d) S3 appends a third
tag of which the value is a ID for link S2−S3; at S4, the packet is automatically forwarded to the controller since
ASIC in switches only recognizes two VLAN tags whilst the packet carries three; at this stage, the controller
immediately detects the loop by finding the repeated link S2−S3 from the packet header.

fic based on the same web traffic model. We configure
1-4 randomly selected interfaces such that they drop pack-
ets at random. We run the MAX-COVERAGE algorithm
and evaluate its performance based on two metrics: re-
call and precision. Recall is #T Ps

#T Ps+#FNs while precision
is #T Ps

#T Ps+ #FPs where true positive is denoted as TP, false
negative as FN, and false positive as FP.

In our experiment, as time progresses, the number of
alerts received by the controller increases; so does the
number of failure signatures. Hence, from Figure 7, we
observe the accuracy (both recall and precision) also in-
creases accordingly; the recall increases faster than the
precision. It is clear from Figure 8, as loss rate or network
load increase, the controller receives alerts from end-hosts
at higher rate, and thus the algorithm takes less time to
obtain 100% recall and precision, making it possible to
debug the silent random packet drops fast and accurately.

4.4 Blackhole diagnosis
We demonstrate how PathDump reduces a debugging
search space with a blackhole scenario in the network
with a 4-ary fat-tree topology where packet spraying is de-
ployed. Again, we generate the same background traffic
used in §4.3 to create noises in the debugging process. We
create a 100 KB TCP flow and its packets are randomly
routed through four possible paths and test two cases.

Blackhole at an aggregate-core link. Obviously, the
subflow traffic passing the blackhole link is all dropped.
The controller receives an alarm from PathDump agent
at sender in 1 sec, immediately retrieves all TIB records
for the flow and finds one record for the dropped sub-
flow missing. While examining the paths found in TIB
records, it finds that one path did not appear in the TIB.
Since only one path (hence, one subflow) was impacted, it

produces three switches as a potential culprit: core switch,
source and destination aggregate switches (thus avoiding
the search of all 10 switches in the four paths).

Blackhole at a ToR-aggregate link in the source pod.
This blackhole impacts two subflows. The controller iden-
tifies two paths that impacted the two subflows using the
same way as before. By joining the two paths, the con-
troller can pick four common switches, which should be
examined with higher priority.

Note that if more number of flows (and their subflows)
are impacted by the blackhole, PathDump can localize the
exact source of the blackhole.

4.5 Routing loop debugging
PathDump debugs routing loop in real-time by trapping
a suspiciously long path in the network. As discussed in
§3.1, a packet carrying more than two tags is automat-
ically directed to the controller. This feature is a foun-
dation of making routing loops naturally manifest them-
selves at the controller. More importantly, the fact that
the controller has a direct control over suspicious packets
makes it possible to detect routing loops of any size.

Real timeliness. We create a 4-hop routing loop as shown
in Figure 9(a). Specifically, switch S4 is misconfigured
and all core switches are configured to choose an alter-
native egress port except the ingress port of a packet. In
the figure, switches from S2 to S5 constitute the loop. Un-
der this setup, it takes about 47 ms on average until the
controller detects the loop. When the packet trapped in
this loop ends up carrying three tags (see Figures 9(b)–
9(d)) and appears at the controller, two of the tags have
the same link ID (S2−S3 in Figure 9(d)). Hence, the loop
is detected immediately at this stage.

242 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

1 2 3 4 5 6 7 8 9 101112131415

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Flow ID

(a)

T

R

2

4

12

141

15

2

2

4 4

f8 f9 f10f11 f12 f13 f14f15

f2 f3

f1

f4 f5 f6 f7

Outcast flow

2 2 2 2

(b)

Figure 10: Diagnosis of TCP outcast. Unfairness of
throughput is shown in (a). In (b), the communication
graph is mapped onto a physical topology, and edge
weight is the number of flows arriving at an input port.
Both data sets are made available from TIB.

Detecting loops of any size. In this scenario, we create a
6-hop routing loop (not shown for brevity). The controller
finds no repeated link IDs from three tags when it sees
the packet for the first time. The controller locally stores
the three tags, strips them off from the packet header, and
sends the packet back to the switch. Since the packet is
trapped in the 6-hop loop, it will have another set of three
tags and be forwarded to the controller. This time, com-
paring link IDs in previous and current tags, the controller
observes that there is at least one repeated link ID and de-
tects the loop. The whole process took ∼115 ms. Detect-
ing even larger loops involves exactly the same procedure.

4.6 TCP performance anomaly diagnosis
PathDump can diagnose incast [12] and outcast [32] prob-
lems in a fine-grained manner although they are transient.
In particular, we test a TCP outcast scenario. For a realis-
tic setup, we generate the same type of TCP background
traffic used in §4.4. In addition to that, 15 TCP senders
send data to a single receiver for 10 seconds. Thus, as
shown in Figure 10(b), a flow from f1 and 14 flows from
f2− f15 arrive on two different input ports at switch T .
They compete for the same output port at the switch to-
ward receiver R. As a result, these flows experience the
port blackout phenomenon, and the flow from f1 sees the
most throughput loss (see [32] for more details).

Every 200 ms (default TCP timeout value) the server
agents run a query that generates alerts when their TCP
flows repeatedly retransmit packets. The diagnosis appli-
cation at the controller starts to work when it sees a min-
imum of 10 alerts from different sources to a particular
destination. Since all alerts specify R as receiver, the ap-
plication requests flow statistics (i.e., bytes, path) from R
and diagnoses the root cause for high alerts. It first an-
alyzes the throughput for each sender (Figure 10(a)) and
constructs a path tree for all 15 flows (Figure 10(b)). It

then identifies that the flow from f1 (one closest to the
receiver) is most highly penalized. PathDump concludes
the TCP unfairness stems from the outcast because these
patterns fit the outcast’s profile. We observe that the appli-
cation initiates its diagnosis in 2-3 seconds since the onset
of flows and finishes it within next 200 ms.

5 System Evaluation
We first study the performance of direct and multi-level
queries in terms of response time and data overheads. We
then evaluate CPU and memory overheads at end-host in
processing packet stream and in executing queries.

5.1 Experimental setup
We build a real testbed that consists of 28 physical servers;
each server is equipped with Xeon 4-core 3.1 GHz CPU
and a dual-port 1 GbE card. Using the two interfaces,
we separate management channel from data channel.
The controller and servers communicate with each other
through the management channel to execute queries. Each
server runs four docker containers (in total, 112 contain-
ers). Each container is assigned one core and runs a Path-
Dump agent to access TIB in it. In this way, we test up
to 112 TIBs (i.e., 112 end-hosts). We only refer to con-
tainer as end-host during the query performance evalua-
tion. Each TIB has 240K flow entries, which roughly cor-
responds to the number of flows seen at a server for about
an hour. We estimate the number based on the observa-
tion that average flow inter-arrival time seen at server is
roughly 15 ms (∼67 flows/sec) [19].

For multi-level query execution, we construct a logical
4-level aggregation tree with 112 end-hosts. Our Path-
Dump controller sits on the top of the tree (level 0). Right
beneath the controller are 7 nodes or end-hosts (level 1).
Each first-level node has, as its child, four nodes (level 2),
each of which has four nodes at the bottom (level 3).

For the packet progressing overhead experiment, we
use another server equipped with a 10 GbE card. In this
test, we forward packets from all other servers to a virtual
port in DPDK vSwitch via the physical 10GbE NIC.

5.2 Query performance
We compare the performance of direct query with that of
multi-level query. To understand which type of query suits
well to a debugging application, we measure two key met-
rics: i) end-to-end response time, and ii) total data volume
generated. We test two queries—flow size distribution of
a link and top-k flows. For the top-k flows query, we set k
to 10,000. Results are averaged over 20 runs.

Results. Through these experiments, we make two obser-
vations (confirmed via Figures 11 and 12) as follows.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 243

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 30 60 90 120

R
es

po
ns

e
tim

e
(s

ec
)

No. of end-hosts

Direct
Multi-level

(a) Response time

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 30 60 90 120

N
et

w
or

k
tra

ffi
c

(K
B

)
No. of end-hosts

Direct
Multi-level

(b) Traffic amount

Figure 11: Average end-to-end response time and traf-
fic amount of a flow size distribution query.

 1
 2
 3
 4
 5
 6
 7
 8

 30 60 90 120

R
es

po
ns

e
tim

e
(s

ec
)

No. of end-hosts

Direct
Multi-level

(a) Response time

 0

 20

 40

 60

 80

 30 60 90 120

N
et

w
or

k
tra

ffi
c

(M
B

)

No. of end-hosts

Direct
Multi-level

(b) Traffic amount

Figure 12: Average end-to-end response time and traf-
fic amount of a top-10,000 flows query.

1) When more servers are involved in a query, multi-
level query is in general better than direct query.
Figure 11(a) shows that multi-level query initially takes
longer than direct query. However, the response time gap
between the two gets smaller as the number of servers in-
creases. This is due to three reasons. First, the aggre-
gation time (the time to aggregate responses at the con-
troller) of direct query is always larger than that of multi-
level query. Second, the aggregation time of direct query
linearly grows in proportion to the number of end-hosts
whereas that of multi-level query gradually grows. Lastly,
network delays of both queries change little regardless of
the number of servers.

2) If aggregation reduces response data amount sub-
stantially, multi-level query is more efficient than direct
query. When multi-level query is employed for comput-
ing the top-k flows, (ni−1) · k number of key-value pairs
are discarded at level i− 1 during aggregation where ni
is the number of nodes at level i (i < 3). A massive data
reduction occurs through the aggregation tree. Hence, the
data amount exchanged in multi-level query is similar to
that in direct query (Figure 12(b)). Moreover, the compu-
tation overhead for aggregation is distributed across mul-

 0
 2
 4
 6
 8

 10

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

PathDump
vSwitch

(a) Throughput in Gbits per second

 0

 1

 2

 3

 4

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (M

pp
s)

Packet size (Bytes)

PathDump
vSwitch

(b) Throughput in million-packets per second

Figure 13: Forwarding throughput of PathDump and
vSwitch. Each bar represents an average over 30 runs.

tiple intermediate servers. On the contrary, in direct query,
the controller alone has to process a large number of key-
value pairs (i.e., k · n3 where n3 is the total number of
servers used). Hence, the majority of the response time
is attributed to computation at the controller, and the re-
sponse time grows linearly as the number of servers in-
creases (Figure 12(a)). Due to the horizontal scaling na-
ture of multi-level query, its response times remain steady
regardless of the number of servers. In summary, these
results suggest that multi-level query can scale well even
for a large cluster and direct query is recommended when
a small number of servers are queried.

5.3 Overheads

Packet processing. We generate traffic by varying its
packet size from 64 to 1500 bytes. Each packet carries
1-2 VLAN tags. While keeping about 4K flow records
(roughly equivalent to 100K flows/sec at a rack switch
connected to 24 hosts) in the trajectory memory, Path-
Dump does about 0.8–3.6M lookups/updates per second
(0.8M for 1500B packets and 3.6M for 64B). Under these
conditions, we measure average throughput in terms of
bits and packets per second over 30 runs.

From Figure 13, we observe that PathDump introduces
a maximum of 4% throughput loss compared to the
performance of the vanilla DPDK vSwitch. The fig-
ure omits confidence intervals as they are small. In all
cases, the throughput difference is marginal. Note that
due to the limited CPU and memory resources allocated,

244 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DPDK vSwitch itself suffers throughput degradation as
packet size decreases. Nevertheless, it is clear that Path-
Dump introduces minimal packet processing overheads
atop DPDK vSwitch.

Query processing. We measure CPU resource demand
for continuous query processing at end-host. The con-
troller generates a mix of direct and multi-level queries
continuously in a serialized fashion (i.e., a new query af-
ter receiving response for previous one). We observe that
less than 25% of one core cycles is consumed at end-host.
As datacenter servers are equipped with multi-core CPUs
(e.g., 18-core Xeon E5-2699 v3 processor), the query pro-
cessing introduces relatively less overheads.

Storage. PathDump only needs about 10 MB of RAM at
a server for packet trajectory decoding, trajectory memory
and trajectory cache. It also needs about 110 MB of disk
space to store 240K flow entries (roughly equivalent to an
hour’s worth of flows observed at a server).

6 Related Work
There has been a tremendous recent effort in building
tools for efficient management and debugging of tasks.
Each tool works at a unique operating point between sup-
ported classes of network debugging problems, accuracy,
network bandwidth overheads, and desired functionality
from network elements. We summarize the most related
of these tools below.

Generality. Several tools support a fairly general class
of network debugging problems with high accuracy —
PathQuery [30], NetSight [17], NetPlumber [20], Veri-
Flow [22] and several other systems [21, 26]. However,
these systems make arguably strong tradeoffs to achieve
generality with accuracy. In particular, for many network
debugging problems, these systems [20, 21, 22, 26] re-
quire a snapshot of the entire data-plane state and may
only be able to capture events at coarse-grained time-
scales. Netsight [17] captures per-packet per-switch log
for out-of-band analysis; capturing per-packet per-switch
logs leads to very high bandwidth requirements and out-
of-band analysis typically leads to high latency between
the time of occurrence of an event and when the event is
diagnosed. Finally, PathQuery [30] supports network de-
bugging by dynamically installing switch rules and using
SQL-like queries on these switches; this not only requires
dynamic installation of switch rules and large amount of
data plane resources to achieve generality but also debug-
ging at coarse-grained time-scales. PathDump, by push-
ing much of the debugging functionality to the end-hosts,
makes a different tradeoff — it gives up on a small class of
network debugging problems, but alleviates the overheads

of dynamic switch rule installation, per-packet per-switch
log generation and periodic data plane snapshots.

Accuracy. Several recent proposals alleviate the over-
heads of aforementioned systems using sampling [8, 16,
24, 33, 35, 39, 41], mirroring of sampled packets [33, 41],
active packet probes [9, 40, 41], and a potpourri of these
techniques [41]. These tools have two main limitations:
(i) they make the functionality implemented at the net-
work elements (precisely the elements that these tools
are trying to debug) even more complex; and (ii) sam-
pling and/or active probing, by definition, leads to missed
network events (low accuracy). In contrast, PathDump
avoids complex operations like packet sampling, packet
mirroring, and/or active probing, by pushing much of the
network debugging functionality to the end-hosts. Path-
Dump, thus, performs debugging with high accuracy at
finer-grained time-scales without incurring overheads.

End-host based tools. Several recent proposals have
advocated to move the functionality to the edge de-
vices [11, 29, 38]. SNAP [38] logs events (e.g., TCP
statistics and socket-calls) at end-hosts to infer network
problems. Felix [11] proposed a declarative query lan-
guage for end-host based network measurement. Finally,
independent to our work, Trumpet [29] proposes to push
the debugging functionality to the end-hosts. PathDump
differs from and complements these systems along sev-
eral dimensions. First, the core idea of PathDump is to
exploit the packet trajectories to debug a large class of
network problems; capturing and utilizing packet trajecto-
ries for debugging purposes complements the techniques
used in above tools. Second, in addition to the monitoring
functionality of Trumpet [29], PathDump also allows the
network operators to slice-and-dice the captured logs to
debug a network problem.

7 Conclusion
This paper presents PathDump, a network debugger that
partitions the debugging functionality between the edge
devices and the network switches (in contrast to an en-
tirely in-network implementation used in existing tools).
PathDump does not require network switches to perform
complex operations like dynamic switch rule updates, per-
packet per-switch log generation, packet sampling, packet
mirroring, etc., and yet helps debug a large class of net-
work problems over fine-grained time-scales. Evaluation
of PathDump over operational network testbeds compris-
ing of commodity network switches and end-hosts show
that PathDump requires minimal data plane resources
(e.g., switch rules and packet header space) and end-host
resources (e.g., CPU and memory).

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 245

Application Description PathDump PathQuery[30] Everflow[41] NetSight[17] TPP[18]

Loop freedom [17] Detect forwarding loops 3 3 3 3 ?

Load imbalance Get fine-grained statistics of
3 3 3 3 3

diagnosis [41] all flows on set of links

Congested link Find flows using a congested
3 3 3 3 3

diagnosis [30] link, to help rerouting

Silent blackhole Find switch that drops all
3 3 3 3 7

detection [41, 30] packets silently

Silent packet Find switch that drops
3 3 3 3 7

drop detection [41] packets silently and randomly

Packet drops Localize packet drop sources
3 3 3 3 3

on servers [41] (network vs. server)

Overlay loop Loop between SLB and
7 3 3 3 ?

detection [41] physical IP

Protocol bugs [41]
Bugs in the implementation

3 3 3 3 ?
of network protocols

Isolation [17]
Check if hosts are allowed

3 3 3 3 3
to talk

Incorrect packet Localize switch that modifies
7 3 ? 3 7

modification [17] packet incorrectly

Waypoint Identify packets not passing
3 3 3 3 3

routing [17, 30] through a waypoint

DDoS Get statistics of DDoS
3 3 3 3 3

diagnosis [30] attack sources

Traffic matrix [30]
Get traffic volume between

3 3 3 3 3
all switch pairs in a switch

Netshark [17]
Nework-wide path-aware

3 3 3 3 3
packet logger

Max path No packet should exceed
3 3 3 3 3

length [17] path length of size n

Table 2: Debugging applications supported by existing tools and PathDump. The table assumes that Everflow
performs per-switch per-packet mirroring. Of course, this will have much higher bandwidth requirements than
the network traffic itself. If Everflow uses the proposed sampling to minimize bandwidth overheads, many of
the above applications will not be supported by Everflow.

Acknowledgments
We would like to thank anonymous reviewers and our
shepherd George Porter for their feedback and sugges-
tions. We would also like to thank Ratul Mahajan for
many interesting discussions. This work was in part sup-
ported by EPSRC grant EP/L02277X/1.

Appendix
Table 2 summarizes the set of applications discussed in
several recent papers, and outlines whether a tool sup-
ports an application or not (the table intentionally ignores
the resource requirements and/or complexity of support-
ing each individual application for the respective tools).

246 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon EBS failure brings down Reddit, Imgur,

others. http://tinyurl.com/oxmugps.

[2] Amazon.com suffers outage: Nearly $5m down the
drain? http://tinyurl.com/od7vhm8.

[3] Azure outage raises questions about public cloud for
mission-critical apps. http://tinyurl.com/
no92ojy.

[4] DPDK: Data Plane Development Kit. http://
dpdk.org/.

[5] Flask. http://flask.pocoo.org/.

[6] Google outage: Internet traffic plunges 40%.
http://tinyurl.com/l7hegn6.

[7] MongoDB. https://www.mongodb.org/.

[8] Sampled NetFlow. http://www.cisco.com/
c/en/us/td/docs/ios/12_0s/feature/
guide/12s_sanf.html, 2003.

[9] K. Agarwal, E. Rozner, C. Dixon, and J. Carter.
SDN Traceroute: Tracing SDN Forwarding With-
out Changing Network Behavior. In ACM HotSDN,
2014.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pFabric: mini-
mal near-optimal datacenter transport. In ACM SIG-
COMM, 2013.

[11] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang. Felix: Implementing traffic
measurement on end hosts using program analysis.
In ACM SIGCOMM SOSR, 2016.

[12] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D.
Joseph. Understanding TCP Incast Throughput Col-
lapse in Datacenter Networks. In ACM Workshop on
Research on Enterprise Networking, 2009.

[13] R. Cole, K. Ost, and S. Schirra. Edge-Coloring Bi-
partite Multigraphs in O(E log D) Time. Combina-
torica, 21(1), 2001.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagan-
dula, P. Sharma, and S. Banerjee. Devoflow: scaling
flow management for high-performance networks.
In ACM SIGCOMM, 2011.

[15] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella.
On the Impact of Packet Spraying in Data Center
Networks. In IEEE INFOCOM, 2013.

[16] N. G. Duffield and M. Grossglauser. Trajectory
Sampling for Direct Traffic Observation. IEEE/ACM
ToN, 9(3), 2001.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot
Networks. In USENIX NSDI, 2014.

[18] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of Little Minions: Using
Packets for Low Latency Network Programming and
Visibility. In ACM SIGCOMM, 2014.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The Nature of Data Center Traf-
fic: Measurements & Analysis. In ACM IMC, 2009.

[20] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network
Policy Checking Using Header Space Analysis. In
USENIX NSDI, 2013.

[21] P. Kazemian, G. Varghese, and N. McKeown.
Header Space Analysis: Static Checking for Net-
works. In USENIX NSDI, 2012.

[22] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying Network-Wide Invari-
ants in Real Time. In USENIX NSDI, 2013.

[23] R. R. Kompella, J. Yates, A. Greenberg, and A. C.
Snoeren. Detection and localization of network
black holes. In IEEE INFOCOM, 2007.

[24] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A
Better NetFlow for Data Centers. In USENIX NSDI,
2016.

[25] D. Logothetis, C. Trezzo, K. C. Webb, and
K. Yocum. In-situ MapReduce for Log Processing.
In USENIX ATC, 2011.

[26] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In ACM SIGCOMM, 2011.

[27] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive analysis of web-scale datasets.
In VLDB, 2010.

[28] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Dream: dynamic resource allocation for software-
defined measurement. In ACM SIGCOMM, 2014.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 247

http://tinyurl.com/oxmugps
http://tinyurl.com/od7vhm8
http://tinyurl.com/no92ojy
http://tinyurl.com/no92ojy
http://dpdk.org/
http://dpdk.org/
http://flask.pocoo.org/
http://tinyurl.com/l7hegn6
https://www.mongodb.org/
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html

[29] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and Precise Triggers in Data Cen-
ters. In ACM SIGCOMM, 2016.

[30] S. Narayana, M. Tahmasbi, J. Rexford, and
D. Walker. Compiling Path Queries. In USENIX
NSDI, 2016.

[31] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz,
and N. M. Amato. Quantifying the Effectiveness of
Load Balance Algorithms. In ACM ICS, 2012.

[32] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella. The
TCP Outcast Problem: Exposing Unfairness in Data
Center Networks. In USENIX NSDI, 2012.

[33] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for com-
modity networks. In ACM SIGCOMM, 2014.

[34] A. Singh et al. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s
Datacenter Network. In ACM SIGCOMM, 2015.

[35] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. B.
Carter. OpenSample: A Low-Latency, Sampling-
Based Measurement Platform for Commodity SDN.
In IEEE ICDCS, 2014.

[36] P. Tammana, R. Agarwal, and M. Lee. CherryPick:
Tracing Packet Trajectory in Software-defined Dat-
acenter Networks. In ACM SIGCOMM SOSR, 2015.

[37] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling Record and
Replay Troubleshooting for Networks. In USENIX
ATC, 2011.

[38] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling Network Perfor-
mance for Multi-tier Data Center Applications. In
USENIX NSDI, 2011.

[39] M. Yu, L. Jose, and R. Miao. Software defined traffic
measurement with OpenSketch. In USENIX NSDI,
2013.

[40] H. Zeng, P. Kazemian, G. Varghese, and N. McKe-
own. Automatic Test Packet Generation. IEEE/ACM
ToN, 22(2):554–566, 2014.

[41] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-Level Telemetry in
Large Datacenter Networks. In ACM SIGCOMM,
2015.

248 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	PathDump Overview
	PathDump Interface
	PathDump Design Overview
	Example applications
	Reducing debugging space

	PathDump Implementation
	Tracing packet trajectory
	Server stack
	PathDump controller

	Applications
	Path conformance check
	Load imbalance diagnosis
	Silent random packet drops
	Blackhole diagnosis
	Routing loop debugging
	TCP performance anomaly diagnosis

	System Evaluation
	Experimental setup
	Query performance
	Overheads

	Related Work
	Conclusion

