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Abstract
How to use provenance to explain why a query returns a result or
why a result is missing has been studied extensively. Recently, we
have demonstrated how to uniformly answer these types of prove-
nance questions for first-order queries with negation and have pre-
sented an implementation of this approach in our PUG (Provenance
Unification through Graphs) system. However, for realistically-
sized databases, the provenance of answers and missing answers
can be very large, overwhelming the user with too much infor-
mation and wasting computational resources. In this paper, we
introduce an (approximate) summarization technique that gener-
ates compact representations of why and why-not provenance. Our
technique uses patterns as a summarized representation of sets of
elements from the provenance, i.e., successful or failed derivations.
We rank these patterns based on their descriptiveness (we use preci-
sion and recall as quality measures for patterns) and return only the
top-k summaries. We demonstrate how this summarization tech-
nique can be integrated with provenance capture to compute sum-
maries on demand and how sampling techniques can be employed
to speed up both the summarization and capture steps. Our prelim-
inary experiments demonstrate that this summarization technique
scales to large instances of a real-world dataset.

1. Introduction
Provenance for relational queries [GKT07] explains how results of
a query depend on the query’s inputs. Recently, provenance-like
techniques have been applied to explain how missing inputs cause a
tuple to be missing from the query result (e.g., [HH10, MGMS10]).
In prior work, we have shown that why and why-not questions can
be treated uniformly as provenance for first-order (FO) queries, en-
coded as non-recursive Datalog with negation [KLZ13], and have
presented an implementation called PUG (Provenance Unifica-
tion through Graphs) [LKLG17] which runs on top of a relational
database backend. Typically, only a part of the provenance (which
we call an explanation) is relevant to answer a provenance question
about the existence or absence of a query result. An explanation
for either a why or why-not question should justify the existence
or absence of a result based on success or failure to derive the re-
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r0 : LTCRIME(LT, T ) :− CRIMES(I, T, L, LT,C),¬ARREST(I).

CRIMES (input)
Id Type Location LocType Community

2446 assault parking lot public new city
3465 burglary apartment private south shore
1066 assault street public new city
2415 burglary residence private south shore
3645 theft appliance store public lincoln park

ARREST (input)
Id

3465
2415

LTCRIME (output)
LocType Type

public assault
public theft

Figure 1: Crime database, query r0, and query result (LTCRIME)

sult using the rules of the input query. Moreover, it should also ex-
plain how the existence or absence of tuples in the database caused
the derivation to succeed or fail, respectively. Provenance graphs
generated by PUG provide this type of justification for a (missing)
query answer [LKLG17]. Like SelP [DGM15], PUG generates ex-
planations by instrumenting input queries to capture relevant prove-
nance. The main difference between this approach and PUG is that
we support negation and why-not (which SelP does not support),
but do not support recursion yet.

EXAMPLE 1. Consider the sample of a real Chicago crime dataset1

shown in Fig. 1. The CRIMES table records for each crime an id, the
crime type and location (e.g., assault at a street), the type of lo-
cation (private or public), and the community in which the crime
took place. Relation ARREST stores the ids of crimes that led to
an arrest. Datalog query r0 returns types of unsolved crimes for
each location type, i.e., at least one crime of this type at this par-
ticular location type (private or public place) has not led to an
arrest. The result over the sample instance is shown as LTCRIME.
Given such a query, a user may be interested in understanding why
a particular result is returned, e.g., why(public,assault), or why
a tuple is missing from the result, e.g., whynot(private,burglary).
The explanation generated by PUG for whynot(private,burglary)
enumerates all potential derivations of this fact using the rule r0
and for each such derivation provides the justification for why it
failed. Fig. 2 shows part of the provenance graph (explanation) for
this question. We will discuss these types of graphs in more depth in
Sec. 2. The fragment shown in Fig. 2 represents one failed binding
of rule r0 with id 3465, location apartment, and community south
shore. This rule derivation failed because, while there was a bur-
glary with id 3465 in an apartment in community south shore (first

1 https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present/ijzp-q8t2

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2


LTCRIME(private, burglary)

r0(private, burglary, 3465, apartment, south shore)

g20(3465)

ARREST (3465)

Figure 2: Partial provenance graph explaining (private,burglary)

goal succeeds), the offender was arrested (goal ¬ ARREST(3465)
failed).

Summarizing Provenance. While explanations are useful for
limiting the scope of provenance to a (missing) result of in-
terest, the resulting provenance graphs may still be very large,
in particular for missing answers where we have to enumerate
all potential ways of how a result could have been derived and
for each such alternative have to explain why it failed. For in-
stance, even for the toy example from Fig. 1, the full provenance
graph for whynot(private,burglary) already contains 75 failed
rule derivations corresponding to all combinations of ids, loca-
tions, and communities (5 · 5 · 3). For the full dataset of ∼ 8
million records, there are ∼ 71 million failed derivations. How-
ever, if we also take into account that the full dataset contains
additional attributes that we have not shown here, then there are
∼ 3.3 · 1042 such failed derivations. Motivated by this prob-
lem, we present an extension of PUG which summarizes prov-
enance graphs to create compact, human-readable explanations.
The need for compressing provenance to reduce its size has been
recognized early-on, e.g., [ABML09, CJR08, OZ11]. However,
the compressed representations produced by these approaches are
often not semantically meaningful to a human. More closely re-
lated to our work are techniques for generating higher-level ex-
planations for binary outcomes [EGAG+14, WDM15], missing
answers [tCCST15], or query results [RS14, WM13, ADDM14]
as well as methods for summarizing data or general annotations
which may or may not encode provenance information [XE14].
Some approaches use ontologies [tCCST15, WDM15] or logi-
cal constraints [RS14, EGAG+14, WM13] to derive semantically
meaningful and compact representations of a set of tuples to be
described. Sometimes such constraints are represented as queries
or tuple patterns with placeholders. For instance, if a geographical
taxonomy is available then the set of all cities in Illinois (probably
100s or 1000s) can be compactly represented using a single concept
IllinoisCity from the taxonomy. The use of constraints to com-
pactly represent large or even infinite database instances has a long
tradition [ILJ84, KLP00] and these techniques have been adopted
to compactly explain missing answers [HH10, RKL14]. However,
the compactness of these representations comes at the cost of com-
putational intractability. Similar to some of these approaches, we
also use patterns that encode constraints to summarize provenance.

EXAMPLE 2. We produce summarized explanations by concisely
encoding sets of nodes in provenance graphs as pattern nodes. The
label of a pattern node contains a mix of constants and variables
(placeholders). A pattern node p represents all nodes that can be
derived from p by substituting suitable constants for p’s variables.
A summary for whynot(private,burglary) is shown in Fig. 3. The
graph contains a pattern node p1 = r0(private,burglary,I,L,south
shore) where I and L are placeholders. Thus, p1 represents all
nodes r0(private, burglary, c1, c2, southshore) for any crime id c1
and location c2. Using provenance graphs with pattern nodes, we
can compactly represent large explanations. Note that some of
the nodes represented by a pattern node may not belong to an
explanation. We will address this potential issue in Sec. 3.

LTCRIME(private, burglary)

r0(private, burglary, I, L, south shore)

g20(I)

ARREST (I)

Figure 3: Summarized explanation for why-not (private,burglary)

The summarization technique described in the example above is
similar to the pattern-based techniques from related work that we
have mentioned above. It produces semantically meaningful sum-
maries and can reduce the size of provenance significantly as long
as the data has inherent hierarchical structure that can be exploited.
Importantly, many datasets exhibit this type of hierarchical struc-
ture. Typical examples are geographical data (countries consist of
states which contain cities and cities contain communities), tempo-
ral data (e.g., a year consists of 12 months), product data (products
belong to categories), and biological datasets (e.g., species belong
to families). In this work, we assume that the structure is explic-
itly represented in the data, e.g., temporal data should be repre-
sented using separate fields for separate levels of the time taxon-
omy. An interesting avenue for future work is how to automatically
extract hierarchy information from data when it is not explicitly
represented. Even if the data exhibits structure that we can exploit,
summarization has to balance conflicting goals. Ideally, we want
summarized explanations to be concise (small provenance graphs),
correct (the patterns only cover provenance), and complete (the
summary covers the full provenance). Not surprisingly, this is of-
ten not possible. For instance, we can trivially achieve complete-
ness and correctness by returning the full explanation for a user
question, but this completely abandons conciseness. We decided to
implement a solution which ranks of candidate pattern rule nodes
based on a combined score derived from their relative complete-
ness and correctness. Given a provenance question, we return a sin-
gle summarized explanation that consists of the top-k rule pattern
nodes according to this ranking and directly connected goal and tu-
ple nodes. Thus, we guarantee conciseness by bounding the size of
summarized explanations. In Sec. 3, we discuss pattern-based sum-
mary model, pattern candidate generation, and ranking.
Approximate Summarization with Sampling. Using summariza-
tion, we can address the usability issues of large provenance graphs.
However, producing a full provenance graph for a user question
as input for summarization is computationally infeasible. No mat-
ter how efficient provenance capture is, generating graphs with
1042 nodes is not practical. To be able to generate provenance-
based explanations over realistically-sized databases, we introduce
sampling techniques that are applied during provenance capture.
Our preliminary experimental evaluation shows that our sampling
method only introduces a small amount of error into the measures
that we use for ranking. We leave a rigorous probabilistic analysis
of error bounds for future work.
Contributions. To the best of our knowledge, we are the first to ad-
dress both the usability and computational challenges of why and
why-not provenance by producing semantically meaningful sum-
maries based on approximate provenance generated by integrating
sampling into provenance capture. Specifically, we make the fol-
lowing contributions:

• We use patterns to generate semantically meaningful summa-
rized explanations for both why and why-not questions

• We integrate provenance capture with summarization
• We employ sampling during provenance capture to avoid hav-

ing to pay the price of materializing full provenance as the input
to summarization



2. PUG (Provenance Unification through Graphs)
Our PUG system [LKLG17] computes the explanation for user’s
provenance question about the existence or absence of a query
result as a provenance graph2 that encodes how successful and
failed derivations of a fact using an input query’s rules have lead
to the existence or absence of the result. Furthermore, for each
rule derivation included in an explanation, these graphs provide the
justification for why it succeeded (all its goals evaluated to true) or
failed (some of its goals evaluated to false).
Rule Derivations. PUG generates provenance graphs based on
derivations of the rules of a query Q. A rule derivation is the result
of applying a valuation, a mapping from the variables of a rule r to
constants. Let c̄ be a list of constants, one for each variable of a rule
r. We use r(c̄) to denote the derivation that assigns ci to variable
Xi in rule r. Note that we order variables by the position of their
first occurrence in the rule, e.g., the variable order for r0 (Fig. 1) is
(LT, T, I, L, C). For a given database instanceD, a rule derivation
is successful if D |= r(c̄), i.e., the goals of the rule evaluate to true
given the database D. For failed rule derivations, we are interested
in which goals are failed and, thus, justify the failure. Therefore, we
associate a rule derivation with a list ḡ of boolean values indicating
for each goal whether it succeeds or not.

DEFINITION 1 (Annotated Rule Derivation). LetD be a database,

Q(xh) :−R1(x1), . . . , Rm(xm),¬Rm+1(xm+1), . . . ,¬Rn(xn)

be a Datalog rule and x =
⋃n

i=1 xi. An annotated rule derivation
is a pair of a list c̄ of constants with the same arity as x̄ and a list
ḡ = (g1, . . . , gn) with gi ∈ {T , F} such that

gi =

{
T if i ≤ m ∧D |= Ri(ci) or i > m ∧D 6|= Ri(ci)

F otherwise

Here ci denotes the constants from c that correspond to xi.

In the following, we will use r(c̄)− (ḡ) to denote an annotated
derivation of rule r with constants c̄ and boolean goal indicators
ḡ. Furthermore, we use A(Q,D, r) to denote all annotated deriva-
tions of rule r from Q according to D.

EXAMPLE 3. For example, one failed annotated derivation of
missing answer (private,burglary) is

r0(private, burglary, 3465, apartment, south shore)− (T , F )

Provenance Graphs for FO-queries. As mentioned above, we
employ a graph-based provenance model for first-order (FO)
queries introduced in prior work [LKLG17]. Given a question
about the existence (absence) of a result, our system generates
an explanation, i.e., a subgraph of the full provenance graph for
a query that contains only facts and rule derivations relevant for
deriving (or failing to derive) the result. Our graphs consist of rule
nodes (boxes with a rule-id and the constant arguments of a rule
derivation), goal nodes (rounded boxes with a rule-id and the goal’s
position in the rule body), and tuple nodes (ovals). Nodes are either
green (successful/existing) or red (failed/missing).

EXAMPLE 4. Fig. 2 shows a part of the provenance graph that
PUG generates to explain the missing answer (private,burglary).
This part corresponds to our exemplary annotated derivation. It
contains the missing answer and a node representing the failed rule
derivation. The failed derivation is connected to all failed goals

2 We support different types of provenance graphs that differ in informative-
ness. For instance, one type encodes provenance polynomials [GKT07], the
most general form of provenance in the semiring framework, if restricted to
positive queries.

(recall that in this example only the second goal failed). The node
representing the failed goal ¬ ARREST(3465) is connected to the
existing tuple ARREST(3465) justifying the goal’s failure.

Capturing Provenance. PUG computes the explanation (prove-
nance graph) for a (missing) answer using a rewriting of the input
Datalog query. The instrumented query that generates the explana-
tion is translated into SQL code by the system which can then be
run on a standard DBMS backend. The program constructed by this
rewriting consists of two parts. First, the rules of the input query
are transformed to capture annotated rule derivations relevant for
explaining the (missing) answer. We refer to rules instrumented in
this fashion as firing rules. The second part of the rewritten pro-
gram generates the edge relation of the provenance graph by gener-
ating a set of edges for each annotated rule derivation. For instance,
for the failed derivation used in the Example 4, we would gener-
ate the three edges shown in Fig. 2. We refer the interested reader
to [LKLG17] for details of this rewriting. For the purpose of this
paper, the important take-away message is that the annotated rule
derivations fully determine the graph to be generated. We will ex-
ploit this fact by applying summarization to sets of annotated rule
derivations and, then, generate the edges of a provenance graph
from these summarized rule derivations.

Size of explanations. As mentioned in the introduction, the graphs
generated by PUG can be quite large. In particular, for missing an-
swers, we have to enumerate all potential ways (rule derivations) of
how the answer could have been derived and, for each such deriva-
tion, explain why it failed (enumerating the failed goals in the rule’s
body). Under the open world assumption, there would be infinitely
many failed rule derivations. While under the closed world assump-
tion there only exists a finite number of derivations, this number
would still be very large. A typical assumption is to bound variables
by the active domain adom(D), i.e., all values that occur in some
attribute(s) in the database D or occur as constants in the query.
Since we can bound any of the existential variables of a Datalog
rule to any value of the active domain, the number of derivations for
a domain of size |D| and rule withm existential variables would be
|D|m. Note that using all values of adom(D) indistinguishably for
all variables of a rule may lead to semantically meaningless deriva-
tions (e.g., using community south shore as a value for attribute
Type). In PUG, we allow the user to associate a domain of values
with each attribute and exclusively use values from these domains
to form rule derivations [LKLG17]. This avoids the construction
of meaningless derivations, but does not solve the size issue. For
instance, the numbers given in the introduction have been calcu-
lated based on the assumption that for each attribute A the user has
assigned the set of values of A as the domain of A.

3. Provenance Summaries
The large size of provenance-based explanations may be over-
whelming for a user even if provenance is limited to what is rel-
evant for a particular (missing) result. For example, explanation for
the question whynot(private,bulglary) has more than 370 nodes in
total (75 failed rule derivations). We address this problem by cre-
ating summaries of provenance graphs based on the structure that
is present in the provenance. In particular, we compactly represent
sets of subgraphs through graph patterns, i.e., graphs where the ar-
guments used in a node label can be placeholders (variables). As
we have already outlined in Sec. 2, our provenance graphs are gen-
erated from annotated rule derivations. Thus, developing pattern-
based summarization techniques for these rule derivations automat-
ically yields a method for summarizing provenance graphs. We can
use the part of the instrumented program generated by PUG which
computes the edge relation of the provenance graph and apply it to



CRIMES(I, assault, L, public, new city)

g10(I, assault, L, public, new city)

LTCRIME(public, assault)

g20(I)

ARREST (I)

r0(public, assault, I, L, new city)

Figure 4: Summarized explanation for why (public,assault)

the rule derivation patterns generated by summarization to generate
summarized provenance graphs.
Derivation Patterns. Rule derivation patterns are rule derivations
which in addition to constants may contain placeholders.

DEFINITION 2 (Derivation Pattern). Let D be a database and r a
rule with n variables. A derivation pattern is a list ē of length n
where each ei ∈ adom(D)∪{∗}. We use r(ē) to denote derivation
pattern ē for rule r.

A derivation pattern represents the set of annotated rule deriva-
tions that match the pattern, i.e., all rule derivations that agree with
the pattern’s constants.

DEFINITION 3 (Pattern Matches). Let D be a database, Q a
query, and r a rule of Q. A derivation pattern p = r(ē) for
a rule r with n variables matches an annotated rule derivation
d = r(c̄)− (ḡ) ∈ A(Q,D, r) written as p |= d iff

∀i ∈ {1, . . . , n} : ei = ∗ ∨ ei = ci

We defineM(p) = {d | p |= d} where Q and D are assumed to
be clear from the context.

For readability, we will often use variables instead of ∗ in a
derivation pattern to denote which variable of a rule a placeholders
corresponds to.

EXAMPLE 5. Continuing with Example 4, recall that

r0(private, burglary, 3465, apartment, south shore)− (T , F )

is one failed derivation of missing answer (private,burglary).
There may exist many other similar derivations which can be com-
pactly encoded using derivation patterns. For instance, the pattern

r0(private, burglary, I, L, south shore)

represents all burglaries in south shore for any id and location.

Given derivation patterns, we generate provenance graphs cor-
responding to these patterns.

EXAMPLE 6. A summarized explanation for why(public,assault)
using patterns is shown in Fig. 4. The summary explains query
result (public,assault) - there are assaults in public places (some
public location L) in community new city which have not led to an
arrest. That is, the pattern represents the set of all derivations using
rule r0 where community is new city, location is some location L,
and the crime id is some I . Each derivation for a given I = c1 and
L = c2 represented by the pattern corresponds to the subgraph
from the provenance with the structure shown in Fig. 4.

Generating Candidate Patterns. Given the rule derivations in
the provenance of a query, we can generate candidate patterns
by replacing any subset of the constants in a rule derivation with
placeholders (variables). For instance, some of the patterns we can
create from r0(private,burglary,3465,apartment,south shore) are
r0(private,burglary,3465,L,south shore), r0(private,burglary,I,
apartment,C), and so on. Note that we do not allow head variables

(LT and T in our example) to be replaced with placeholders since
the binding for these variables are provided by the user question.
If we apply this process exhaustively, then this leads to an expo-
nential number of patterns (in the number of variables of rules). As
observed in [EGAG+14], there are several ways of how to limit the
number of generated patterns, e.g., by only creating patterns from a
sample of the rule derivations. We will explain how we incorporate
sampling into the summarization process in Sec. 4.
Selecting Top-k Patterns. The set of rule derivations M(p) rep-
resented by a pattern p for rule r may contain both derivations that
belong to the provenance as well as derivations that are not in the
provenance. To make this more concrete, we need to specify what
is the set of rule derivations we consider for matching against a
pattern and under which conditions is a rule derivation considered
from this set to belong to the provenance. Given a why or why-
not question Q(c̄), we are only interested in derivations that agree
with the constants of the user question. For example, for question
why(public,assault), we are not interested in rule derivations that
derivate another type of crime (e.g., a murder). That is, for evaluat-
ing how well a pattern summarizes provenance, we use a subset of
A(Q,D, r) containing all derivations that agree with the constants
of the user questions (bind head variables to these contants). Let
A(Q(c̄), r) denote this set for a question Q(c̄). We partition this
set into two subsets (provenance and non-provenance). For a why
questionQ(c̄) and a rule r, all successful derivations ofQ(c̄) using
rule r are considered as provenance and all failed derivations of r
deriving Q(c̄) as non-provenance. For a why-not question Q(c̄),
all derivations of the result using a rule r are failed. We summa-
rize individual failure patterns independently since each failure
pattern corresponds to a different subgraph structure in the prov-
enance. For a failure pattern ḡ, we consider all rule derivations of
Q(c̄) as provenance if they have the same failure pattern and as
non-provenance otherwise. Note that if a Datalog query consists of
multiple rules, then not all rules in the provenance of a user ques-
tion may directly derive the user question’s tuple. This is dealt with
by propagating constants from the user question to related rules
(for a description of how we propagate constants, see [LKLG17]).
The set of rule derivations is then determined based on the prop-
agated constants. We use Prov(p) to denote the number of rule
derivations in the provenance matched by a pattern p, NProv(p)
to denote the number of derivations matched by pattern p that are
not in the provenance, and TProv to denote the total number of
derivations in the provenance. We use this notation to define the
precision prec(p) and recall rec(p) of a pattern (with respect to a
provenance question) in the usual way:

prec(p) =
Prov(p)

Prov(p) +NProv(p)
rec(p) =

Prov(p)

TProv

Note that precision effectively measures what we have called
correctness in the introduction (the fraction of matched derivations
that belong to the provenance) and recall measure completeness
(the fraction of derivations in the provenance matched by the pat-
tern). We use the F-measure (geometric mean of the precision and
recall) to select the top-k pattern(s) for each type of rule derivation
which provides concise summaries. In our experience, it is essential
to consider both precision and recall in the ranking since ranking
by precision alone often leads to overly specific patterns (e.g., a
pattern without placeholders) and ranking on recall alone leads to
very generic patterns (e.g., a pattern with only variables plus con-
stants from the user question). Investigating other quality measures
for patterns is an interesting avenue for future work.

EXAMPLE 7. Recall that a summary for whynot(private,burglary)
is shown in Fig. 3 and we summarize failed derivations indepen-
dently for each failure pattern. Assume that the user requests the



failure pattern (T , F ), i.e., where only the second goal is failed.
That is, there exists a burglary in a private place that has led to
an arrest. The intuitive meaning of this summary is that all the
burglaries in private locations led to arrests (the graph contains
a pattern p1 = r0(private,burglary,I,L,south shore)). Pattern p1
subsumes all derivations where the first goal succeeded (an exist-
ing burglaries), but the second goal failed (offender was arrested).
Assuming that prec(p1) = 1, the summary unearths the fact that
all burglaries in private places in the community south shore led
to arrests.

4. Approximate Summarization
In Sec. 3, we have discussed how to generate summarized expla-
nations for why and why-not questions. As mentioned in the intro-
duction, we propose to use sampling to reduce the number of rule
derivations we have to consider. Naturally, we would like to sample
as early as possible in the process to avoid generating large interme-
diate results, e.g., the large set of failed derivations of a query result.
Assume that a target sample size S is given as an input by the user
(or automatically determined). The goal is to generate a sample of
provenance and non-provenance that 1) contains representative pat-
terns and 2) allows us to compute a close approximations of the real
precision and recall of patterns. If it would be feasible to material-
ize the full set of derivationsA(Q(c̄), r) of a rule r, then randomly
picking S derivations from this set would likely yield a representa-
tive sample. However, since we cannot materialize this set, picking
a representative sample becomes more challenging. We would like
the ratio between provenance and non-provenance in the sample
to be similar to that ratio in A(Q(c̄), r). The total number of rule
derivations |A(Q(c̄), r)| only depends on the size of the domains
assigned by the user to attributes. For instance, assume the user
has assigned the active domain adom(D) as the domain for every
attribute in the crime database and |adom(D)| = 10, 000. Then,
for a given why question, two of the 5 variables of rule r0 (Fig. 1)
are bound by the question. Thus, there are 10, 0003 rule deriva-
tions. As evident from this example, if we know the size of the ac-
tive domain, then the number of derivations in A(Q(c̄), r) can be
computed as |adom(D)| to the power of the number of existential
variables in rule r. We leave a formal analysis of approximation
guarantees and sampling provenance for future work (e.g., in the
spirit of [LWYZ16]).
Why questions. We now first explain the remaining steps of our
sample approach. For why questions, we can compute the ratio
as follows: 1) we compute the provenance for the user question
since it is of moderate size and determine its size (denoted as
#Prov). Let #NProv denote the size of the non-provenance.
We know that |A(Q(c̄), r)| = #Prov + #NProv and thus
#NProv = |A(Q(c̄), r)| −#Prov. We get

#Prov

#NProv
=

#Prov

|A(Q(c̄), r)| −#Prov

Given a target sample size S, this ratio allows us to determine how
much provenance and non-provenance we should sample. For non-
provenance, we still face the challenge that we want to create a
sample of failed rule derivations without materializing the set of
all failed rule derivations. Here, we can benefit from the fact that
non-provenance for a why question is typically many orders of
magnitude larger than provenance. Thus, derivations of a rule r
sampled from the n-way crossproduct of the active domain where n
is the number of existential variables in r will with high probability
contain mostly non-provenance. Based on this observation, we
devise the following method to create a sample of S tuples from
the non-provenance: 1) we create n samples of size S + δ and zip
them into a single sample with S + δ tuples with n attributes; 2)
we check for each tuple whether it does correspond to a successful

EdgeRel topK Prec/Rec ∪
Sampling Prov

Sampling NonProv
PatternGen

Figure 5: Overview of the summarization process

rule binding. If yes, then we remove this tuple from the sample;
3) if the resulting sample contains more than S tuples, then we
randomly delete tuples until the desired sample size is reached. If
the sample contains less than S tuples, then to create additional
tuples we repeat steps 1-3. Here, δ should be chosen large enough
that it is unlikely that we have to repeat steps 1-3. Note that this
process can be implemented as SQL queries which produce the
inputs to provenance graph generation and summarization. In fact,
this is how we have implemented sampling in the PUG system.
Why-not questions. The process of sampling for why-not ques-
tions is analog. The main difference is that materializing all rule
derivations that belong to the provenance is not feasible. Thus, we
use sampling to estimate the ratio #Prov

#NProv
.

5. Integrating Capture with Summarization
In this section, we explain how to integrate summarization tech-
niques with PUG’s provenance capture mechanism that we have
introduced in prior work [LKLG17]. Summarization and sampling
are fully integrated into PUG’s rewrite-based provenance capture
mechanism. Given a request to compute and summarize an expla-
nation for a user question, we first construct a rewritten program
that captures provenance and generates the edge relation of the
provenance graph as described in [LKLG17]. We, then, add ad-
ditional instrumentation to implement sampling, generate patterns
and evaluate their precision and recall, and select the top-k patterns.
The result of this instrumentation is fed into the rules created by
PUG to generate the edge relation of the provenance graph. Fig. 5
gives a high-level overview of the structure of the generated query.
We, then, compile this query into SQL, evaluate it, and create a
visualization of the summarized provenance graph.

6. Experiments
We have conducted a series of experiments to evaluate 1) the per-
formance of combining sample-based summarization with prove-
nance capture and 2) how sampling early in the process affects the
quality of the produced summaries. We compare our sample-based
approach (referred to as Sample Summarization from now on) with
an approach that creates summaries over the full provenance and
non-provenance (called Full from here on). Naturally, the F ap-
proach can only be applied to small instances because of the large
number of rule derivations that it generates.
Setup. We use subsets of the Chicago crime dataset introduced
in Example 1 where Cx denotes a subset with x rows. For the per-
formance experiment (Fig. 6), we compute summaries for the query
COMMCRIME(C, T ) :− CRIMES(I, T, L,C),¬ARREST(I) which com-
putes types of crimes that have not led to arrests in a particu-
lar community. Provenance questions why(new city,assault) and
whynot(south shore,assault) are used in this experiment. We allo-
cated a maximum of 2-hours for each summary computation. Com-
putations that did not finish within 2 hours are omitted from graphs.
To evaluate pattern quality and the amount of errors in precision
and recall that is introduced by sampling (Fig. 7), we use the fol-
lowing query that returns types of crimes which did not lead to an
arrest: EXISTCRIME(T ) :− CRIMES(I, T, L,C),¬ARREST(I). All
experiments were executed on a machine with 2 x 3.3Ghz AMD
Opteron 4238 CPUs (12 cores in total) and 128GB RAM running
Oracle Linux 6.4. We use the commercial DBMS X (name omitted
due to licensing restrictions) as a backend.
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Figure 6: Runtime for generating summarized explanations for why
(left) and why-not (right). Comparing sampling (e.g., S1K samples
1000 tuples) vs. capture and summarization without sampling.
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Figure 7: Aggregated quality of summarized explanations build
from the top-3 patterns varying sample and database size (left);
error in precision and recall introduced by sampling (right).

Results. The results of these experiments are shown in Fig. 6 and 7.
First, we compare the performance of why and why-not summa-
rization varying the sample and dataset size. As Fig. 6 shows, SS
improves performance by several orders of magnitude compared to
F with increasing benefit for larger database instances. By using
sampling, we can capture and summarize the provenance for why
and why-not questions within seconds whereas without sampling
(F) runtimes are several minutes even for very small instances. To
measure quality (Fig. 7), we consider the set of top-3 ranked pat-
terns as an explanation, e.g., on possible such explanations may
be (assault,I ,Location,C) where Location has (street, apartment,
sidewalk). The top-3 patterns are stable for a wide range of sam-
ple sizes (left in Fig. 7). The generated patterns have typically high
precision and represent more than half of the provenance (the 100K
sample over 1 million dataset did not finish with 2 hours and, thus,
is omitted). The error of precision and recall introduced by sam-
pling is mostly very low as shown on the right in Fig. 7 - the error
rate is always 0 for precision and very small for recall.

7. Conclusions
We present an approach for computing summarized representations
of provenance graphs for why and why-not questions. Our main
goal is to generate summaries that are compact and descriptive as
well as can be computed efficiently. To achieve this goal, we extend
our previous work [LKLG17] for capturing provenance to explain
(missing) answers first-order queries expressed in Datalog with
negation. Our PUG [LKLG17] system instruments the input query
Q to return the edge relation of the provenance graph explaining the
(missing) answer of interest. In this work, we introduce additional
instrumentation for generating patterns as candidate summaries and
for evaluating the quality of these patterns to return only the top-k
summaries. To make this feasible, we apply sampling early-on dur-
ing provenance capture to reduce the cost of provenance capture
and summarization. This is particularly important for explaining
missing answers where the provenance is typically huge. In future
work, we will investigate probabilistic worst-case bounds for the er-
ror in pattern quality introduced by our sampling method. Further-
more, we will investigate how integrity constraints can be exploited
by our method to 1) reduce the search space size (e.g., explana-
tions should not violate integrity contraints) and 2) for explaining a
(missing) answer, i.e., the existence of a constraint may justify an
answer [GKRL15].
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wards Constraint-based Explanations for Answers and Non-
Answers. In TaPP, 2015.

[GKT07] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pp. 31–40, 2007.

[HH10] M. Herschel and M. Hernandez. Explaining Missing An-
swers to SPJUA Queries. PVLDB, 3(1):185–196, 2010.
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