
Wrattler: Reproducible, live and polyglot notebooks
Tomas Petricek
University of Kent

The Alan Turing Institute
tomas@tomasp.net

James Geddes
The Alan Turing Institute
jgeddes@turing.ac.uk

Charles Sutton
The University of Edinburgh

The Alan Turing Institute and Google
csutton@inf.ed.ac.uk

Abstract
Notebooks such as Jupyter became a popular environment
for data science, because they support interactive data explo-
ration and provide a convenient way of interleaving code,
comments and visualizations. Alas, most notebook systems
use an architecture that leads to a limited model of interac-
tion and makes reproducibility and versioning difficult.
In this paper, we present Wrattler, a new notebook sys-

tem built around provenance that addresses the above issues.
Wrattler separates state management from script evaluation
and controls the evaluation using a dependency graph main-
tained in the web browser. This allows richer forms of inter-
activity, an efficient evaluation through caching, guarantees
reproducibility and makes it possible to support versioning.

1 Introduction
Notebooks [5, 15] are literate programming [6] systems that
allow interleaving text, code and outputs. To aid reproducible,
exploratory data science, notebook systems should provide:
Richer interaction model. Web browsers are increasingly
powerful and allow moving parts of data exploration to the
client-side. Notebooks should leverage this and give live pre-
views when writing code to perform simple data exploration.
Transparent state management. The state maintained by
a notebook should be transparent and accessible to external
tools. This would allow versioning of state and development
of tools that provide hints based on the notebook state.
Multiple languages and tools. A notebook should make
it easy to combine multiple programming languages. A cell
written in one language should be able to automatically
access data frames defined in other languages.
Improved reproducibility. Changing code in a cell should
invalidate results that depend on data frames defined in the
cell. Reverting a change should immediately revert the result
to the previous one and show it immediately using a cache.

Supporting these is a challenge that combines several re-
search areas. We need programming language techniques to
efficiently update live previews during editing, provenance

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
TaPP 2018, July 11–12, 2018, London, UK
Copyright remains with the owner/author(s).

methods to track data dependencies and data representation
that can be shared across langauges.

Wrattler is a new notebook system that supports the above
features. We follow a line of work combining provenance
tracking with notebooks [7, 14], but rather than extending
existing systems, we revisit two core aspects of the note-
book architecture (Section 2). First, Wrattler uses a depen-
dency graph to track provenance between cells and even
function calls inside individual cells (Section 3.1). When a
cell is changed, relevant parts of a graph are invalidated.
This guarantees reproducibility and enables more efficient
re-computation. Second, Wrattler introduces a data store
that separates state management from code execution (Sec-
tion 3.2). The data store handles versioning and simplifies
the support for polyglot programming.

Together, these two changes to the standard architecture
of notebook systems make Wrattler notebooks (Section 4)
polyglot, reproducible (with an easy and reliable state roll-
back) and live (with efficient re-computation on change that
enables live preview during data exploration).

2 Wrattler architecture
Standard notebook architecture consists of a notebook and a
kernel. The kernel runs on a server, evaluates code snippets
and maintains state they use. Notebook runs in a browser
and sends commands to the kernel in order to evaluate cells
selected by the user. As illustrated in Figure 1, Wrattler splits
the server functionality between two components:

Python runtime (server)

Data store
(server)

Notebook
(browser)

TheGamma runtime (browser)

Wrattler architecture

Kernel
(server)

Notebook
(browser)

Jupyter architecture

Figure 1. In notebook systems such as Jupyter, state and execu-
tion is managed by a kernel. In Wrattler, those functions are split
between data store and language runtimes. Language runtimes can
run on the server-side (e.g. Python) or client-side (e.g. TheGamma).

1



TaPP 2018, July 11–12, 2018, London, UK Tomas Petricek, James Geddes, and Charles Sutton

Data acquisition
(Python)

Data cleaning
(TheGamma)

Data visualization
(JavaScript)

Figure 2. Dependency graph of a sample notebook: The first
(Python) cell downloads data and exports the result as a data
frame; the second (TheGamma) cell performs data cleaning and
the third (JavaScript) cell creates a visualization. Language run-
time for TheGamma runs in the browser and creates a fine-grained
graph (which allows an efficient live previews), while Python and
JavaScript runtimes create just one node for the whole source code.

Data store. Imported external data and results of running
scripts are stored in the data store. The data store keeps
version history and annotates data with metadata such as
types, inferred semantics and provenance information.

Language runtimes. Code in notebook cells is evaluated
by language runtimes. The runtimes read input data from
and write results back to the data store. Wrattler supports
language runtimes that run code on the server (similar to
Jupyter), but also browser-based langauge runtimes.

Notebook. The notebook is displayed in a web browser and
orchestrates all other components. The browser builds a de-
pendency graph between cells or individual calls. It invokes
language runtimes to evaluate code that has changed, and
reads data from the data store to display results.

3 Wrattler components
Wrattler runs in the web browser and communicates with the
data store and language runtimes that may run on the server
or in the browser. An example of browser-based language
runtime is TheGamma [12], discussed in Section 3.3.

3.1 Dependency graph
At runtime, Wrattler maintains a dependency graph that is
composed from sub-graphs created by individual language
runtimes. The graph is acyclic and a node can only depend
on earlier nodes. Each node has a value which may be:
• A language-specific value that Wrattler does not un-
derstand. This is kept in the browser and re-computed
when the notebook is re-opened.
• A data frame. Data frame is stored in the data store
and browser keeps a reference (URL) of the frame. This
is understood by all language runtimes and provides a
way of exchanging data between multiple languages.

Figure 2 shows a sample dependency graph. Wrattler creates
two nodes for each cell (representing the cell and its source
code) and a node for each data frame exported by a cell
(e.g. the rightmost node in the first cell). Nodes in subsequent
cells may depend on data frames exported by earlier cells.
Wrattler treats data frames in a special way. They are

stored in data store and each langauge runtime is responsible
for loading them into a native language representation (e.g.
pandas in Python and array of records in JavaScript).

Dependency graph construction. The dependency graph
is updated after every code change. Wrattler invokes indi-
vidual langauge runtimes to parse each cell. Language run-
times that run in the browser (e.g. TheGamma) produce a
fine-grained syntax tree. The result of parsing the whole
notebook is then a list of elements obtained for each cell.

Wrattler thenwalks over the syntax tree and binds a depen-
dency graph node to each syntactic element using a process
decribed in Figure 3. The antecedents of a node are the nodes
that it depends on. This typically includes inputs for an op-
eration or instance on which a member access is performed.

Checking and evaluation. Nodes in the dependency graph
can be annotated with information such as the evaluated
value of the syntactic element that the node represents. An
important property of the binding process (Figure 3) is that,
if there is no change in antecedents of a node, binding will
return the same node as before. As a result, previously eval-
uated values attached to nodes in the graph are reused.
Wrattler re-evaluates parts of the dependency graph on

demand and the displayed results and visualizations always
reflect the current source code in the notebook. When the
evaluation of a cell is requested, Wrattler recursively evalu-
ates all the antecedents of the node and then evaluates the
value of the node. The evaluation is delegated to a language
runtime associated with the language of the node:

1. For Python nodes, the language runtime sends the
source code, together with its dependencies, to a server
that retrieves the dependencies and evaluates the code.

2. For TheGamma and JavaScript nodes, the language
runtime collects values of the dependencies and runs
the operation that the node represents in the browser.

3.2 Data store
The data store enables communication between individual
Wrattler components and provides a way for persistently
storing input data. Data frames stored in the data store are
associated with the hash produced by the binding process
outlined in Figure 3 and are immutable. When the notebook
changes, new nodes with new hashes are created and ap-
pended to the data store. This means that language runtimes
can cache them and avoid fetching data from data store each
time they need to evaluate a code snippet.

2



Wrattler: Reproducible, live and polyglot notebooks TaPP 2018, July 11–12, 2018, London, UK

procedure bind(cache, syn) =
let h = hash({kind(syn)} ∪ antecedents(syn))
if not contains(cache,h) then
let n = fresh node
value(n), hash(n) ← Unevaluated,h
set(cache,h,n)

lookup(cache,h)

Figure 3. When binding a graph node to a syntactic element,
Wrattler first computes a set of hashes that uniquely represent the
node. This includes hash of the kind of the node (e.g. the source
code of a Python node or member name in TheGamma) and hashes
of all antecedents. If a node with a given hash does not exist in
cache, a new node is created. We set its hash, indicate that its value
has not been evaluated and add it to the cache.

External inputs imported into Wrattler notebooks (such
as downloaded web pages) are stored as binary blobs. Data
frames are stored in JSON format (as an array of records), but
we intend to use a suitable database in the future. During the
binding process (Section 3.1), a langauge runtime identifies
imported and exported data frames for each cell (e.g. by static
analysis of the code). Those are then represented as hashes
(keys) referring to a location in the data store.

The data store also supports a mechanism for annotat-
ing data frames with semantic information. Columns can
be annotated with primitive data types (date, floating-point
number) and semantic annotation indicating their meaning
(address or longitude and latitude). Columns, rows and in-
dividual cells of the data frame can also be annotated with
custom metadata such as their data source or accuracy.
In addition to storing the raw data, the data store also

persistently stores the current and multiple past versions of
the dependency graph constructed from the notebook (saved
by an explicit checkpoint). This makes it possible to analyse
the history of a notebook and track how data is transformed
by the computation in a notebook.

3.3 TheGamma script
The Wrattler architecture supports languages that can be
parsed and evaluated in the browser. To illustrate this, we
integrated Wrattler with TheGamma [12], a simple browser-
based language for data exploration.
The Figure 4 shows TheGamma cell in Wrattler during

editing. The example uses broadband speed data published by
the UK government [10] and calculates average download
speed in urban and rural areas, respectively. TheGamma
supports a rich interactive model in two ways:
• The script is evaluated on-the-fly during editing and a
live preview is shown (below the code editor).
• All code can be written using autocomplete that offers
available members (representing aggregation opera-
tions). Rather than writing code, user repeatedly se-
lects one of the offered members (which are provided
by a type provider [18] running in the browser).

For the purpose of this paper, the most important aspect
of TheGamma is that scripts can be parsed and evaluated in
the browser. This allows more interactive style of data ex-
ploration without round-trips to re-evaluate modified code.

4 Properties of Wrattler
The Wrattler architecture outlined in Section 2 allowed us
to develop a prototype system with a number of properties
that are difficult to obtain with traditional notebooks.

4.1 Reproducible, live and smart
The two most important aspects of the Wrattler architecture
are that it separates the state from the language runtime
(using a data store) and that it keeps a dependency graph
based on the current notebook source code (on the client).
The provenance information that is available thanks to this
arhcitecture enable a number of properties.

Reproducibility. The evaluation outputs displayed in Wrat-
tler notebook always reflect the current source code. When
code changes, Wrattler updates the dependency graph and
hides invalidated visualizations. Because the data store caches
earlier results, it is always possible to go back without re-
evaluating the whole notebook.

Refactoring. The dependency graph allows us to implement
notebook refactoring. For example, it is possible to extract
only code necessary to produce a given visualization. For
code written in TheGamma, this extracts individual oper-
ations; for Python or JavaScript, we can currently extract
code at cell-level granularity.

Live previews. The dependency graph makes it possible to
give live previews during development. When code changes,
only values for new nodes in the graph need to be calcu-
lated. The fine-grained structure of the dependency graph for
TheGamma makes it possible to update previews instantly.

Polyglot. Sharing the state via data store makes it possible to
combine multiple language runtimes, as long as they support
sharing data via data frames. In our prototype, this includes
R, JavaScript and TheGamma script, but the extensibility
model allows adding further languages.

4.2 Wrattler prototype
A prototype implementation of the Wrattler system is avail-
able on GitHub (http://github.com/wrattler). The prototype
implements language runtimes for TheGamma script (Sec-
tion 3.3), R and JavaScript. It builds a dependency graph
(Section 3.1) and uses it to evaluate results of cells.

The data store (Section 3.2) stores data in Microsoft Azure
in JSON format. Support for meta-data annotations and big
data is not yet implemented. Storing notebook state in the
data store also allowed us to develop an integrationwith Data
diff [17], which provides data cleaning recommendations.

3

http://github.com/wrattler


TaPP 2018, July 11–12, 2018, London, UK Tomas Petricek, James Geddes, and Charles Sutton

Figure 4. TheGamma script that downloads and aggregates UK
government data, running inWrattler notebook with a live preview.

5 Related work
The work in this paper directly follows the work on IPython
and Jupyter systems [5, 15]. Wrattler shares many properties
with those and aims to address some of their limitations. To
address reproducibility, some Jupyter extensions and systems
such as R markdown lock cells after evaluation.

Dataflow notebooks [7] attach unique hashes to cell evalu-
ations. This allows the user to refer to dependencies explicitly
and, in effect, construct a dependecy graph manually. Sci-
entific workflow systems [1, 11] manage evaluation over a
dependency graph similarly to Wrattler, but allow editing it
directly via a GUI, rather than through code in a notebook.

The noWorkflow project [14] links the two approaches by
instrumenting Jupyter kernel with a mechanism for captur-
ing provenance based on light-weight annotations. Vizer [4]
focuses on integrating notebooks with spreadsheet-like in-
terface. It internally uses a data store component similar to
ours, but does not keep dependency graph on the client.

Our binding process is inspired by Roslyn [9] and extends
an earlier work on TheGamma [13]. It is simiar to methods
used in live programming languages [3, 8], incremental com-
pilation [16] and partial evaluation [2]. Wrattler adapts those
methods to a notebook environment.

6 Summary
This paper presents early work onWrattler – a new notebook
system for data science that makes notebooks reproducible,
live and polyglot. The properties of Wrattler are enabled by
provenance information that is maintained thanks to two
changes to the standard architecture of notebook systems.

First, Wrattler separates the state management from code
execution. This allows versioning, polyglot notebooks and
integration of third-party tools that can work directly with
the data store. Second, Wrattler keeps a dependency graph
on the client (web browser) and uses it to control evaluation.
This guarantees reproducibility and allows faster feedback
during development.

Acknowledgments
The authors would like to acknowledge the funding provided
by the UK Government’s Defence & Security Programme in
support of the Alan Turing Institute and the EPSRC grant
EP/N510129/1. We thank to our colleagues Chris Williams,
Zoubin Ghahramani and Ian Horrocks and attendees of a
recent AIDA project workshop.

References
[1] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram

Ludascher, and Steve Mock. 2004. Kepler: an extensible system for
design and execution of scientific workflows. In Scientific and Statistical
Database Management. IEEE, 423–424.

[2] Olivier Danvy. 1999. Type-directed partial evaluation. In Partial
Evaluation. Springer, 367–411.

[3] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of pro-
gramming. ACM SIGPLAN Notices 40, 10 (2005), 505–518.

[4] Juliana Freire, Boris Glavic, Oliver Kennedy, and Heiko Mueller. 2016.
The Exception That Improves the Rule. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA ’16). ACM, 7:1–7:6.

[5] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a
format for reproducible computational workflows.. In ELPUB. 87–90.

[6] Donald Ervin Knuth. 1992. Literate programming. Center for the Study
of Language and Information Stanford.

[7] David Koop and Jay Patel. 2017. Dataflow Notebooks: Encoding and
Tracking Dependencies of Cells. In 9th {USENIX} Workshop on the
Theory and Practice of Provenance (TaPP 2017). USENIX Association.

[8] Sean McDirmid. 2007. Living it up with a live programming language.
In ACM SIGPLAN Notices, Vol. 42. ACM, 623–638.

[9] Karen Ng, Matt Warren, Peter Golde, and Anders Hejlsberg. 2011.
The Roslyn Project, Exposing the C# and VB compiler’s code analysis.
White paper, Microsoft (2011).

[10] Ofcom. 2018. Open data. Available online at https://www.ofcom.org.
uk/research-and-data/data/opendata. (2018).

[11] TomOinn,MatthewAddis, Justin Ferris, DarrenMarvin,Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil
Wipat, et al. 2004. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 20, 17 (2004), 3045–3054.

[12] Tomas Petricek. 2017. Data exploration through dot-driven develop-
ment. In Proceedings of ECOOP, Vol. 74. Schloss Dagstuhl.

[13] Tomas Petricek. 2018. Design and implementation of a live coding
environment for data science. Unpublished draft. Available online at
http://tomasp.net/academic/drafts/live. (2018).

[14] João Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta,
and Juliana Freire. 2015. Collecting and analyzing provenance on
interactive notebooks: when IPython meets noWorkflow. In Workshop
on the Theory and Practice of Provenance (TaPP). 155–167.

[15] M Ragan-Kelley, F Perez, B Granger, T Kluyver, P Ivanov, J Frederic,
and M Bussonnier. 2014. The Jupyter/IPython architecture: a uni-
fied view of computational research, from interactive exploration to
communication and publication.. In AGU Fall Meeting Abstracts.

[16] Mayer D Schwartz, Norman M Delisle, and V S Begwani. 1984. Incre-
mental compilation in Magpie. SIGPLAN Not. 19, 6 (1984), 122–131.

[17] Charles Sutton, Tim Hobson, James Geddes, and Rich Caruana. 2018.
Data Diff: Interpretable, Executable Summaries of Changes in Distri-
butions for Data Wrangling. Proceedings of KDD. (2018).

[18] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas
Petricek. 2013. Themes in information-rich functional programming
for internet-scale data sources. In Proceedings of DDFP. ACM, 1–4.

4

https://www.ofcom.org.uk/research-and-data/data/opendata
https://www.ofcom.org.uk/research-and-data/data/opendata
http://tomasp.net/academic/drafts/live

	Abstract
	1 Introduction
	2 Wrattler architecture
	3 Wrattler components
	3.1 Dependency graph
	3.2 Data store
	3.3 TheGamma script

	4 Properties of Wrattler
	4.1 Reproducible, live and smart
	4.2 Wrattler prototype

	5 Related work
	6 Summary
	Acknowledgments
	References

