Chimera: A Declarative Language for Streaming Network Traffic Analysis

Kevin Borders
National Security Agency
krborde @tycho.nsa.gov

Abstract

Intrusion detection systems play a vital role in network
security. Central to these systems is the language used to
express policies. Ideally, this language should be pow-
erful, implementation-agnostic, and cross-platform. Un-
fortunately, today’s popular intrusion detection systems
fall short of this goal. Each has their own policy lan-
guage in which expressing complicated logic requires
implementation-specific code. Database systems have
adapted SQL to handle streaming data, but have yet to
achieve the efficiency and flexibility required for com-
plex intrusion detection tasks.

In this paper, we introduce Chimera, a declara-
tive query language for network traffic processing that
bridges the gap between powerful intrusion detection
systems and a simple, platform-independent SQL syn-
tax. Chimera extends streaming SQL languages to better
handle network traffic by adding structured data types,
first-class functions, and dynamic window boundaries.
We show how these constructs can be applied to real-
world scenarios, such as side-jacking detection and DNS
feature extraction. Finally, we describe the implementa-
tion and evaluation of a compiler that translates Chimera
queries into low-level code for the Bro event language.

1 Introduction

Intrusion detection systems (IDSs) continue to play an
essential role in network security. One critical aspect of
IDS design is how users express analytic tasks. In partic-
ular, policy should be separate from the mechanism [21].
This leads to simpler policies that are easier to write and
easier to share because they have fewer implementation
constraints. Separation also increases interoperability,
which moves us closer to the goal of having a standard-
ized language for network traffic analysis.

Unfortunately, current IDSs only partially separate
policy from mechanism. They each have their own
domain-specific languages, which are incompatible with
one other. Snort uses a declarative rule language for
defining signatures [23], which is limited in its ability

Jonathan Springer
Reservoir Labs
springer @reservoir.com

Matthew Burnside
National Security Agency
msburns @tycho.nsa.gov

to express stateful analytics. Bro [21] offers a more pow-
erful (Turing complete) event language, but complex op-
erations require procedural programming and direct in-
teraction with data structures, which is cumbersome and
leads to dependency between policy and mechanism.

Database systems have been attacking this problem
from the opposite end. SQL is a powerful, declarative,
standard language, and recent work has extended it to
support streaming queries [1, 3, 19]. While these systems
are typically too slow to serve as an IDS, Gigascope [7]
adopts a more limited SQL-based language and has suc-
cessfully applied it to packet processing. Unfortunately,
Gigascope cannot express many of the complex analytic
tasks that are possible in Bro.

In this paper, we introduce Chimera, a declara-
tive query language for network traffic processing that
bridges the gap between powerful intrusion detection
platforms and simple, implementation-agnostic queries.
The goal is to provide an SQL-like syntax while main-
taining as much expressive power as possible, and with-
out significantly impacting performance. We achieve this
goal by implementing Chimera as an independent lan-
guage that is compiled down into low-level policies for
other platforms. For this paper, we have written a com-
piler! that translates Chimera queries into the Bro event
language [21].

Chimera is similar to streaming SQL languages, but
has some additional features that make it better-suited for
handling network traffic. First, it supports structured data
types (lists and maps). This allows rows to more closely
reflect the structure of application-layer protocols, al-
most all of which contain structured data. Chimera also
makes dealing with these types easier by introducing a
SPLIT operator to break up lists into multiple rows, as
well as first-class functions that can be applied to data
structures. Chimera also improves upon streaming SQL
by introducing dynamic windows. Instead of enforcing
strict window specifications at the table level, such as
“range 60 minutes, slide 1 minute", Chimera allows win-
dow boundary computation using dynamic expressions,

Visit http://www.chimera-query.org for more information about
obtaining the Chimera compiler source code.

such as “UNTIL count() > 10". This makes it possible to
output aggregate results as soon as they are ready, which
is extremely important for intrusion prevention and ac-
tive response scenarios.

We motivate the design of Chimera by examining real-
world scenarios where detection requires complex state
tracking that is unavailable in a simple system like Snort
[23]. We look at existing work on detecting side-jacking
— an attack that steals a session ID from an HTTP cookie
[22] — and on finding malicious domains with the EX-
POSURE system [5]. We also consider two examples
of detecting DNS tunnels and identifying spam/phishing
servers. After describing the Chimera syntax, we present
example queries for these scenarios. When compared to
a previous Bro implementation [22], the query for side-
jacking demonstrates how analytics in the Chimera lan-
guage are very concise. The Chimera queries for extract-
ing features used by EXPOSURE [5] led us to identify
ambiguities in the original text, highlighting the need for
a standard network traffic analysis language.

In final part of the paper, we describe and evaluate the
implementation of a Chimera to Bro compiler. The com-
piler operates in two main stages: (1) it translates queries
into a relational algebra, and (2) it generates Bro event
language code. We compared the compiler’s output to
hand-optimized code for a number of queries by running
each side by side on real network traffic. In the worst-
case example, compiled code was 3% slower than hand-
written code due to extra copying and event handlers. We
plan to add optimizations to minimize these issue in the
future, but our experiments show that the compiler gener-
ates code that with almost the same performance as hand-
written code even it is current form.

The rest of the paper is laid out as follows. Section
2 motivates our work with examples of stateful analyt-
ics. Section 3 describes the Chimera language. Section
4 presents Chimera queries for example scenarios. Sec-
tion 5 describes the Bro compiler. Section 6 evaluates
teh compiler and discusses future optimizations. Finally,
section 7 covers related work and section 8 concludes.

2 Motivation: Stateful Network Analytics

As attacks continue to increase in sophistication, so
must analytics that detect them. Over time it is becom-
ing more and more difficult to characterize malicious be-
havior with simple Snort rules [23]. As a result, many
administrators rely on systems like Bro [21] that are able
to perform stateful analysis on high-level protocol fields,
rather than being constrained to individual packet or flow
analysis.

This section outlines a number of scenarios in which
simple filtering is not enough. The rest of the paper then

uses these scenarios to motivate the Chimera language
and its design. Keep in mind that the analytic techniques
presented in this section are not necessarily bulletproof,
or even practical in all situations. The point is not to
assess the quality of analytics, but to provide examples
of logical constructs that we would like to express in the
Chimera language.

2.1 Sidejacking

Sidejacking is a term used to describe the attack where a
hacker steals a session token from an unencrypted HTTP
cookie and then impersonates the legitimate user. This
attack is easy to pull off in a coffee-shop environment
where there is a public wireless network. Countermea-
sures include use of HTTPS, and are discussed in work
by Riley et al. [22].

Sidejacking can also be detected by monitoring net-
work traffic. An implementation of sidejacking detec-
tion has been written for Bro [26]. This script works in
the following way:

1. Group incoming HTTP requests by session ID in
cookie.

2. When a new request arrives, are the client IP and
User-Agent the same?

3. If not, then report sidejacking.

As you can see, the analytic logic is straightforward,
but implementation requires non-trivial maintenance of
client state on a per-cookie basis.

2.2 Malicious Domains

A recent research project called EXPOSURE introduced
a set of sixteen features for detecting malicious domain
names [5]. Some of these features could operate on a
single domain name, such as the percentage of numerical
characters. Many of the features, however, require state
tracking across multiple DNS packets. In this paper, we
examine some of EXPOSURE’s stateful features. In par-
ticular, we will focus on a subset of the DNS answer- and
TTL-based features:

Number of distinct IP addresses per domain name
Number of domains that share the same IP address
Average TTL value

Number of TTL value changes

These features all require parsing the DNS protocol.
They also require per-domain state tracking, and the sec-
ond feature needs additional per-IP state tracking.

The authors of EXPOSURE also identify time-based
features that we do not discuss here. It would be possi-
ble to adapt the change point detection (CPD) algorithms
used by EXPOSURE to run in the Chimera framework.
However, describing the implementation of complex al-
gorithms in a streaming model is outside of the scope of
this work, and is orthogonal to the design of Chimera.

2.3 DNS Tunnels

The DNS protocol is designed to resolve information
about domain names. However, it can also be used for
covert communication by storing data in the requested
domain name (e.g., <encoded data>.hacker.com) and
sending data back to the client inside of the IP address
field. While this is a low-bandwidth channel, the ubig-
uity of the DNS protocol makes it likely to bypass fire-
walls even in restricted networks.

There are many ways to detect DNS tunnels, but we
will discuss a particular method here because it high-
lights an interesting analytic technique. In this method,
the following steps are taken to find DNS tunnels:

1. Keep track of all DNS response A records, indexing
by the A record IP address.

2. When a packet is seen going to an IP address, re-
move the corresponding DNS response record.

3. If no packet is ever sent to the A record IP (within
a window), increment a counter for the client and
server IP addresses from the DNS message.

4. Report tunneling for clients or servers that exceed a
threshold of orphaned responses.

This analysis logic is again very straightforward. It
assumes that IP address values in DNS responses from
tunnels will not actually be used as IP addresses, so most
of them will never see follow-up packets. Counting a
threshold will eliminate false positives from command-
line DNS look-ups (e.g., using the nslookup UNIX com-
mand) that do not have ensuing connections.

2.4 Phishing/Spam Detection

A lot of research has gone into phishing and spam detec-
tion. Some approaches look at message contents, while
others look at aggregate measurements like e-mail vol-
ume and rate of sending. Here, we will consider a de-
tector that looks for new mail transfer agents (MTAs)
through which e-mail is sent to a large number of dis-
tinct recipients. The analysis happens as follows:

1. Identify SMTP messages that have a “new" MTA in
their path.

2. For 24 hours after a new MTA is seen, count the
number of distinct recipients in messages that tra-
verse that MTA.

3. If the count for a new MTA exceeds a threshold,
then report phishing/spam.

Though the description of this analytic is concise,
implementing it requires a few complicated operations.
First, there must be a data structure, such as a Bloom fil-
ter, that keeps track of whether each MTA has been seen
before. That structure must have at least two windows so
that it does not start emitting old values after each time
it is purged. The next challenge is that the MTA path is
stored in multiple headers within each SMTP message.

Checking whether each MTA on the path is new either
requires applying a function to each value or splitting up
the SMTP message into one tuple for each MTA. When
new SMTP messages arrive, checking to see if one of
the MTAs is new within the past 24 hours again requires
splitting the tuple prior to a join operation.

3 The Chimera Language

3.1 Query Syntax

The highest level element in the Chimera language is
a query statement. Since Chimera operates passively,
the only type of query allowed right now is SELECT.
Chimera also includes a CREATE VIEW statement,
which is effectively a macro that can be used in place of
sub-queries. The syntax for a Chimera SELECT query is
very similar to SQL, and can be seen in Figure 1. Many
elements are shared and behave the same way, includ-
ing the FROM, WHERE, and UNION. The input and
output specifications are a bit different. Explicit data
sources are allowed in the query, including a file (PCAP
or user-defined CSV), network interface, or list of file
names from standard input (the default). Similarly, out-
put will be sent to standard output unless a file is speci-
fied. Chimera begins to differ more significantly for the
GROUP BY and JOIN operations, as well as the newly
introduced SPLIT, which we discuss next. It also sup-
ports an expression syntax with different data and func-
tion types, which are described in sections 3.2 and 3.4.

3.1.1 GROUP BY

The Chimera language diverges from SQL and tra-
ditional streaming database in its semantics for the
GROUP BY clause. To support streaming, we have
added a TABLESIZE parameter and the UNTIL keyword
with an optional GLOBAL parameter and a Boolean ex-
pression. TABLESIZE specifies the maximum number
of items to hold before discarding old values. (Chimera
does not yet implement more intelligent QoS or load
shedding like Aurora [1], but TABLESIZE effectively
enables memory limits.) The UNTIL condition deter-
mines when GROUP BY will generate output. It may
contain aggregate functions, such as count or average.
If GLOBAL is specified, then the aggregate functions are
evaluated with a single global state object, instead of sep-
arately for each key. In this case, GROUP BY will output
everything in the table when the UNTIL expression be-
comes true. This is similar to window-based grouping in
traditional streaming databases. If GLOBAL is omitted,
then each item in the GROUP BY table will be evaluated
and flushed independently. This allows implementation
of partitioned windows, which are described by Arasu et
al. [3].

(select_query) ::=
[SOURCE {STDIN | FILE (fname) | INTERFACE (if)}]
(select_body)
[INTO {STDOUT | FILE (fname)}]
(create_view) ::=
CREATE VIEW (alias) AS (select_body)
(select_body) ::=
SELECT {* | (expr) [AS (alias)]
[, (expr) [AS (alias)]]* }
FROM (table_ref)
[WHERE (bool_expr)]
[GROUP BY (expr) [, (expr)]*
UNTIL [GLOBAL] (bool_expr)
[TABLESIZE (row_count)]
[HAVING (bool_expr)]
[ORDER BY (expr) [, {expr)]* [ASC | DESC]
[LIMIT (row_count)]]]
[UNION (select_body)]
(table_ref) ::=
(table_instance)
| (table_ref) [[EXCLUSIVE] {LEFT | RIGHT | FULL}
[OUTER]] [UNORDERED] [SINGLE] JOIN
(table_instance) ON (expr) EQUALS (expr)
[TABLESIZE (row_count)]
[WINDOW {expr)[, {expr)]]
| (table_ref) SPLIT (expr) AS (alias), (alias)
(table_instance) ::=
(table_name) [AS (alias)]
| ((select_body)) AS (alias)

Figure 1: Query syntax for the Chimera language

The GROUP BY clause may also include an ORDER
BY keyword that takes a sorting parameter. Because
Chimera is a stream processing system, some values
will inevitably be discarded. ORDER BY ensures that
the highest values are kept in the GROUP BY table in-
stead of the newest values (the default). Chimera uses a
heap structure to discard rows with the lowest ORDER
BY value. This allows computation of “heavy hitters"
on a high-volume data stream using very little memory.
LIMIT specifies how many to rows to output at the end
of each window. It defaults to TABLESIZE and is only
used if GLOBAL is specified.

3.1.2 JOIN

Chimera introduces a few non-standard features for joins
that improve efficiency and enable new analytic seman-
tics. The first difference is that joins are ordered by de-
fault. This means that the left tuple must arrive before
the right tuple. This lets Chimera use only one hash table
instead of two, improving efficiency. The keyword UN-
ORDERED can be added to the JOIN clause for standard
join semantics.

Because Chimera is a stream processing system,
only equi-joins are supported, hence the mandatory EQ
(equals) syntax. Furthermore, only one tuple is allowed

per key in the join table. If a new tuple arrives on the
same side with the same key, then the old one is dis-
carded without being matched. This ensures that each
new tuple will generate at most one output, keeping over-
head down to O(1). Support for multi-tuple joins could
be added in the future, but their use could negatively af-
fect performance.

The next feature supported by Chimera is a SINGLE
JOIN, which enforces one-to-one matching between left
and right tuples. Normally, a row from one side of a join
is allowed to match multiple rows from the other side.
When a match occurs in a SINGLE JOIN, the matching
tuple is removed from the join table so that it frees up
space and cannot match any other tuples. This is useful
when performing an EXCLUSIVE OUTER JOIN, which
is similar to a typical outer join, except that the inner part
of the join is excluded, leaving only tuples that do not
have a match. An EXCLUSIVE LEFT SINGLE JOIN
can be used, for example, to detect ICMP ping packets
that never receive a reply. Here, SINGLE effectively in-
creases the time that can elapse before declaring a packet
unmatched by removing matched packets from the table.

The maximum number of elements stored in the JOIN
table can be set with TABLESIZE, just as with GROUP
BY, which guarantees a limit on memory utilization. In
addition to a size-based limit, JOIN also supports a con-
ditional WINDOW clause, which allows it to selectively
age off old tuples from the window. The conditional ex-
pression for the WINDOW clause is evaluated in a spe-
cial context where the oldest tuple is assigned the name
old in the root object, and the newest tuple given the
name new. For each new tuple, it and the oldest tuple
are used to evaluate the WINDOW expression. If the ex-
pression is false, then the old tuple is removed and the
expression is re-evaluated against the next oldest tuple.
For example, [new] . [time] - [o0ld].[time] < 60
enforces a 60 second time window. There can be two
window conditions if the join is UNORDERED, which
are applied to incoming left and right tuples, respectively.

3.1.3 SPLIT

Chimera includes the SPLIT keyword to its query lan-
guage to make it easier to handle structured data types.
There are some cases where it makes more sense to pro-
cess a list or map structure as a single object (e.g., look-
ing up a value at an index), but others where it is bet-
ter to split the list and handle each item in its own tu-
ple (e.g., examining DNS resource records). The SPLIT
keyword takes an expression that evaluates to a struc-
tured data type (list or map, discussed in section 3.2) as
an argument, as well as an alias name for each individual
item, and an alias for the item index (which cannot be de-
rived if there are duplicate items). When a split occurs,
Chimera creates a new tuple for each item in the object

argument. These tuples have references to all of the orig-
inal data, including the structured object, but also contain
the individual item (map items are emitted as two-value
[key, value] lists) and its index as extra values. If the
SPLIT object is empty, then Chimera will emit one tuple
with NULL values for both the item and the index.

3.2 Data Types

The Chimera language has several data types that it uses
to represent message fields in network traffic. Chimera
takes a minimalist approach to typing modeled after the
types used in JSON [8]. This makes data manipulation
much simpler by reducing the number of functions and
operators that are required.

Chimera supports six primitive data types: Integer,
Float, String, Bool, Null, and IPAddress. The first
five correspond to the four primitive types in JSON, with
the additional distinction between integer and floating-
point numbers. The Integer type does not have any
constraint on its size. It will be expanded as necessary if
it overflows the bounds of a 32- or 64-bit integer. Float
types are all double precision. All String types are
binary strings, which is appropriate for network traffic
analysis. The Bool and Null types are self-explanatory.
The remaining data type, IPAddress, could have been
encapsulated in a String or Integer. Its existence is
not necessary, but it is frequently used in network traffic
analysis so we decided to add it out of convenience.

Chimera also supports two structured types: a List,
and a Map. The List type directly corresponds to an ar-
ray in JSON. The Map type is similar to maps in other
languages, but it also supports ordering and duplicate
keys. This makes it better-suited for network protocols
that contain map-like structures. The ordering of map
elements in a network message may have significance.
Keys can also be repeated, both for legitimate and mali-
cious purposes. Internally, Map objects are implemented
by hash tables when they are created by assigning to
a key, and by lists or numerically-indexed tables when
they are created by appending key-value pairs. Iterating
through a map will yield list objects with two items: a
key and a value. The objects will be in the original inser-
tion order if the map was created by appending items.

3.3 Naming and Schemata

One core part of the Chimera query language is the set of
available schemata. In general, Chimera is not tied to any
specific schemata or naming system. In fact, it supports
CSV file input with user-defined column names. In this
mode, Chimera reads the column names from the first
line of a CSV file and applies them to each row.

When dealing with network traffic instead of user-
defined meta-data, it is important to have a common
naming scheme that is the same across all platforms.

Right now, the only platform supported by Chimera is
Bro. We could have just used the Bro names exactly,
but they contain some implementation artifacts. Instead,
we opted to create our own protocol schemata and write
a Bro translation function for each one. This way, the
naming and structure is more closely tied to actual pro-
tocol messages than to implementation choices specific
to Bro.

Table 1: The schema for HTTP requests in Chimera

Name Type
packets List(tcp_packet)
method String

path String
version String
headers | Map(String— String)
body String

We will not enumerate the schema of every protocol
here due to space constraints, but provide an example of
the schema for HTTP requests in table 1. This schema
is simple and corresponds directly to the protocol struc-
ture. In addition, there is a list of packets in the schema.
All top-level protocols in Chimera have this field, which
refers to the original packets that make up the message.
This allows you to retrieve original IP addresses, port
numbers, etc. It also allows more flexible handling of
time because each individual packet’s arrival time is ex-
posed in the schema.

Another important aspect of the HTTP request schema
is that it does not expose any anomalies or low-level pars-
ing details. For example, we assume that the parser strips
out any chunked-encoding headers from the body field.
Once these are gone, we do not know whether the body
was split up into many one-byte chunks, one hundred-
byte chunks, or any other chunk sizes. If there were
anomalies in a chunk header, such as only having a new-
line character instead of a carriage return and a newline,
then the parser will either fail altogether or discard the
information and continue silently. The problem becomes
even more serious for DNS messages where hiding data
in slack space is a well-known technique. This is a sys-
temic problem that affects all protocol parsers and is or-
thogonal to the design of Chimera. The problem could be
addressed by adding more fields to the parser that contain
raw bytes. If these fields were added to low-level parsers,
it would be easy to extend the Chimera naming scheme
to include them.

3.4 Functions

In Chimera, functions are essential building blocks used
for data manipulation and extraction. Chimera supports
four different types of functions, which are described in
this section. Functions can be defined by the user in the
target language (Bro in this case). The set of available

functions and their definitions are considered outside of
the core Chimera language, with the exception of func-
tions for which there are syntactic shortcuts. Examples
of other specific functions are given later in section 4,
which provides example Chimera queries for analysis
scenarios.

3.4.1 Methods

The first function type that Chimera supports is
a method. Methods operate on objects and can
be chained together using a dot syntax (Example:
<object>.a() .b() .c()). Each method function can
operate on one or more types of input data, and can gen-
erate multiple output types. If any function in a method
chain generates a NULL output, then evaluation stops
and later functions in the chain are not called.

Within an expression in a Chimera query statement,
methods may be called without an explicit base ob-
ject. In this case, Chimera uses the implicit default ob-
ject, which is a Map representing a tuple in the current
schema. Chimera also supports a square-bracket syntax:
[<field>]. This is syntactic sugar for calling the get
function get (’ <field>’), which will retrieve the first
value in the map that has a key matching the given input
string. If the get function or bracket syntax is used on a
List object, then Chimera assumes that the list consists
of Map objects and will add an implicit iterator over the
list, returning the first object that is not NULL. Such “ap-
ply” functions are discussed more later in this section.

In the Chimera language, arguments to method func-
tions must be literals and cannot be derived from the
default tuple object. Functions that need to manipulate
multiple elements in the default tuple must be written as
static functions (described in the next section) instead of
method functions. This was a choice that we made based
on readability and it does not effect expressiveness.

3.4.2 Static Functions and Operators

Chimera supports static functions that can operate
on multiple objects (Example: concat(<stringl>,
<string2>, ...)). The arguments to static functions
can be literals or chains of method functions. Chimera
also has a number of basic operators. These operators
are essentially syntactic sugar for static function calls,
though they may be compiled down to the same operator
in the target language if it exists and has the same seman-
tics. Chimera currently support most of the C operators,
including:
e Arithmetic: +, — (subtraction and unary), *, /, %
(modulo)
e Comparison: ==, | =, <, >, <=, >=
e Logical: ! (NOT), && (AND), || (OR)
e Bitwise: ~ (NOT), & (AND), | (OR), A(XOR), <<
(Left Shift), >> (Right Shift)

For arithmetic and comparison operators between in-
tegers and floats, integers are promoted to floats. Bitwise
operations are only allowed on integers, and left shifting
an integer will never truncate bits that are set. Instead, it
will be expanded so that it can hold the value. For strings
and IP addresses, only the comparison operators are sup-
ported. For Boolean values, only the equality, inequality,
and logical operators are supported.

3.4.3 Aggregate Functions

The next type of function available in Chimera is an ag-
gregate function. Aggregate functions are used to com-
pute some result over multiple data items. Aggregate
functions are typically seen in expressions that are part of
the SELECT, HAVING, or UNTIL clauses in a statement
that uses GROUP BY. In these places, a different aggre-
gate value will be computed for each unique GROUP BY
key (each key has a different state). Aggregate functions
may also be used in WHERE clauses or statements with-
out GROUP BY, but they will have a single global state
in these cases.

The syntax for an aggregate function is exactly the
same as for static functions. However, the definition must
specify four routines, which are shown in Table 2. These
routines are similar to those for defining an aggregate
function in a standard relational database.

Table 2: User-defined aggregate function routines

Arguments | Returns When Called
None State | Before the first input

State, Inputs| State For each new input
State Outputs | To read current output

State State | At end of each window

Initialization
Iteration

Evaluation

Termination

Each of the routines in an aggregate function deals
with a state object. This state object is returned from calls
to aggregate routines (except evaluation, which does not
update the state), stored, and then passed back to the next
aggregate routine call. This state object is opaque to the
rest of the system and can contain anything.

The termination function works a bit differently than
in a traditional database due to the streaming nature of
Chimera. This function will be called at the end of each
window as specified in an UNTIL clause in an aggre-
gate statement. The state object that it returns will be
passed back to the next iteration call for the first item
in the next window. This allows aggregate functions to
maintain state across multiple windows.

Some traditional databases also support a Merge rou-
tine for user-defined aggregates. This allows intermedi-
ate results to be merged together, which allows parallel
computation. Chimera does not yet support merging, but
could be extended to do so in the future.

3.4.4 Apply Functions

The final type of function available in Chimera is
an apply function. An apply function is a method
on a structured object that takes another function as
a first-class object and applies it to items in the
structured object. How the argument is applied de-
pends on the particular function. Apply functions
can take normal arguments in parentheses, but use a
curly bracket syntax for their function argument (e.g.,
[1ist].apply(<args>){<fnarg>}) to clearly dif-
ferentiate them from other function types. Arguments
can be passed to inner functions using the symbols
$, $2, $3, etc. (“1" omitted from first argument for
brevity). This lets user-defined apply functions pass an
arbitrary number of arguments. It also allows the in-
ner functions to be methods, static functions, or aggre-
gate functions (e.g., [1ist].apply{$.strlen(O} or
[list] .apply{count($)}). This syntax is slightly
different from other languages like Javascript, but we felt
it to be more concise and easy to read in this context.

Chimera does support multiple levels of apply func-
tions. When there are multiple levels, however, inner
functions cannot directly reference parent arguments.
First-class functions in Chimera are not full closures.

Apply functions can be defined by the user, but a
few examples are provided here to illustrate the concept.
Note that when iterating over a map instead of a list, each
key-value pair is represented as two-item [key, value] list.

e foreach — Apply the function to each item in the
list and update it with the output value. Example:
[list] .foreach{$.substr(3)}

o foridx(index) — Apply the function to the
item in the list at the given index and up-
date it with the output value. Example:
[map] . foreach{$.foridx(0){$.substr(3)}}

e iter — Iteratively apply the function to each item in
the list and return the first value that is not NULL.
Example: [1list].iter{$.match(’as.*df’)}

e iterall — Apply the function to all items in the
list and return the last output value. Example:
[1ist].iterall{count($)}

o filter — Apply the function to each item
in the list and discard items for which
it evaluates to false or NULL. Example:
[map] .filter{$.first() .strlen() > 3}

e find — Apply the function to each item in
the list and return the first item for which it
does not evaluate to false or NULL. Example:
[map] .find{$.first() == A’}

4 Implementing Analytics in Chimera

In section 2, we introduced several attack scenar-
ios that require advanced analysis capabilities to detect.
Now that we have presented the Chimera language, we
show here how it can be used to implement analytics
for these scenarios. While these scenarios demonstrate
many of Chimera’s features and capabilities, they are by
no means a complete exposition of its power. The goal
here is to provide examples of how the language can be
used in practice that serve as a starting point for future
work.

4.1 Sidejacking

As you may recall, sidejacking involves searching for
multiple clients that are using the same session identifier
for a web service. For simplicity, clients can be repre-
sented as an IP address and User-Agent pair. Now that
we have an understanding of Chimera’s query model, we
can break down the analysis task into some key facts:

e This query requires aggregation using the session
ID as the GROUP BY key.

e The session ID is inside of a key-value list in the
“Cookie" header and will need to be broken out of
the list.

e Detection requires counting more than one distinct
client. This will be the UNTIL trigger condition.

This leads us to the following query, which cleanly im-
plements sidejacking detection and is much more shorter
than the previous Bro implementation [26] (though the
Bro implementation contains a few more additional fea-
tures not included here):

SELECT
list_agg(distinct (concat(
[packets]. [srcipl, ’:7,

[headers] . [User-Agent])))
AS clientlist
[headers] . [Cookie] .split(’;?).

foreach{$.split(’=?)}.
find{$.first() == ’SID’}.last()
AS sessionid

FROM http

WHERE [sessionid] != NULL

GROUP BY [sessionid]

UNTIL [clientlist].size() > 1

The first expression in the SELECT statement extracts
the source IP address from the first packet in the con-
nection (HTTP messages are comprised of one or more
packets), finds the value of the “User-Agent" header (or
NULL if it is missing), and concatenates the two together
to form a client identifier string. Because [packets] is a
list of map objects, the bracket operator that follows in-
cludes an implicit iteration, thus extracting [srcip] from

the first packet in the list. The query then passes this
string to the aggregate function distinct, which will
check each incoming value to see if it has occurred be-
fore. If not, it will pass through the value, otherwise it
will output NULL. The distinct function can be imple-
mented with a Bloom filter, or with a hash table if more
accuracy is desired. Our implementation of distinct in
the Bro language currently uses a hash table. Finally, the
list_agg aggregate function will take each non-NULL
input item and append it to a list.

The next expression in the SELECT statement pulls
out the session ID from the “Cookie" header. If there
is more than one “Cookie" header, then the implicit call
to get () made by the square brackets will just grab the
first one. The expression then splits the the cookie header
value up into a list of strings separated by the ’;” charac-
ter. Next, it iterates over this list with foreach, further
splitting each string using the ’=" character into a key-
value list. Finally, the find function extracts the first
pair in the list where its first item is the string SID’, and
last pulls out the corresponding value. If at any point
during this chain of functions there is a NULL value, then
processing will stop and the result will be NULL.

The remainder of the query is pretty straightforward.
The WHERE clause filters out only HTTP messages that
have Cookie headers and session IDs. GROUP BY ag-
gregates based on the session ID, and UNTIL will trigger
an output whenever it sees more than one client using the
same session ID.

4.2 Malicious Domains

There were several DNS features presented earlier in sec-
tion 2.2. These features each perform some aggregate
computation on DNS responses. In the Chimera lan-
guage, lists of objects can be split into one tuple for each
item using the SPLIT command. DNS responses contain
lists of answer records in a single DNS packet, which
can be split up into individual answer records. How-
ever, Chimera also includes a schema for individual re-
source records (essentially pre-split) that corresponds to
resource record events in the Bro language. The queries
below use the DNS resource record schema out of con-
venience, but could use the DNS schema and SPLIT as
well. Here are queries for each of the listed features:

4.2.1 Number of distinct IP addresses per domain

SELECT count_distinct([aip]), [name]
FROM dns_rr
WHERE [aip] !'= NULL
GROUP BY [name]
UNTIL GLOBAL
nextwindow([packets]. [time], 86400)

One thing
count_distinct function.

to note about this query is the
Counting the number

of distinct items can be done more efficiently than by
keeping a list and computing its size. This query also
uses an aggregate function nextwindow to compute
when the packet timestamp has transitioned into the next
86400-second (one day) time window. It essentially
performs integer division and change detection. When
this occurs, the entire table will be flushed and the
computation will restart.

4.2.2 Number of domains that share the same IP

SELECT [name], [ip], [count]
FROM (
SELECT
[aip] AS ip
list_agg(distinct([name])) AS names
count_distinct ([name]) AS count
FROM dns_rr
WHERE [aip] != NULL
GROUP BY [aip]
UNTIL GLOBAL
nextwindow([packets]. [time], 86400)
) SPLIT names AS name, nameidx

This query will keep a list of domains for each IP ad-
dress, maintain a count of its size, and then output each
domain along with an IP address and count every day.
As you may have noticed, this query does not precisely
quantify the "number of domains that share the same IP
address" because a domain name can have multiple IPs,
and the original EXPOSURE paper was not clear about
whether all the domains on all the IPs should be counted
[5]. This query will actually output multiple counts for
each domain name, one for each IP address that it uses.
This is an example where having a common query lan-
guage would make explicit analytic descriptions much
easier, allowing researchers to more precisely describe
their techniques.

4.2.3 Average TTL value

SELECT avg([ttl]), [name]

FROM dns_rr

WHERE [ttl] != NULL

GROUP BY [name]

UNTIL GLOBAL
nextwindow([packets]. [time], 86400)

This query is very similar to the first, except that it
employs the avg (average) aggregate function instead of
count_distinct. Another point of ambiguity in EX-
POSURE is whether the TTL values should be counted
for all types of resource records (as is done above), or
just for A records.

4.2.4 Number of TTL value changes

SELECT count(), [name]
FROM (
SELECT [name]

FROM dns_rr
WHERE [ttl] != NULL
GROUP BY [name]
UNTIL
last ([tt1l]) != last([ttl], 2, true) &&
last([ttl], 2, true) !'= NULL
)
GROUP BY [name]
UNTIL GLOBAL
nextwindow([packets] . [time], 86400)

This query uses a nested statement with two instances
of the aggregate function last. In its first form, last
just outputs the current tuple value. The second call to
last([ttl], 2, true) actually outputs the second-
to-last value (2 parameter) and persists across windows
(true parameter). For the sequence {A, B, A}, the UN-
TIL statement will become true and flush the result after
B arrives. Because the second call to last persists, it
will hold on to the B value and output another change
when the next A arrives. This is an example of aggregate
functions that maintain state across windows.

4.3 DNS Tunnels

The DNS tunnel detection algorithm described in sec-
tion 2.3 works by identifying responses that never have
follow-up connections. Here are some key facts about
this analytic:

e DNS responses may contain several A records, but
only the first one will be likely to receive a con-
nection. It is thus better to use the whole-message
DNS schema rather the individual resource record
schema.

e We only want to count responses that do not have
matching packets, so we need to use an EXCLU-
SIVE LEFT SINGLE JOIN.

e Because individual false positives may occur, we
should apply a per-client threshold to unmatched re-
sponses, which will require a GROUP BY using the
client as the key.

Here is a query that implements DNS tunnel detection:

SELECT
[dns] . [packets] . [dstip] AS client,
last([dns] . [packets].[time]) AS start,
first([dns]. [packets]. [time]) AS end
FROM dns EXCLUSIVE LEFT SINGLE JOIN ip_packet
ON [answers].[aip] EQUALS [dstip]
WINDOW [new] . [packets].[time] -
[01d] . [packets] . [time] < 300
WHERE [dns] . [answers]. [aip] != NULL
GROUP BY [client]
UNTIL count() > 100
HAVING [end] - [start] < 3600

This query counts the number of DNS answers with
an A-record IP address that have no matching packets

within a five-minute time window. It then groups those
unmatched responses by their destination IP (the client
who made the request) and applies a threshold of 100 re-
sponses. Note that the threshold is applied in an UNTIL
clause. This makes it so that detection happens imme-
diately when the threshold is reached, instead of having
to wait for the end of a time window. The timestamps
of the first and last responses can then be checked in the
HAVING clause to make sure they occurred within some
reasonable amount of time (one hour in this case). This
query demonstrates the latency benefit from using UN-
TIL instead of a time- or count-based window like in ex-
isting streaming databases.

4.4 Phishing/Spam Detection

Section 2.4 describes a method for detecting spam and
phishing e-mails based on filtering SMTP messages with
“new" mail transfer agents (MTAs) and then counting the
number of recipients to which the new MTAs send e-
mail in the first 24 hours. Here is a Chimera query that
implements this analytic:

CREATE VIEW mtasmtp AS

SELECT *
FROM smtp SPLIT [headers].
filter{$.first() == ’Received’}.

foreach{$.second() .regex_extract
(’.*%by ([~ 1%)?)} AS mta, midx;
SELECT
merge ([b] . [headers] . [To] .split(’,?),
[b] . [headers]. [Cc].split(’,?),
[b] . [headers] . [Bcc]l.split(’,?)).
iterall{count_distinct($.strip())}
AS recipient_count,
[a]. [mtal AS mta
FROM (
SELECT =*
FROM mtasmtp
WHERE unique ([mtal)
) AS a JOIN mtasmtp AS b
ON [mta] EQUALS [mtal]
WHERE [b] . [packets].[time] -
[a]. [packets] . [time] < 86400
GROUP BY [a]. [mta]
UNTIL [recipient_count] > 50

This query contains a number of more complicated
operations to achieve the desired result. The CREATE
VIEW statement is used for the first time to set up a table
of SMTP messages that are split by MTAs. The MTAs
are extracted from "Received" headers in the SMTP mes-
sage using a regular expression that searches for the
string "by " and pulls out the following word.

In the first part of the select statement that follows,
all of the destination e-mail addresses are extracted by
splitting the "To", "Cc", and "Bcc" headers by commas,
and then merging them into one list. The apply function

iterall is then used to pass each recipient through the
aggregate count_distinct function to count the num-
ber of unique recipients for each MTA.

The sub-query in the left part of the join uses a stateful
function unique in a WHERE clause. This means that
it will use one global state instead of having a different
state for each aggregate key. Furthermore, the unique
function will accumulate values indefinitely. This func-
tion is different from distinct in a subtle way; it is
designed to only output "new" values. It will silently add
items to a Bloom filter during a learning phase at start-up,
and then start generating output once a certain percent-
age of its inputs have already been seen. As the Bloom
filter fills up, distinct will stop adding to it and create
a new one. Once the new filter becomes full, the old one
will be discarded and process will continue so that there
are always two Bloom filters in use. With a Bloom fil-
ter it is possible to falsely label new items as not unique a
small percentage of the time. This trade-off buys reduced
memory utilization. The false match rate of a Bloom fil-
ter will depend on its size and the number of insertions
that are made before rolling it over.

The final part of the query joins new MTAs with fu-
ture e-mails that contain those MTAs, using the WHERE
clause to cut off the count after 24 hours. The UNTIL
clause will trigger as soon as the unique recipient count
exceeds 50 and generate a final query output.

S Bro Compiler Implementation

For this paper, we implemented a Chimera compiler
that produces policies for the Bro event language [21].
While we have only implemented one specific target,
it would be possible to extended the compiler to target
other languages. The work that we describe in section
5.1 on translating a declarative query to an intermediate
relational algebra will be applicable for all targets. The
code generation phase, which is described in section 5.2,
will depend on the target language.

5.1 Translation to Relational Algebra

Because Chimera is very similar to SQL, we begin
the compilation process in the same way as traditional
database systems: by parsing the query and translating it
into an intermediate relational algebra. We used a simple
YACC parser [16] and the syntax from section 3 to con-
vert the original query into an abstract syntax tree (AST)
representation. From there, the compiler translates the
AST into a data-flow representation that loosely corre-
sponds to relational algebra, which we call the Chimera
Core. The Chimera Core operators are shown in figure 2.
This step is performed using syntax-directed translation
[2], wherein syntactic elements are converted into data-

source(source)

parser(parser)

split(expryis:, aliasitem)

projection(expry,aliasy, ...,expr,,aliasy)

selection(expr)

rename(newlabel)

jOin(labelleﬂ’ labelrighls €XPrlefts €XPTrights
exXpryindow, joinkind, tablesize)

Eroup(expreroupby, €XPrunil, Options, tablesize,
aggexpry,aliasy,...,aggexpry,aliasy,)

output(dest)

Figure 2: Chimera Core language constructs

flow operators as shown in figure 3. During this process,
the compiler uses a symbol table to map aliases to loca-
tions in the data-flow graph, but does not need to perform
full data-flow analysis because all data-flow connections
are explicit in the Chimera syntax.

CREATE VIEW — add alias to symbol table

SOURCE — source

<proto-name> — parser

SPLIT — split

<table> AS ... — rename

JOIN — join

WHERE — selection

GROUP BY...UNTIL...ORDER BY...LIMIT
— group

HAVING — selection

SELECT — projection

INTO — output

Figure 3: Summary of translation to Chimera Core

To illustrate translation from a Chimera query to the
Chimera Core language, consider the following example:

SOURCE STDIN
SELECT avg([b].[z]) AS avgz

FROM dns AS a JOIN smtp AS b ON [x] EQ [y]
WHERE [a].[x] > &

GROUP BY [a]. [x]

UNTIL avgz > 3

INTO STDOUT

Figure 4 shows the data-flow graph that results from
this example query. Using top-down syntax-directed
translation, the first node emitted is a source node cor-
responding to SOURCE STDIN. The FROM statement
is processed next. Because there is a JOIN, the compiler
first translates the left and right tables, adding parser
nodes to the source. The parser outputs are then fed
through rename operators so that they can be referenced
in the join operator, which combines them into a sin-
gle data flow. Next, the data flows through a selection

source{STDIN)

& a

parser (dns) parser{smtp)

v

rename(a) rename (b)

join(a, b, [x], [y], true, INNER, 0}
selection([a].[x] = 5)

group ([a].[x]. avez = 3, none, 0, avg([b].[z]). avez)

v

projection(avez, none)

v

output(STDOUT)

Figure 4: Chimera Core data-flow graph for example

operator that filters tuples using the WHERE expres-
sion. The tuples are then aggregated with a group opera-
tor, which also computes and adds aggregate expressions
from HAVING and SELECT clauses to the data flow. Fi-
nally, expressions in the SELECT clause are extracted
with the projection operator, and output sends data to
standard output.

5.2 Code Generation

The next step in compilation is to translate the data-flow
graph into Bro code. This process happens in two main
stages: (1) type computation, and (2) event code gener-
ation. The event code generation step further depends
on the implementation of user-defined functions, which
written natively in the Bro language. Also note that data
sources in Bro are specified on the command line, so the
source operator is emitted as a shell script wrapper and
not as part of the Bro language.

Type computation involves visiting each edge in the
data-flow graph, determining the contents of tuples that
flow through that edge, and then creating a record type
for those tuples. Edges coming from operators that do
not change the data — selection and rename — can be
ignored during this pass. It would have been possible to
use a table of the any type in Bro for tuples, or to create
another dynamic data structure. We chose to use custom
record types instead because they are better-documented
and do not require modifying Bro internals.

After types have been defined for each input and out-
put tuple, the compiler generates code for each node in
the data flow graph in the form of an event handler:

e parser — This node adds a Bro protocol parser at

the beginning of the file (if it does not yet exist) and
defines an event handler that converts Bro protocol

events into output tuples.

o split — This node takes a tuple with a list expression
and outputs a new tuple for each item in the list,
which also includes all the original tuple items.

e projection — This node outputs an event handler
that executes one or more expressions on each in-
put tuple and assigns their results to an output tuple.

e selection — This node evaluates an expression on
each input tuple and passes that tuple as output if
the expression is true.

e rename — This node passes tuples through un-
changed, but renames the event.

e join — This node stores tuples in a hash table keyed
on their join expression values and later matches
them against tuples from the other side of the join.
When there is a match (or no match for OUTER
joins), this node will generate a new output tuple
with one or both elements. To support the WIN-
DOW expression, we extended the Bro table data
structure to expose its oldest element.

e group — This node maintains a hash table keyed on
the GROUP BY expression value. The table con-
tains state objects for each aggregate function, all
of which have their Iteration routine called for each
new tuple. When the UNTIL expression becomes
true, this node calls each aggregate function’s Eval-
uation routine, adds the results to an output tuple,
and then calls the aggregate Termination routines to
flush the state objects.

e output — This special-purpose node outputs tuples
in CSV format, or, if the tuple only has one packet,
sends output to a PCAP file.

Some of the operator nodes take function expressions
as arguments. As mentioned before, each function is
written natively in Bro. A few functions, such as those
that use a Bloom filter, also required some implementa-
tion in the Bro internal function (BIF) language. When a
function is encountered during code generation, its defi-
nition is included in the Bro code and it is called with a
standard Bro expression. Bro does not support method-
style function calls using a syntax like x(argl).y(arg2),
so these are re-written as y(x(argl),arg2). Apply func-
tions are implemented by generating inline anonymous
first-class function definitions, which are supported by
Bro.

5.3 Example

Here we demonstrate Bro code generation with a simple
example. In the interest of space, the example does not
include join and group operators. Consider the follow-
ing Chimera query:

SELECT [pathl
FROM http-request
WHERE [method] == "GET"

This query extracts the path from all HTTP GET re-
quests. It translates to the following data-flow graph,
where each operator sends data to the next:

10: source(STDIN)

11: parser(http-request)

12: selection([method] == “GET")
13: projection([path], none)

14: output()

Finally, this is compiled down to the following Bro
script. Note that Bro splits up the HTTP headers and
body into multiple events. To have everything avail-
able in one tuple, we also add an event handler for
http_all_headers that saves the headers in the session
table, which is omitted here to save space.

Ghttp-reply

type http_request_type: record {
method: string;
path: string;
headers: listmap;
body: string;
packetlist: packetlist_type;

};

type 13_type: record {
vl: string;

};

event 13(t: 13_type) {
print t$vi;

}

event 12(t: http_request_type) {
local out: 13_type;
out$vl = t$path;
event 13(t);

}

event 11(t: http_request_type) {
if (' (t$method == "GET")) return;
event 12(t);

}

event http_message_done(c: connection, ...) {
local t = http_request_translate(c);
event 11(t);

}

6 Evaluation & Future Optimizations

We have presented the implementation of a compiler
that translates Chimera queries into the Bro event lan-
guage. Because functionality was our primary focus,
we have not yet implemented any performance optimiza-
tions. However, there are many areas that have potential
for optimization. Here we evaluate the compiler’s pro-
cessing performance in its current unoptimized form and
discuss opportunities for future performance optimiza-
tion. This section does not evaluate memory utilization
because it is highly dependent on the particular query,

desired window size, and data rate of the connection.
Windows for JOIN and GROUP BY operations can be
scaled according to the operating environment and ana-
Iytic needs.

6.1 Performance Measurement

The performance measurements in this section were
taken by processing a 2 GB PCAP file (stored on a ram
disk) with Bro and recording the execution time. The
PCAP file was generated by capturing traffic at a U.S.
government network gateway, so it includes data from
a variety of protocols. It contains approximately 81k
HTTP, 58k SMTP, and 32k DNS messages.

To test the compiler’s performance, we compare the
Bro event code generated by the Chimera compiler to
hand-written Bro code that implements the same func-
tionality. For example, the Bro code in section 5.3 could
be written by hand as follows:

Ghttp-reply
event http_request(c: connection,
method: string, original URI: string,
unescaped_URI: string, version: string) {
if (method == "GET")
print original URI;
}

This shorter implementation has three optimizations:

1. Data is not copied into new record types.

2. Events with only one handler are evaluated inline.

3. An earlier event handler (http_request) is used be-
cause the headers and body are not needed.

Our first experiment tests the effect of each optimiza-
tion by applying them one-by-one to the section 5.3 ex-
ample. We ran each configuration 30 times against the
test data. Table 3 summarizes our results. Bypassing
data copying saves about 1.5% execution time. Inlining
event code makes no significant difference in this case.
Switching to a single earlier handler saves another 1.5%,
for a 3.0% overall speed-up. While the difference be-
tween current compiled code and hand-written code is
noticeable, it does not have a major impact.

Table 3: Execution times with different optimizations

Configuration | Base |Opt-1|Opt-1+2|Opt-1+2+3
Avg. Time (s) |14.21]14.00| 14.01 13.79
Std. Dev. o (s)|0.084]0.083| 0.074 0.081
Speed-up (%) - | 1.5%| 1.4% 3.0%

For the next part of our evaluation, we tested a se-
lection of more complicated queries from sections 4.1,
4.2.1, and 4.4. We ran the queries as they were compiled
to Bro code, and after they were optimized by hand by
eliminating unnecessary copying and event handlers. Be-
cause a Bro implementation of side-jacking was already
available for query 4.1 [26], we used that as a basis for

Table 4: Execution times for different queries, with and
without hand-optimization

Query| Base Time (s) Optimized (s) |Speed-up (%)
4.1 15.64 (6 =0.081)|15.48 (0 = 0.067) 1.1%
42.1 | 8.81 (0 =0.085) | 8.72 (6 =0.021) 0.96%
4.4, 2.77 (6 =0.027) | 2.75 (6 =0.019) 0.79%

comparison. We optimized the other two queries our-
selves. Table 4 shows the results averaged across 30 runs
for each measurement. Much like the first experiment,
the overhead added by extra copying and event handlers
only has a minor impact on overall performance, increas-
ing running time by about 1%. Though the Bro code gen-
erator could benefit from some optimizations, in its cur-
rent form it generates code that is almost exactly equiva-
lent to hand-written code for these real-world scenarios.

6.2 Other Optimizations

The previous section discussed optimizations in the code
generator related to event and data handling. There are
also opportunities for optimization at the relational alge-
bra level before any code is generated, and in the analy-
sis logic. Prior work on query optimization for databases
[11, 15, 25] is directly applicable here because it oper-
ates on relational algebra that is almost exactly the same
as the Chimera Core language. One common trick is to
break up selection operators into sub-expressions and put
the cheapest one with the greatest data reduction first.
Similarly, selection operators that occur after joins can
have sub-expressions that do not depend on both join
sides pushed before the join, thus reducing the number
of items in the join table. Finally, any nodes that dupli-
cate one another, including parsers, can be merged to-
gether. We plan to incorporate all of these optimizations
in future versions of the Chimera compiler.

Another area of optimization that we plan to explore
is improving the actual analysis logic. For example, an
ordered EXCLUSIVE RIGHT JOIN is effectively an ex-
istence check; there is no need to actually store left tu-
ples in the join table because they will never be emitted
as output. Going further down this route, an existence
check can be approximated efficiently using a Bloom fil-
ter. For analytics where complete precision is not neces-
sary, an exclusive right join could be implemented with
a windowed bloom filter.

Finally, queries in the Chimera language lend them-
selves well to parallel processing using a map-reduce
model. Tuples can be mapped to a processing node us-
ing their join or group key right before each join or group
operator in the data-flow graph. Each node will then exe-
cute the operator to perform the reduction. Global aggre-
gates can be computed by extending aggregate functions
to have a merge routine that combines partial answers as
discussed in section 3.4.3 (though not all aggregates can

be merged efficiently). We plan to extend the Chimera
compiler in the future to automatically produce code that
can run in a parallel environment.

7 Related Work

There has been a lot of prior research on streaming
database systems. STREAM [3, 19] and Aurora [1]
were pioneers in this area. Following initial work, oth-
ers have developed improved techniques for windowed
query evaluation [17] and load shedding [24]. An effort
has also been make to create a standard for streaming
SQL [14] that accounts for semantic differences between
various systems. Others have focused on window speci-
fication semantics for streaming queries [6, 20].

Streaming database research is useful and serves as a
basis for ideas in this paper, but Chimera goes beyond
what has been done in prior work. It is the first lan-
guage designed to translate into external intrusion de-
tection frameworks like Bro. Chimera also adds two
new capabilities that are very important for handling net-
work traffic. The first is support for structured data types,
which includes the new SPLIT operator and apply func-
tions. The second major contribution is the addition of
dynamic window conditions using the UNTIL trigger for
aggregates, and the WINDOW condition for joins. This
gives the query writer full control over window bound-
aries, allowing for immediate response after a detection
threshold has been reached, rather than having to wait
until the window expires as with traditional fixed win-
dow specifications.

One project that is related to Chimera is Gigascope
[7]. Gigascope is a platform for performing network traf-
fic analysis that uses an SQL query language. However,
Gigascope is different from Chimera in a few key ways.
First, it is a vertically integrated query language and plat-
form for performing analysis. Its language is therefore
tied to the implementation and has not been adapted to
target other platforms. Chimera, on the other hand, is
designed to be implementation-agnostic and serve as a
general-purpose language for network processing. Fur-
thermore, Gigascope’s SQL query language has the same
limitations as traditional streaming database systems. As
far as we are aware, it only supports flat schemata, which
prevents it from properly handling structured data. It also
uses standard window specifications instead of dynamic
window boundaries, which limits flexibility for join and
aggregate queries.

IBM’s Stream Processing Language (SPL) [13] is also
related to Chimera. Unlike Chimera, SPL is not entirely
declarative. Its logic clause uses procedural code and
one must specify data flow paths to define analysis logic.
SPL does support dynamic window boundaries using a

punct type of tumbling window in which boundaries are
set by messages from upstream operators. These opera-
tors can use arbitrarily complex logic to generate punct
messages, which in theory provides the same power as
dynamic window conditions in Chimera, but in a less
concise manner. We view SPL as largely analogous to
the Bro event language, except that it is data-flow-based
rather than event-based. It is a powerful lower-level lan-
guage that provides greater control, but suffers from the
same problems of being less concise and more compli-
cated than Chimera. We imagine that it would be possi-
ble to adapt the Chimera compiler to generate code for
SPL in the future.

There are a number of procedural language ex-
tensions for traditional relational databases, including
PL/SQL[10], Transact-SQL [9], and PL/pgSQL [18].
These procedural languages offer powerful constructs
like conditional statements and looping. PL/SQL also
offers array data types, and arrays can be simulated with
delimiter-separated strings. These languages do not di-
rectly offer apply functions or SPLIT operations, but the
same result can be achieved (albeit not as elegantly) with
nested queries. While it is possible to express Chimera
queries and data types in these procedural programming
languages (they are Turing complete), we believe that the
Chimera language is more intuitive for processing struc-
tured network protocol traffic. Chimera also goes further
by running in a streaming environment and translating to
the Bro event language.

The idea of having a high-level language that trans-
lates into low-level policy has been applied previously
to other areas. One particularly relevant example is for
router and firewall configurations [4, 12]. Low-level fire-
wall policies precisely describe the mechanism for filter-
ing traffic in a level of detail that goes beyond the high-
level goals behind them. This makes firewall configura-
tion policies difficult to read and error-prone. Previous
work by Guttman et al. and Bartal et al. distills out the
underlying security goals into a high-level language, and
then translates that into low-level policies, thus eliminat-
ing the need for administrators to write those low-level
policies. Chimera is applying the same idea of separat-
ing policy from mechanism, but for a much different dif-
ferent domain.

8 Conclusion

In this paper, we introduced Chimera, a new query
language for processing network traffic. Chimera ef-
fectively separates policy from mechanism, leading to
concise queries that are independent of implementation.
Chimera is based on a streaming SQL syntax, which it
extends by adding structured data, first-class functions,

and dynamic window boundaries. These additional fea-
tures allow Chimera to better handle complex network
traffic analysis tasks.

This paper looks at example scenarios to motivate
Chimera’s design and demonstrate its utility. Two of the
examples — side-jacking and DNS feature extraction —
are taken from prior work. Writing Chimera queries for
these examples showed how they are more compact than
lower-level Bro event code and more precise than human
language descriptions. The other two scenarios — detect-
ing DNS tunnels and identifying spam/phishing e-mail —
demonstrated some of Chimera’s more advanced capa-
bilities and showed how it can be used to express com-
plex analysis logic with concise delcarative queries.

Finally, we presented the design and implementation
of a compiler that translates Chimera queries into the
Bro event language. This compiler works in two phases
by first transforming an abstract syntax tree into a data
flow representation, and then translating that representa-
tion into Bro event code. We tested the compiler’s out-
put against hand-optimized code for several queries and
showed that it is only 3% slower in the worst case. This
experiment highlighted opportunities for optimization by
eliminating unnecessary copying and event handlers, but
also showed that the Compiler generates code that is al-
most as efficient as hand-written code in its current form.
In the future, we hope to implement these optimizations
and also incorporate optimizations at the relational al-
gebra level so that Chimera obviates the need to write
low-level code for network analysis logic.

References

[1] ABADI, D. J., CARNEY, D., AGETINTEMEL, U.,
CHERNIACK, M., CONVEY, C., LEE, S., STONE-
BRAKER, M., TATBUL, N., AND ZDONIK, S. Au-
rora: A new model and architecture for data stream
management. The VLDB Journal 12, 2 (2003).

[2] AHO, A. V., SETHI, R., AND ULLMAN, J. D.
Compilers: Principles, Techniques, and Tools.
1986.

[3] ARASU, A., BABU, S., AND WIDOM, J. CQL: A
language for continuous queries over streams and
relations. Lecture Notes in Computer Science 2921,
123-124 (2004).

[4] BARTAL, Y., MAYER, A., NIsSIM, K., AND
WooL, A. Firmato: A novel firewall management
toolkit. In IEEE Symposium on Security and Pri-
vacy (1999).

[5] BILGE, L., KIRDA, E., KRUEGEL, C., AND BAL-
DUZzz1, M. Exposure: Finding malicious domains

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

using passive dns analysis. In Network and Dis-
tributed System Security Symposium (2011).

BoTAN, 1., DERAKHSHAN, R., DINDAR, N.,
HaAs, L., MILLER, R. J., AND TATBUL, N. SE-
CRET: A model for analysis of the execution se-
mantics of stream processing systems. Proceedings
of the VLDB Endowment 3, 1-2 (2010).

CRANOR, C., JOHNSON, T., SPATASCHEK, O.,
AND SHKAPENYUK, V. Gigascope: A stream
database for network applications. In 2003 ACM
SIGMOD International Conference on Manage-
ment of Data (2003).

CROCKFORD, D. The application/json media type
for javascript object notation (json). RFC 4627, In-
ternet Engineering Task Force, July 2006.

DARNOVSKY, M., AND BOWMAN, G. Transact-
sql user’s guide. Tech. Rep. 3231-21, Sybase, Inc.,
1987.

FEUERSTEIN, S. Oracle PL/SQL Programming,
third ed. O’Reilly & Associates, Sebastapol, CA,
2002.

GRAEFE, G. The volcano optimizer generator: Ex-
tensibility and efficient search. In ICDE (1993),
pp- 209-218.

GUTTMAN, J. Filtering postures: Local enforce-
ment for global policies. In IEEE Symposium on
Security and Privacy (1997).

HIrRZEL, M., ANDRADE, H., GEDIK, B., KU-
MAR, V., LOSA, G., MENDELL, M., NASGAARD,
H., SOULAL, R., AND WU, K.-L. Streams pro-
cessing language (spl). Tech. Rep. RC24897, IBM,
2009.

JAIN, N., MISHRA, S., SRINIVASAN, A.,
GEHRKE, J., WIDOM, J., BALAKRISHNAN, H.,
AGETINTEMEL, U., CHERNIACK, M., TiB-
BETTS, R., AND ZDONIK, S. Towards a streaming
SQL standard. Proceedings of the VLDB Endow-
ment 1,2 (2008).

JARKE, M., AND KoOCH, J. Query optimization
in database systems. ACM Computing Surveys, 2
(1984), 111-152.

JoHNsON, S. C. Yacc: Yet another compiler-
compiler. Tech. Rep. 32, Bell Laboratories, 1975.

L1, J., MAIER, D., TUFTE, K., PAPADIMOS, V.,
AND TUCKER, P. A. No pane, no gain: Efficient
evaluation of sliding-window aggregates over data
streams. Information Systsems 34, 1 (2005).

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

MONIIAN, B. PostgreSQL: Introduction and Con-
cepts. Addison-Wesley, Boston, MA, 2000.

MoTwaANI, R., WIDOM, J., ARASU, A., BAB-
COCK, B., BABU, S., DATAR, M., MANKU, G.,
OLSTON, C., ROSENSTEIN, J., AND VARMA, R.
Query processing, resource management, and ap-
proximation in a data stream management system.
Technical Report 2002-41, Stanford InfoLab, 2002.

PATROUMPAS, K., AND SELLIS, T. Maintaining
consistent results of continuous queries under di-

verse window specifications. Information Systsems
36,1 (2011), 42-61.

PAXSON, V. Bro: a system for detecting network
intruders in real-time. Computer Networks 31, 23—
24 (1999), 2435-2463.

RILEY, R. D., ALI, N. M., AL-SENAIDI, K. S.,
AND AL-KUWARI, A. L. Empowering users
against sidejacking attacks. In ACM SIGCOMM
2010 conference (2010).

ROESCH, M. Snort — lightweight intrusion detec-
tion for networks. In USENIX LISA GAZ99 Confer-
ence (1999).

TATBUL, N., AND ZDONIK, S. Window-aware
load shedding for aggregation queries over data
streams. In 32nd International Conference on Very
Large Data Bases (2009).

V. MARKL, G. M. LOHMAN, V. R. Leo: An auto-
nomic query optimizer for db2. IBM Systems Jour-
nal 42, 1 (2003).

VALLENTIN, M. Taming the sheep:
Detecting sidejacking with bro.
http://matthias.vallentin.net/blog/2010/10/taming-
the-sheep-detecting-sidejacking-with-bro/, 2010.

