
This paper is included in the Proceedings of the 
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of  
the 23rd USENIX Security Symposium 

is sponsored by USENIX

Oxymoron: Making Fine-Grained Memory 
Randomization Practical by Allowing Code Sharing

Michael Backes, Saarland University and Max Planck Institute for Software Systems  
(MPI-SWS); Stefan Nürnberger, Saarland University

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/backes



USENIX Association  23rd USENIX Security Symposium 433

Oxymoron
Making Fine-Grained Memory Randomization

Practical by Allowing Code Sharing

Michael Backes
Saarland University, Germany

Max-Planck-Institute for
Software Systems, Germany
backes@ mpi-sws. org

Stefan Nürnberger
Saarland University, Germany

nuernberger@ cs. uni-saarland. de

Abstract

The latest effective defense against code reuse attacks is
fine-grained, per-process memory randomization. How-
ever, such process randomization prevents code shar-
ing since there is no longer any identical code to share
between processes. Without shared libraries, however,
tremendous memory savings are forfeit. This drawback
may hinder the adoption of fine-grained memory ran-
domization.

We present Oxymoron, a secure fine-grained memory
randomization technique on a per-process level that does
not interfere with code sharing. Executables and libraries
built with Oxymoron feature ‘memory-layout-agnostic
code’, which runs on a commodity Linux. Our theoreti-
cal and practical evaluations show that Oxymoron is the
first solution to be secure against just-in-time code reuse
attacks and demonstrate that fine-grained memory ran-
domization is feasible without forfeiting the enormous
memory savings of shared libraries.

1 Introduction

Code reuse attacks manage to re-direct control flow
through a program with the intent of imposing malicious
behavior on an otherwise benign program. Despite be-
ing introduced more than 20 years ago, code reuse is still
one of the three most prevalent attack vectors [1, 28],
e.g., through vulnerable PDF viewers, browsers, or op-
erating system services. Several code reuse mitigations
have been proposed. They either detect the redirection
of control flow [7, 12], or randomize a process’s address
space. Randomizations jumble the whole address space,
with the intent of preventing code reuse attacks by mak-
ing it impossible to predict where specific code resides.

Especially Address Space Layout Randomization
(ASLR [23, 22]) has become widespread, but meanwhile
has been shown to be ineffective [24, 25]. A promising

avenue is the use of even finer randomization techniques
that randomize at the granularity of functions, basic
blocks or even instructions [18, 10, 16, 19, 17].

To be effective, fine-grained memory randomization
must prevent an attacker from using information about
the memory layout of one process to infer the layout
of another process. This is a particular threat in the
light of shared code originating from shared libraries.
Hence, most recent fine-grained memory randomization
solutions also randomize shared libraries for every sin-
gle process [13, 21, 29]. As a result, there is no identical
code in any two processes, which makes sharing impos-
sible. A dysfunctional code sharing, however, increases
the memory footprint of the entire system, likely on the
order of Gigabytes, as we elaborate in Section 2.

To summarize: fine-grained randomization solutions pre-
sented so far come at the expense of tremendous memory
overhead, which renders them impractical.

Oxymoron /,6k.sI’mO:.r6n/ (noun)
Greek. A figure of speech that combines contradic-
tory terms.

We present Oxymoron, which combines two seemingly
contradictory methods: a secure fine-grained memory
randomization with the ability to share the entire code
among other processes. At the heart of Oxymoron is a
new x86 calling convention we propose: Position-and-
Layout-Agnostic CodE (PALACE). This code uses no in-
structions that reference other code or data directly, but
instead the instructions use a layer of indirection referred
to by an index. This index uniquely identifies a target and
hence remains identical when targets are randomized in
memory. Consequently, the memory in which those in-
structions are stored does not change, thereby making it
available to be shared with other processes.
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Oxymoron cuts program code into the smallest sharable
piece: a memory page. We randomize those pages and
share them individually among processes. Each shared
page appears at a different, random address in each pro-
cess. We use the x86 processor’s segmentation feature to
disable access to the unique indices, which we organized
in a translation table. This unique property of Oxymoron
makes our solution more secure than fine-grained mem-
ory randomization solutions published so far.

To demonstrate the effectiveness and efficiency of Oxy-
moron, we implemented and evaluated a static binary
rewriter for the Intel x86 architecture that emits PALACE
executables and libraries with a very low run-time over-
head of only 2.7%. By re-enabling code sharing, Oxy-
moron is the first memory randomization technique that
reduces the total system memory overhead back to lev-
els it was before fine-grained memory randomization,
while simultaneously being the first solution that is se-
cure against the just-in-time code reuse attacks recently
proposed by Snow et al [26].

2 Problem Description

Before we describe our idea, we want to explain in more
detail why any traditional fine-grained memory random-
ization necessarily makes sharing libraries impossible.
The goal of fine-grained randomization is for every pro-
cess to feature a memory layout that is as varied as pos-
sible from any other process. If we treat program code,
which usually is en bloc, as a puzzle and shuffle the puz-
zle pieces throughout the entire address space, their com-
binatorial possibilities provide a high entropy. It is only
possible to share those puzzle pieces individually as a
memory page with other processes if the content of each
piece is identical in each process. With traditional code,
the content of those piece necessarily changes when their
order in memory is rearranged, as we explain in the fol-
lowing:

Code references other code or other data using either ab-
solute memory addresses, e.g., call 0x804bd32, or rela-
tive addresses, e.g., call +42. For absolute addresses it
is obvious that different randomizations necessarily lead
to different code and data addresses. As a result, the en-
coding of instructions that hold such addresses changes
as well, thereby forfeiting the sharing with other pro-
cesses. Relative addresses, in turn, make code indepen-
dent of its load address in memory. However, in case of
using code pieces that are randomized, the relative dis-
tances change as well. Here, for the same reason, those
pieces cannot be shared across processes as they feature
different relative addresses. Consequently, fine-grained
memory randomization impedes common code sharing,
which is a fundamental concept of all modern OSes.

Severity. Modern operating systems use code sharing
automatically, and it is in effect because the running pro-
grams use the same libraries (C library, threading library
etc.), i.e. their address spaces have identical code loaded.

To verify this claim, we conducted a simple experiment
that shows the impact of code sharing and lack thereof.
We used an unmodified Ubuntu 13.10 x86 operating sys-
tem on a machine with 4 GB of RAM and evaluated how
much RAM is saved due to code sharing. After booting
to an idle desktop, the 234 running processes consumed
a total 679 MB. Our analysis of memory page map-
pings in each process obtained from /proc/<PID>/maps

revealed that most of the processes used the same set of
shared libraries. As expected, most frequently the stan-
dard C-library libc.2.17.so was shared between all of
the 234 processes. All mapped portions of libc sum up
to 207,028 KB while only 885 KB of real memory are
consumed. This is a savings of 206 MB for libc alone.

Figure 1 illustrates the top ten savings by library. In total,
sharing instead of duplicating saved 1,388 MB of RAM
on the idle Ubuntu desktop. When additionally starting
the Firefox browser, the memory consumption was in-
creased from 679 MB to 817 MB. The total amount of
savings by sharing summed up to 1,435 MB of RAM,
which is an additional savings of 47 MB.
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Figure 1: Savings due to sharing of libraries. Idle desktop
saves 1388 MB, with Firefox 47 MB more is saved.

2.1 Threat Model

We assume a Linux operating system that runs a user
mode process, which contains a memory corruption vul-
nerability. The attacker’s goal is to exploit this vulner-
ability in order to divert the control flow and execute
arbitrary code on her behalf. To this end, the attacker
knows the process’ binary executable and can precom-
pute potential gadget chains in advance. The attacker can
control the input of all communication channels to the
process, especially including file content, network traf-
fic, and user input. However, we assume that the attacker
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has not gained prior access to the operating system’s ker-
nel and that the program’s binary is not modified. Apart
from that, the computational power of the attacker is not
limited.

Moreover, for JIT-ROP attacks [26] to work, we assume
that the process has at least one memory disclosure vul-
nerability, which makes the process read from an arbi-
trary memory location chosen by the attacker and report
the value at that location. This vulnerability can be ex-
ploited any number of times during the runtime of the
process. Note that the process itself performs the read
attempt: both address space and permissions are implied
to belong to the process.

3 High-Level Design of Oxymoron

To benefit from the best of both worlds – fine-grained
memory randomization and code sharing – the challenge
is to create a form of code that does not incorporate abso-
lute or relative addresses, as we have already shown that
both addressing schemes by definition suffer from being
dependent on their randomization. An additional layer
of indirection that translates unique labels to current ran-
domized addresses allows the byte representation of code
to remain the same, which enables code page sharing.
However, this approach is difficult to realize as it is ac-
companied by four key challenges:

1. keeping the size of the translation table small in or-
der not to increase the memory that we saved,

2. developing an efficient layer of indirection so that it
is practical,

3. making the translation inaccessible by adversaries,

4. making the solution run on a commodity, unmodi-
fied Linux OS.

Overall Procedure. Oxymoron prevents code reuse at-
tacks by shuffling every instruction of a program to a
completely different position in memory so that no in-
struction stays at a known address, thereby making it
infeasible for an adversary to guess or brute-force ad-
dresses. We use a three-step procedure (cf. Figure 2):

A) Code Transformation: The executable E is
transformed to Position-and-Layout-Agnostic CodE
(PALACE). The result is a PALACE-code executable
PE . The same applies to shared libraries, which can
be treated like executables.

B) Splitting: The PE code is then split into the smallest
possible piece that can be shared among processes: a
memory page. The code of PE now consists of code
pieces PE = p1|p2| . . . |pn.

C) Randomization: At program load time, the pieces
p1|p2| . . . |pn are shuffled by the ASLR part of the
operating system loader. In memory, their order is
completely random and the pieces may have empty
gaps of arbitrary size between them.

The first two steps only have to be done once, while the
third step is performed at load-time of the executable PE .

PALACE	  Program	  

C	  H	  F	  G	  E	  A	  D	  B	   1	  2	  3	  4	  5	  6	  
CODE	   DATA	  

Split	  Program	  Pieces	  

C	  H	   1	  2	  3	  4	  5	  6	  
CODE	   DATA	  

Process	  2	  

F	  G	   1	  2	  3	  4	  5	  6	  C	  H	  D	  B	   e	  a	  

F	  G	   E	  A	   D	  B	  

Executable	  E 

A	  B	  C	  D	  E	  F	  G	  H	   1	  2	  3	  4	  5	  6	  
CODE	   DATA	  

Process	  1	  

F	  G	   1	  2	  3	  4	  5	  6	  C	  H	   D	  B	   E	  A	  

A 

B 

C 

Figure 2: The program is transformed and split once (A and
B), then randomized at every process start-up (C).

3.1 Code Transformation

To enable layout-agnostic code, all references to code
and data are replaced with a unique label. Such a unique
label is an assigned index into a translation table. This
Randomization-agnostic Translation Table (RaTTle) in
turn refers to the actual target (see Figure 3). This is the
key to code sharing among processes, since the byte rep-
resentation of the PALACE code does not change in the
next step, when it is split and individual pieces are shuf-
fled in memory.

Code	  

A instrA1 
instrA2 
 
ret 

B  
instrB2 
ret 

Call α() 

0x1000: 

0x1200: instrB1	  

RaTTle	  
α: 0x1200 
β: 0x15F9 
γ: 0x3FFA 

Figure 3: Control-flow is redirected through the RaTTle rather
than jumping to addresses directly.
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3.2 Splitting

Splitting ensures that the resulting pieces can be mapped
into different processes at different addresses. As
PALACE code references every target through a unique
label in the RaTTle, it can be split without the need
for traditional relocation, which rewrites addresses that
hence have changed.

The PALACE code is split into page-sized pieces. If
those pieces are later shuffled, it must be assured that the
original semantics of the program are kept intact. This is
essential when control flows from the end of one piece to
the piece that was adjacent to it in the original program
code. Thus, we need to insert explicit control flows be-
tween consecutive code pieces that might be moved away
in a later stage of randomization. These explicit links
only need to be inserted as the last instruction of a piece
to ensure that control indeed flows to the intended suc-
cessor (see Figure 4). After the links have been inserted,
the code pieces can be randomized in memory without
violating the original program semantics.

Memory	  Page	   Memory	  Page	   Memory	  Page	  

mov add push jump add mov mov mov pop jne jump 

RaTTle	  

8: 0x148D 

0: 0x12C9 
4: 0x1200 

0x1200 0x12C9 0x11F7 

Figure 4: Filling a page with instructions and linking them
with explicit control flow transfers.

3.3 Randomization

Modern OS loaders for shared libraries already support
Address Space Layout Randomization (ASLR), i.e. they
load the code, data, and stack segments at random base
addresses. We leverage this fact by putting every mem-
ory page in its own loadable segment of the executable
file or of the shared library. As the page-sized code
pieces are already transformed to PALACE code, no re-
location of addresses is needed. An ASLR-enabled com-
modity loader can blindly load all pieces at random ad-
dresses. Consequently, each process can have its own
permutation of the randomization. Only the RaTTle
needs to be kept up to date with a per-process random-
ization (see “Populating the RaTTle”).

3.4 Addressing the RaTTle

At first glance, it might seem we have only shifted the
problem of addressing functions in code to securely ad-
dressing the RaTTle. However, our approach enables se-
cure access to the RaTTle without access for adversaries.
We first explain why we chose the more involved realiza-
tion of the RaTTle and not existing approaches, such as a
fixed address, a fixed register or the Global Offset Table
(GOT). As already alluded to by Shacham et al. [25], the
following techniques have drawbacks:

Fixed. Storing the RaTTle at a fixed address in memory
allows for its address to be hard-coded in the in-
structions themselves. Unfortunately, a hard-coded
address restricts the table to a fixed position. This
fact can be exploited by an attacker.

GOT. Accessing the GOT is realized by using relative
addresses, which forfeits sharing as discussed ear-
lier. Moreover, several attacks are known that deref-
erence the GOT [5].

Register. A dynamic address that is randomly chosen
for every process could be stored in a dedicated ma-
chine register. However, this register would need
to be sacrificed and every original use of that reg-
ister must then be simulated with other registers or
the stack. Moreover, a leakage vulnerability could
reveal the address of the RaTTle.

Our Approach. Our RaTTle does not suffer from the
aforementioned drawbacks. We use the x86 feature of
memory segmentation to address and at the same time
hide the RaTTle from adversaries. X86’s segmentation
is disused today because it has been superseded by mem-
ory paging. Memory paging, also called virtual mem-
ory, allows a fine-grained mapping of memory on a per-
process basis and is much more versatile than segmen-
tation. However, segmentation is still available in mod-
ern processors and in combination with paging allows
for the security we need for the RaTTle. Additionally,
as segmentation is a hardware feature and we can use
it to implement the translation table, it is very efficient.
Segmentation allows the memory to be divided in user-
defined segments that may overlap. Segmentation is re-
alized in the processor by adding a user-defined offset to
all addresses the code handles (see Figure 5).

Segmentation allows different so-called segment descrip-
tors to be created, each with their own base address and
limit, i.e. the start and length of that segment. The list of
these segment descriptors is kept in the Global Descrip-
tor Table (GDT, see Figure 5). Segment selectors must
then point to exactly one segment entry in that GDT. Seg-
ment selection is done using dedicated segment selector
registers such as CS (Code Segment), DS (Data Segment),
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CS 

Code	  

A instrA1 
instrA2 
 
ret 

B instrB2 
ret 

Call 0xABC() 0x1A06: 

0x1ABC: 

instrB1	  

GDT	  
Offset:	  0x1000 

+

Figure 5: Code using segments as offsets for addresses.

SS (Stack Segment) and three general purpose segment
selectors ES, FS and GS.

Position-and-Layout-Agnostic CodE (PALACE). The
trick we use is the fact that segments can be selectively
overridden on a per-instruction basis. In this way, a sin-
gle instruction may use an addressing that is relative to
the RaTTle, thereby indexing the RaTTle to change con-
trol flow or to access data. For example, call *%fs:0x4

dereferences the double-word stored at %fs:4 and calls
the function stored at that double-word. If we let the seg-
ment selector FS point to the randomly chosen address of
the RaTTle, we effectively index the RaTTle by an offset
of 4 (see Figure 6).

FS 

Code	  

A instrA1 
instrA2 
 
ret 

B  
instrB2 
ret 

Call %fs:*0x4 

0x245A: 

0x87CD: instrB1	  

GDT	  

Offset:	  0x6F9B 

+	  
RaTTle	  
0: 0x2AB9 
4: 0x87CD 
8: 0x1A34 *

0x6F9B:	  

Figure 6: The RaTTle in Action: Indexed through the GDT and
dereferenced using an indirect call; all in one instruction.

In PALACE code, we substitute each branch and jump
instruction with an %fs segment override and a unique in-
dex. When not using the FS segment override, code does
not have access to the RaTTle because it uses a differ-
ent segment. The address of a segment, and hence of the
RaTTle, cannot be read from user space because the local
and global descriptor tables point to kernel space mem-
ory which is inaccessible from user space. This makes
the address of the RaTTle inaccessible.

As a segment selector for the RaTTle, we chose the gen-
eral purpose segment selector register FS, as already used
in the example above. To the best of our knowledge, this
register is unused. The only use we found is in the Win-
dows emulator Wine that uses segmentation for its 16-bit
Windows emulation.

Efficient Data Access. Data can be accessed in a sim-
ilar way, but through the Global Offset Table (GOT).
The GOT is used in position-independent code such as
libraries anyway. We just need to substitute the way
the address of the GOT is calculated with an indirection
through the RaTTle. Further access is done through the
GOT as in traditional position-independent code. This is
explained in more detail in Section 4.5.

Populating the RaTTle. The RaTTle is the only part of
the code that needs rewriting at load time. The RaTTle is
empty in the ELF executable file on disk and its memory
gets initialized by the loader with the help of relocation
information. This relocation information points to the ac-
tual symbols that each RaTTle index refers to. The Linux
loader automatically takes the relocation information to
rewrite the RaTTle at program load [6].

4 Design Details

With the ingredients described earlier, we can put to-
gether our mitigation against code reuse attacks that is
efficient, lightweight and shares code and data between
processes.

4.1 Design Decisions

There are several ways to implement PALACE. A
PALACE executable can be produced by a compiler, or
it can be transformed from a traditional executable using
static or load-time translation.

Compiler Support. The same way contemporary com-
pilers support PIC, they can be augmented to emit
PALACE code. Based on the principles of PALACE
code introduced in the previous Idea section, the com-
piler needs to generate PALACE code and put it in subse-
quent memory-page-sized chunks. It is then ready to be
loaded by a traditional loader that permutes the chunks
prior to execution of the code.

Static Translation. If the source is not available, an
existing executable can be transformed to PALACE by
means of static translation [14, 15]. Static translation
reads an executable or shared library file from disk,
disassembles it, transforms the instructions, and writes
a modified executable file back to disk. In our sce-
nario, static translation keeps most of the instructions
untouched while only replacing code and data references
with the appropriate indirection through the RaTTle.

Load-time Translation. Load-time Translation can be
regarded as a static translation that happens automati-
cally at very load-time, after the executable or library has
been read from disk into memory but before it starts exe-
cution. This method is often referred to as binary rewrit-
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ing. Its advantage is that a process can be randomized at
every startup. In our scenario, however, we do not need
load-time translation as we can achieve a randomization
at load-time with the specially crafted PALACE chunks
in the executable file.

Our Choice. We want to stress that Oxymoron can be
implemented by a compiler that simply emits PALACE
code in the first place instead of traditional code. We
could have implemented Oxymoron as a compiler solu-
tion. However, this would have required us to modify ex-
isting compilers. Instead, we built a legacy-compatible
solution that uses static translation and can be built on
an existing fine-grained memory randomization frame-
work, which already uses static translation. We built
Oxymoron on the existing framework Xifer provided by
Davi et al. [13].

In theory, a static translation approach may seem frag-
ile because it needs a perfect disassembly. However,
static translation can be tuned to reliably disassemble
code generated by a particular compiler with known and
carefully chosen parameters. Besides, in this paper we
use the translation from traditional x86 code to PALACE
code as a comprehensible running example that demon-
strates how PALACE code looks in contrast to traditional
x86 code.

In both cases, compiler and static translation, the gener-
ated PALACE code of the executables and libraries can
be read by a commodity Linux. The Linux OS loader
will detect the executable as being ASLR-enabled and
will randomize its base address. Unfortunately the com-
modity loader does not randomize the program segments
individually but keeps their relative distances. For tradi-
tional position-independent code that was necessary so
that code in the .text section can still reference objects
in the .data section by their relative distance to the cur-
rent instruction pointer. However, for PALACE this lim-
itation is not required. We want to achieve a more fine-
grained randomization by allowing an individual ran-
domization of each program segment, which could be as
small as a memory page. This can be achieved by re-
questing a special linker in the program header, which
randomizes the segments individually.

4.2 Setting up the RaTTle

The RaTTle needs to be populated with all references
in the executable and the table needs to be loaded at a
random address. Moreover, one table does not suffice
for the interaction of several shared libraries. Before we
can use PALACE code, we need to set up the RaTTle as
follows:

1. Assign every reference in code a unique number that
will act as an index into the RaTTle,

2. Fill the RaTTle with the actual, current, random ad-
dresses of the original targets, and

3. Set up segmentation so that a free segment selector
points to the RaTTle and we can index the RaTTle.

In step 1, the absolute addresses of the original pro-
gram are saved in a hash set. Then, every address is
assigned an ascending index. This ensures that the ta-
ble does not grow unnecessarily large. Because the fi-
nal, random addresses are unknown before the process is
started, the RaTTle cannot be filled until start-up of the
process. As we want to avoid modification of the operat-
ing system loader, we chose a method that is able to fill
the RaTTle using only traditional features of the loader.
Such a feature is relocation. Relocation information tells
the loader which objects in the executable file or in the li-
brary must be overwritten with current addresses at load
time. Therefore, we add relocation information for each
RaTTle index to the final executable/library file. This en-
sures that the loader rewrites each index so that it points
to the corresponding position of code or data that this in-
dex represents. As a result, the randomized addresses of
the code pieces are automatically written into the RaTTle
by the operating system loader.

4.3 Setting up Segmentation

In order to find the RaTTle in memory, we need to set
up segmentation so that a pre-defined segment points to
the beginning of the table. Unfortunately, we cannot use
relocation information for this purpose, because neither
setting up segmentation nor setting segment selectors is
supported by relocation information. Setting up segmen-
tation via the Global Descriptor Table (GDT) would re-
quire kernel modifications. Since the goal is to avoid
operating system modifications in order to stay legacy
compatible, this is not an option. Luckily, the x86 archi-
tecture additionally supports a so-called Local Descrip-
tor Table (LDT). The LDT can be switched for every ad-
dress space, so that Linux emulates a per-process LDT.
This is a perfect feature for enabling Oxymoron on a per-
process basis.

The set-up of the LDT and the segment selector that
points into the LDT is done in initialization code. To
this end, we leverage the ELF executable format’s ini-
tialization code that resides in the .init section. Code
in this section is ensures to be executed before any other
code. This init code figures out the address at which the
RaTTle has been randomly loaded by the loader and sets
up the LDT accordingly. After the initialization code has
run, the segment selector FS points to the random address
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of the RaTTle. The PALACE code can now work as in-
tended.

4.4 Control Flow and Data

Code. Control flow branches or function calls that target
another memory page need to be replaced with an indi-
rection through the RaTTle. The simplest case is a direct
call or an unconditional jmp to a different place in code:

Address Before After

8050512: call 0x8050c08 call %fs:4

RaTTle: [0] ..........
[4] 0x8050c08 

Only branches that reference code outside of the current
memory page must go through the RaTTle. Code and
data access within one memory page may be encoded
position-relative (e.g., call +90).

If the to-be-replaced instruction is an indirect jump,
the translation is slightly larger due to the fact that
x86 does not support two levels of indirection. It
is either possible to use the RaTTle to get the ad-
dress of the second indirection and then dereference
that using an indirect jump or to use a trampoline.
We use a trampoline because it is slightly faster:
Address Before After

8050512: jmp *0x80a00012 jmp %fs:4

80a00012: 8050c08 8050c08 

RaTTle: [0] ..........
[4] jmp *80a00012 

A slightly more involved case is a conditional
jump because there is no equivalent conditional in-
direct jump. Our solution is a bit more involved:
Address Before After

8050512: cmp %eax, %ebx cmp %eax, %ebx

8050514: jne 0x8050590 jne 0x8050518 

8050516: jmp 0x805051a 

8050518: jmp *%fs:4 

RaTTle: [0] ..........
[4] 0x8050590 

An indirect jump, such as jmp *%eax does not need to be
replaced at all. However, the used register (in this exam-
ple %eax) must point to the correct randomized position
in memory. This is either ensured by the compiler that
generated PALACE code or by the translation from tra-
ditional code. In either case, a register is loaded with
a code address. Optionally, this address is modified to
mimic jump tables or C++ vTables, and then the indi-

rect jump transfers control flow to the address stored in
the register. To load a code address to the register before
it is modified, a fixed address is copied to the register.
This is similar to mov $0x8402dbc, %eax. In the case
of PALACE, this step needs an indirection to conceal
the actual address and to make the address exchangeable
by the RaTTle. In PALACE code this register loading
looks like this: mov %fs:$0x4, %eax. This copies an
address stored as an entry in the RaTTle to the register
%eax. Then, some mathematical operations can be per-
formed, such as adding the offset into C++ vTables and
finally the indirect jump is performed as in traditional
x86: jmp *%eax.

Data Access. Accessing data through the RaTTle is done
in exactly the same way. An indirect memory operation
is used to read or write data from or to an address stored
in the RaTTle. mov %fs:$0x4, %ebx is used to read the
first entry (4 bytes) of the RaTTle into register %ebx and
vice versa the operation mov %ebx, %fs:$0x8 copies the
register %ebx to the second entry (8 bytes) of the RaTTle.

4.5 Inter-Library Calls and Data

Control flow and access to data is not restricted to one
library or executable. Naturally, these code elements fre-
quently use each other’s functions and data. Some oper-
ating systems, like Windows, use relocation information
to directly patch the control flow so that it points into
a library after it has been loaded. Linux, on the other
hand, uses the procedure linkage table (PLT) to link calls
to libraries with the advantage of lazy loading.1 In con-
trast, we use an indirection through the RaTTle for ev-
ery library call or access to global library data because
this approach conceals the actual address of the loaded
library and has only minor performance impact.

Inter-Library Data. Libraries can export data to be used
by the executable main process or other shared libraries.
Since it is known a priori which data is accessed in an-
other library, each reference gets a place-holder in the
GOT which can be accessed as described above. When
the appropriate library is loaded by the loader, it auto-
matically updates the GOT thanks to the relocation info
pointing to this entry in the GOT.

The following is an example of typical position-
independent code that uses a GOT to access data: The
code is first calling the next instruction, thereby pushing
its own address as a return address to the stack. Follow-
ing, this very address is popped off the stack to get the

1First, the PLT entries do not point to the actual procedure inside a
library because it has not been loaded yet. Instead, they point to code
that loads the library and then rewrites the PLT to link the call to the
actual target procedure.
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absolute address of the currently running code. The ad-
dress of the GOT is calculated by adding a known offset.
Address Before

8050512: call 0x8050517 

8050517: pop %ebx 

8050518: add $1234, %ebx 

805051e: mov 4(%ebx), $1 

Call next instruction

ebx ß 8050517

ebx ß GOT

GOT[4] ß 1

When transforming this piece of code to PALACE,
only the calculation of the GOT needs to be substi-
tuted. In this case, the three former instructions get
compressed to a single instruction with segment over-
ride. Interestingly, this is a faster method of accessing
the GOT than the currently used PC-relative addressing.

Address After

8050512: mov %fs:4, %ebx 

805051e: mov 4(%ebx), $1 

RaTTle: 0x805174B 

ebx ß GOT

GOT[4] ß 1

Points to GOT

Inter-Library Calls. Inter-library calls are calls from
one loaded library to another or from the main executable
to a library. In theory, these calls are no different from
a call within the same library or executable because the
RaTTle can simply point to code in another library. How-
ever, in practice, this would require the RaTTle to re-
flect all possible combinations of loaded libraries. There-
fore, we resort to a solution in which every loaded library
brings its own RaTTle and an inter-library call acts as a
trampoline that changes the segment selector FS to point
to the corresponding RaTTle of another library prior to
jumping into that library (see in Figure 7).

Code1	  
instr 
instr 
 
ret 

RaTTle1	  0: 0x1200 
4: 0x12C9 
8: mov LIB2, %fs 
   call *%fs:0 
   mov LIB1, %fs 
   ret 

call %fs:8 

0x1200: 

LDT	  
Offset:	  0x8F9B 

Offset:	  0x97A2 

LIB1:	  

LIB2:	  

Code2	  
instr 
instr 
 
ret 

RaTTle2	  

0x6721: 

Figure 7: Inter-Library Calls: Because the indices overlap, a
new RaTTle needs to be set up before those calls.

Please note the missing “*” in the call %fs:8 of Fig-
ure 7, which means the RaTTle is not de-referenced
rather than used as a trampoline. This trampoline then
lets FS point to the index of the other library’s RaTTle
without the need to know the exact address. Suppose
the function that we want to call is stored at index 0 in
RaTTle2, but RaTTle1 is currently active. The code in

Figure 7 first sets FS to point to RaTTle2. RaTTle2 is
the second selector in the LDT. Hence, the trampoline
code in RaTTle1 assigns 10111bin = 23 to FS, which cor-
responds to a segment selector of “2” (see Appendix A).
The trampoline code then jumps to index 0, which now
corresponds to currently active RaTTle2. Because the
trampoline uses a call instruction to finally call into the
other library, control flow returns to the trampoline where
FS is restored to its former value.

4.6 Debugging

Debugging information augments the executable or li-
brary file with annotations describing which memory ad-
dresses correspond to which variables or lines of code.
These stored addresses must be compatible with Oxy-
moron randomized addresses. Since Oxymoron is imple-
mented as a static translation tool, the original debugging
information needs to be translated as well. Currently
Oxymoron supports the common DWARF [3] file format
which can be read by the gdb or other debuggers. This
way, it is possible to teach gdb the randomized addresses
so that gdb can still step through the code, inspect vari-
ables etc. like for the non-randomized executable.

5 Evaluation

In this section, we evaluate the effectiveness of Oxy-
moron empirically as well as theoretically. In order to
demonstrate the efficiency, we used the de-facto standard
performance benchmark SPEC CPU2006 as well as mi-
cro benchmarks to measure cache hit/miss effects.

First, we inspect the security of the RaTTle itself to ver-
ify that it did not open the flood gates for other attack
vectors. Then, we compare the slightly different random-
ization of memory pages that this solution entails to the
more classical memory randomization solutions in order
to get an understanding of the implied security.

5.1 Practical Security Evaluation

We tested our randomization solution against real-life
vulnerabilities and exploits. The documented vulnerabil-
ities CVE-2013-0249 and CVE-2008-2950 both allow ar-
bitrary code execution by means of return-oriented pro-
gramming [2]. CVE-2013-0249 targets the libcurl li-
brary which handles web requests and is used in dozens
of popular programs, including ClamAntiVirus, Libre-
Office, and the Git versioning system. The exploit for
this vulnerability is crafted in such a way that it trig-
gers a buffer overflow in libcurl with the ability to over-
write a return address and ultimately execute a chain of
ROP gadgets. The severity of this bug lies in the fact
that it can be triggered remotely when libcurl accesses

8
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a prepared resource that is under the control of the ad-
versary. In order to test the exploit, we used the ‘curl’
downloader executable in version 7.28.1, which inter-
nally uses libcurl. We could successfully run arbitrary
code by assembling ROP gadgets at our discretion. Af-
ter curl had been rewritten to use Oxymoron, the exploit
was no longer possible as the addresses that are needed
to successfully mount the attack are unknown due to the
randomization at every program start.

Similarly, the vulnerability CVE-2008-2950 allows for ar-
bitrary code reuse in the PDF library poppler, which
is used by many popular programs such as LibreOffice,
Evince and Inkscape. A specially prepared PDF file can
trigger an arbitrary memory reference in the poppler li-
brary, ultimately leading to a code reuse attack. After our
attacks against pdftotext using libpoppler 0.8.4 were
successful, we applied Oxymoron. Since the memory ad-
dress of the PALACE-protected process were no longer
known, the exploit was rendered unsuccessful after ap-
plying Oxymoron to the pdftotext executable.

5.2 Security of the RaTTle

Because processes are protected by W ⊕X (stack execu-
tion prevention), no code can be injected by an attacker.
Hence, the only possibility is to reuse existing code. This
existing (PALACE) code is littered with %fs-prefixed in-
structions that implicitly point to the RaTTle due to the
sheer fact they incorporate a reference to %fs. However,
the situation is identical to finding ROP gadgets in a clas-
sical program, as an attacker needs to know their ran-
domized position in memory in order to chain them to-
gether. The fact that this address is not known to an at-
tacker prevents the reuse of code. In fact, the probability
of guessing a correct address is negligible (see subsection
“Theoretical Security Evaluation”).

The RaTTle holds lots of random addresses and, at first
glance, seems like a valuable target for an attacker. The
security of the RaTTle originates from the fact that its
address is unknown and that its content cannot be ac-
cessed. All %fs-instructions are mere replacements for
control flow branches and as such only use the RaTTle
as a layer of indirection without ever knowing the actual
address of the landing position. If an %fs-instruction is
a replacement for data access, the same holds true: The
RaTTle is only used for indirect access of the actual data.
In general, the x86 architecture does not support reveal-
ing addresses that segments point to. The only way to
read the address is to parse the GDT or LDT which both
reside in kernel space. To access the LDT, a user mode
program needs to issue a special syscall. Even if a pro-
gram would consist of ROP gadgets to issue this syscall,
he would still need to know the addresses of the required

ROP gadgets. So this can be reduced to finding special
instructions that can be used as ROP gadgets. This has a
negligible probability as explained in “Theoretical Secu-
rity Evaluation”.

5.3 Enhanced Security of the RaTTle

It is possible to further enhance the security of the
RaTTle by making it completely inaccessible. The seg-
mentation principle of the x86 architecture allows to dis-
tinguish code access from data access. This way, it is
possible to set up two different RaTTles, one for code
going through %fs and one for data going through %gs.
First of all, in a program without self-modifying code,
there should be no instructions that read data using the
%fs code segment selector. Even if there were, the pro-
cessor would prohibit such access. Further, it is possible
to move the RaTTle completely outside of the normal,
otherwise flat2 data segment (%ds). This results in the
inability for code to ever access the RaTTle without us-
ing proper segment selectors, because it no longer resides
in the accessible segment. This is an effective protec-
tion against leakage and disclosure attacks (see subsec-
tion “Disclosure Attacks”). Also, the call stack could
be protected using this method. If return addresses are
not saved on the regular stack, but rather on a side stack
in a reserved area inside the RaTTle, there is no way
for memory disclosure vulnerabilities to ever read return
addresses and thus they cannot gain information about
function addresses.

5.4 Theoretical Security Evaluation

In this subsection we elaborate on why the entropy of
memory page granularity randomization is still sufficient
for fine-grained randomization and why it is much higher
than traditional ASLR.

First, we show that the entropy induced by a page-
granular randomization is high enough in the sense that
the adversary has only negligible probability of success-
fully guessing an address. We model the adversary’s goal
as mounting a code reuse attack against a running pro-
gram consisting of the executable and its loaded libraries.
Hence, his goal is to know the address of either a par-
ticular function f of interest (return-into-libc attack) or
of several particular instructions i1 . . . ik to build gadgets
from (ROP attack). Since the contents of a memory page
can be extracted from the executable file, the attacker can
determine in which memory page the instruction in ques-
tion resides. Therefore, the success of the adversary re-

2A flat segment is a segment that covers the entire address space,
i.e. 0x00000000 to 0xFFFFFFFF on a 32-bit system. This is the
default for Windows, Linux and MacOS.
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lies on the probability of knowing the address of a par-
ticular memory page.

Every memory page is assigned a random address at
load-time. Thus, the first page can choose 1 out of n
possible page-aligned address slots. The second 1 out
of n− 1 and so forth. For p total process pages to lay
out in memory, this yields a total of n!

(n−p)! combina-
tions. The adversary’s probability of correctly guessing
one address is hence the reciprocal (n−p)!

n! . In a 32 bit ad-
dress space, we have n = 219 = 524,288 possible page
addresses. The probability of guessing one page cor-
rectly therefore is 2−19. That scenario is intuitively iden-
tical to ASLR which only randomizes the base address
of the code. However, when finding ROP gadget chains,
the page granularity drastically lowers the chance of suc-
cess compared to ASLR because several pages have to
be guessed correctly. For a 128 kB (p = 32 pages) exe-
cutable to lay out in memory, the adversary’s probability
of guessing the correct memory layout therefore is:

Pr
[
Advlayout

]
=

(n− p)!
n!

=
(219 −25)!

219!
= 2−608

Leakage Attacks in ASLR. A leakage vulnerability in-
advertently reveals a valid, current address inside the
running program. If the adversary additionally knows
which object or function has been leaked, he knows the
address of that object/function. In the case of ASLR, he
can then infer the current addresses of all other objects
or functions because ASLR has shifted the entire code
segment in memory by changing its base address. Con-
sequently, the relative distances between functions stay
exactly the same.

To model the leakage attack, we assume the adversary
exploits an existing leakage vulnerability thereby learn-
ing a valid address. We assume that this address depicts
the beginning of a particular function that the adversary
knows. That such a leaked address actually constitutes
a function pointer is not very likely but here it models
the best-case scenario for the adversary. Hence, the fol-
lowing calculations give a upper bound of success for an
adversary.

More formally, the adversary has access to an oracle that
can tell which function f has leaked and the adversary
can use the leakage vulnerability to learn the current ad-
dress of A f of the function f . The adversary can then
calculate their difference in memory by calculating their
difference in the executable file. As their relative posi-
tions did not change in ASLR, the adversary can infer the
current address of f ′ by calculating the difference to the
leaked function f . In the case of traditional ASLR, the
address of any function f ′ can be calculated with proba-
bility 1. Ultimately, the success probability of the adver-

sary entirely depends on the likelihood of finding such a
leakage vulnerability.

Leakage Attacks in Oxymoron. In our case of memory
page granularity shuffling, the relative distance between
functions varies in general since the code segment is not
just shifted en bloc. For any leaked pointer f , there is a
chance that it resides in the same memory pages as the
desired function f ′. For an equal distribution of f ′ in p
pages, the likelihood of f ′ being in the same page as f is
1
p . For a program of a total size of only one memory page
(4kB), both functions f and f ′ must reside in the same
memory page. Under the assumption that both functions
are uniformly distributed, the probability for both to ap-
pear in the same memory page is 1

p for a program size of
p pages. Hence

Pr[AdvPALACE
ret2libc ]≤ 1

p
and Pr[AdvPALACE

ROP ]≤ 1
pk

Disclosure Attack. We distinguish between a leakage
and a disclosure vulnerability. A disclosure vulnerabil-
ity allows an attacker to read arbitrary memory content
given its address. Snow et al. proposed just-in-time code
reuse, which showed that a disclosure vulnerability can
significantly reduce the security of fine-grained memory
randomization [26]. Just-in-time code reuse repeatedly
exploits a memory disclosure vulnerability to map por-
tions of a process’ address space with the objective of
reusing the so-discovered code in a malicious way. In a
fine-grained randomization, the memory pages are scat-
tered across the address space and scanning with arbi-
trary memory addresses is very likely to end up in un-
mapped memory. In order not to trap into unmapped
memory, they rely on a leakage attack to learn a valid
address and then start from this address by disassem-
bling the code in order to follow control flow instruc-
tions. Even fine-grained randomization can be reversed
using their technique by transitively following the con-
trol flow.

However, in our setting of PALACE code, no control
flow branch can be followed by reading memory as such
a branch only constitutes an offsets into the RaTTle. In
order to resolve branches such as call *%fs:4, the at-
tacker would need to know the address of the RaTTle or
%fs, which is not possible, as alluded to earlier. The only
chance an attacker has is to rely on a leakage vulnerabil-
ity to get a valid address. If that address points to data it
is useless to the attacker. If it points to code, the attacker
can only use a disclosure vulnerability to get the contents
of up to a whole memory page (4KB). Otherwise, he is
likely to overrun the page and end up in unmapped mem-
ory which triggers a page fault that kills the program.
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5.5 Effectiveness of Memory Page Sharing

To have a set basic programs one would typically find
on a Linux machine, we used the busybox project, which
incorporates 298 standard Linux commands. Those com-
mand line programs were started and their memory foot-
print was measured using /proc/<PID>/maps. On av-
erage, they mapped 14.9% more code pages than their
unmodified original. Their data pages were unmodi-
fied. Only the RaTTle consumes memory (see Subsec-
tion 6.1). Compared to fine-grained memory randomiza-
tion solutions that impede code page sharing, Oxymoron
on average saves about 85% of program memory.

6 Performance Evaluation

To evaluate the efficiency of Oxymoron, we did not
only use standard command line tools from busybox but
conducted CPU benchmarks with PALACE-enabled pro-
grams using the de facto standard SPEC CPU2006 inte-
ger benchmark suite. All benchmarks were performed
on an Intel Core i7-2600 CPU running at 3.4 GHz with 8
GB of RAM.

Static Translation Overhead. Before the executable
and libraries can be shuffled in memory, they either need
to be compiled with an PALACE-enabled compiler or
they must be converted using static translation (cf. sec-
tion 3). Even though the translation only needs to be
performed once, it must be efficient. We measured the
rewriting time for all benchmark programs of the Spec
CPU suite. The rewriting process is not exactly linear,
but on average achieves between 35,000 and 700,000 in-
structions per second. An overview of the timings of sev-
eral programs is given in Table 1.

Benchmark Total #
of Instructions

Rewriting
Time (s)

483.xalancbmk 1,111,779 4.321
403.gcc 942,244 3.667
471.omnetpp 238,978 0.316
400.perlbench 322,084 1.084
445.gobmk 226,661 6.744
464.h264ref 170,942 0.396
456.hmmer 54,582 0.116
458.sjeng 40,438 0.101
473.astar 32,502 0.032
401.bzip2 28,087 0.056
462.libquantum 15,788 0.024
429.mcf 12,268 0.024

Table 1: Timings for static rewriting that needs to be done at
least once. The total # of instructions include the executable
and all its shared libraries.

The number of instructions per benchmark reflect the to-
tal number of instructions from the executable file itself
plus its dependent libraries. Note, that this measurement
rewrites the entire C-library and other dependent libraries
again for each benchmark and is hence slower than just
translating the main executable.

Run-Time Overhead. The run-time overhead intro-
duced by the translation through the RaTTle as well
as the introduction of jmp instructions to connect pages
(cf. section 3) is measured in Figure 8. The average
run-time overhead of all benchmarks is only 2.7% for
the PALACE code and 0.1% for the additionally needed
chunking in memory page-sized pieces (4096 bytes).
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Performance Run-Time Overhead 
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RaTTle	  (avg.	  2.7%)	  

Figure 8: SPEC CPU2006 integer benchmark results.

Cache Miss Penalty. We also evaluated the cache ef-
fects of our randomization. This is important, since mod-
ern processors assume locality of code, which might be
thwarted by wild jumping in the code due to the random-
ization. Keeping cache effects in mind, our implemen-
tation optimizes jumping behavior in order to optimize
performance under real-life conditions. Our cache ex-
periments showed that PALACE and the randomization
have no measurable cache effect.

For this impact to be measured, we handcrafted code
consisting of interdependent add instructions with a to-
tal length of one L1 cache line. These instructions are
aligned in memory in such a way that they start at the
beginning of a cache line and re-occur such that every
cache set and every cache line is filled after execution.
We inserted equidistant jmp instructions and measured
the overhead of 100,000 runs on an Intel Core i7-2600
(32 KB L1 cache, 64 bytes per line). Our results show
that the performance impact is not measurable up to ev-
ery seventh instruction being a jmp. If every sixth in-
struction is a jmp, a negligible overhead of 0.4% is in-
troduced. Our analysis of the busybox code showed that
after translating it to PALACE, on average indeed every
6th instruction was a branch or jump.
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6.1 Memory and Instruction Overhead

Compared to a traditional program, the introduction of
PALACE code replaced control flow branches with other,
%fs-relative, instructions. For all SPEC2006 benchmark
executables, on average 9% +-1.7% of all instructions are
calls that needed to be replaced by indirections through
the RaTTle. GOT indirect calls through the RaTTle are
only 0.03% of all instructions.

Additionally, a PALACE binary executable file is slightly
larger than a traditional executable file because each code
page (4 KB) is a separate ASLR-enabled section in the
executable file.

During run-time, the memory footprint also slightly in-
creases because the RaTTle has to be kept in memory. Of
course, this run-time memory usage is accompanied with
the achieved goal of memory savings due to the sharing
of code pages with other processes.

Encapsulating each memory page in a separate segment
in the ELF file requires the allocation of one section
header and one program header per page. A section
header is 40 bytes and the ELF program header is 32
bytes which leads to an overhead of 72 bytes per 4096
byte memory page, or ≈ 1.76%. Figure 9 depicts both
the increase of instructions due the static translation as
well as the increase of the ELF section and program
headers.
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Figure 9: Memory overhead after static translation.

Run-Time. The size of the RaTTle depends on how
many references the code has. If a target is referenced
more then once, e.g., the GOT, only one index is saved
in the RaTTle. For all files that belong to the SPECint
CPU2006 benchmark, on average 19% of the code seg-
ment had to be added in the form of a RaTTle.

7 Related Work

Over the course of the last several years, code reuse at-
tacks and their mitigation has been an ongoing cat and
mouse game. Some of the code reuse mitigation tech-
niques address the problem at its roots by preventing
buffer overruns or by confining the control flow to the
destined control-flow graph. Other mitigation techniques
make it hard for the adversary to guess or brute-force
addresses that are necessary for successful execution of
malicious code.

In this section, we focus on approaches that use fine-
grained memory randomization as a means to mitigate
code reuse attacks and work that nullifies memory ran-
domization or even fine-grained memory randomization.

One way to categorize fine-grained memory random-
ization solutions is by their implementation: There ex-
ist compiler-based solutions, static or load-time transla-
tions, and dynamic translations. Another category di-
mension is whether they randomize only once, every
time the program starts, or even continuously during pro-
gram execution.

Compiler-Based Solutions. If a program is not random-
ized, an adversary can learn the layout, i.e. addresses, of
all functions and gadgets and hence use them in a ret2libc
or ROP attack. The idea of compiler-based approaches is
to randomize the layout of a program and to install differ-
ently randomized copies on different computers so that
the program layout is not predictable for an adversary.

Cohen et al. [10] suggested compiling different versions
of the same program. In a modern setting this technique
can be applied within an AppStore to distribute individu-
ally randomized software. Similarly, Franz et al. [16, 19]
have suggested automating this compiler process and
generate a different version of a program for every cus-
tomer. The authors suggest that app store providers in-
tegrate a multicompiler in the code production process.
However, those approaches have several shortcomings:
First, app store providers have no access to the app
source code. This requires the multicompiler to be de-
ployed on the developer side, who has to deliver possibly
millions3 of app copies to the app store. Second, the pro-
posed scheme requires software update processes to cor-
rectly patch app instances that in turn differ from each
other. Finally, the most severe drawback of compiler-
based solutions is the fact that the diversified program
remains unchanged until an update is provided, which
increases the chance of an adversary compromising this
particular instance over time.

3According to Gartner [4], the number of app downloads is about
102 billion in 2013.
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Similar to Oxymoron is the idea of using a compiler-
based solution to divide a shared library into even more
fragments. Code Islands [30] follows this path and com-
piles groups of functions to several shared libraries in-
stead of one shared library containing all the functions.
These (potentially thousands of shared library files) are
then put in a container whose format is understood by a
modified loader which maps the libraries in the particular
process. However, their solution needs a modified loader
to support the proprietary format. Executables then need
to load literally thousands of shared libraries, while each
library constitutes a single function.

In contrast, Bhatkar et al. [8] presented a source code
transformer and its implementation for x86/Linux. The
main idea is to augment any source code with the capa-
bility of self-diversification for each run. In particular,
features are added to the source code that allow the pro-
gram to re-order its functions in memory in order to mit-
igate code reuse attacks. Their tool can also be applied
to shared libraries if their source code is available. How-
ever, their solution induces a run-time overhead of 11%
and apparently needs access to the source code.

Static Translation. Static translation reads an exe-
cutable or shared library file from disk, disassembles
it and transforms the instructions according to a pre-
defined pattern within the executable file itself. Kil
et al. [20] use static translation for their Address Space
Layout Permutation (ASLP). ASLP performs function
permutation without requiring access to source code.
The proposed scheme statically rewrites ELF executables
to permute all functions and data objects of an applica-
tion. The presented scheme is efficient and also supports
re-diversification for each run. However, only the func-
tions themselves are permuted, not their content.

Pappas et al. proposed randomizing instructions and reg-
isters within a basic block to mitigate return-oriented
programming attacks [21]. However, the proposed solu-
tion cannot prevent return-into-libc attacks (which have
been shown to be Turing-complete [27]), since all func-
tions remain at their original position.

Load-Time Translation. Load-time translation solu-
tions are similar to static translation but apply the transla-
tion at load time in order for the processes to benefit from
a re-randomization at each run. This can be achieved
by several means, such as rewriting the binary file after
it has been loaded but before execution [29, 13]. Such
solutions usually suffer from the fact that each execu-
tion either needs a translation/rewriting phase each time
a process is started or they need a prior static analysis
phase [29].

Dynamic Translation. Dynamic translation leaves the
original file untouched and does not apply binary rewrit-
ing but the program undergoes a dynamic translation,
i.e. the instructions are transformed as they are executed.
Dynamic translation is very similar to Just-in-Time (JIT)
compilation but usually translates from and to the same
instruction set architecture. For example, Bruening pro-
posed the DynamoRIO framework in his PhD thesis [9].
DynamoRIO is able to perform run-time code manipula-
tion. ILR (instruction location randomization) [18] ran-
domizes the location of each single instruction in the vir-
tual address space. For this, a program needs to be an-
alyzed and re-assembled during a static analysis phase.
This is why ILR induces a significant performance over-
head (on average 13%), and suffers from a high space
overhead, i.e., the rewriting rules reserve on average 104
MB for only one benchmark of the SPEC CPU bench-
mark suite. For direct calls, ILR can only randomize
the return address in 58% of the calls, meaning that for
a large number of return instructions, ILR needs to do
a live translation for un-randomized return addresses to
runtime addresses.

Constant Re-Randomization. To the best of our
knowledge, there are only two papers that actu-
ally implemented and benchmarked re-randomization.
Curtsinger et al. [11] have implemented an LLVM com-
piler modification that injects code, which adds the func-
tionality to re-randomize the address of functions every
500 ms. According to [11], their overhead of code, heap
and stack (re-)randomization is 7%.

Giuffrida et al. [17] changed the Minix microkernel to
re-randomize itself every x seconds. This is achieved
by maintaining the intermediate language of the LLVM
compiler for the compiled kernel modules. However, this
procedure has a significant run-time overhead of 10% for
a randomization every x = 5 seconds or even 50% over-
head when applied every second.

Common Shortcomings and Nullification. All the re-
lated work on fine-grained memory randomization has
in common that they either do not randomize shared li-
braries, or if they do, the difference introduced in the
shared libraries prohibits code sharing.

Furthermore, it is unclear whether fine-grained memory
randomization alone is enough to protect against code
reuse attacks. Recently, Snow et al. [26] showed that
given a memory disclosure vulnerability it is possible to
assemble ROP gadgets on-demand without knowing the
layout or randomization of a process. They explore the
address space of the vulnerable process step by step by
following the control flow from an arbitrary start posi-
tion. After they have discovered enough ROP gadgets

13
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they compile the payload so that it incorporates the ac-
tual current addresses that were discovered on-site.

Snow et al. also proposed potential mitigations of their
own attack. However, the proposed solutions are either
very specific to their heap spraying exploitation or are as
general and slow as frequent re-randomization of a whole
process. The latter is not even secure if the attack takes
place between two randomization phases.

To the best of our knowledge, in this paper we present
the first solution that addresses both problems: (1) It is
secure against the new just-in-time ROP by Snow et al.
(2) It profits from code sharing despite secure random-
ization.

8 Discussion

In this section we would like to discuss the general ap-
plicability of Oxymoron but also its limitations.

The PALACE code presented in this paper only relies on
segmentation as an additional hardware feature. Hence,
Oxymoron also works in virtualized environments. We
successfully tested Oxymoron in software and hardware
virtual machines as well as on a para-virtualized Linux
using the Xen hypervisor.

The solution presented herein was implemented for the
32 bit x86 architecture. While its 64 bit successor has
limited supported for segmentation, the necessary offset
functionality of %fs segment registers is still available.
However, in 64 bit mode, segments do no longer support
to set a limit, which makes the RaTTle accessible as data
if its address is known.

Another interesting avenue that we did not investigate is
just-in-time (JIT) compiled code, such as the Java run-
time environment. Those JIT-compilers would need to
be adapted in order to emit PALACE-enabled code, oth-
erwise the traditional code they emit is not protected.

9 Conclusion

We presented a novel technique for fine-grained memory
randomization that still allows sharing of code among
processes. This makes fine-grained memory randomiza-
tion practical as the memory overhead is significantly re-
duced in contrast to other randomization solutions. Oxy-
moron is effective, i.e., code reuse attacks can be mit-
igated, memory leakage vulnerabilities can no longer
be used to revert the randomization, and we presented
the first solution to be secure against just-in-time code
reuse attacks. The randomized addresses are protected
by hardware means, which is an unprecedented security
level with a run-time overhead of only 2.7%.

An interesting side effect of our PALACE code is that
accessing the Global Offset Table (GOT) uses fewer in-
structions than the state-of-the-art technique of using
PC-relative addressing. Maybe our method could be a
slightly faster alternative for accessing the GOT.
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A LDT Selector Bits

The actual value that a segment selector must hold is not
merely an index to the GDT/LDT, but is defined by the
architecture set as follows:

Bits 15 - 3 Bit 2 Bit 1 - 0
Number of the entry 0=GDT, 1=LDT Privilege Level

As user mode is in Ring 3, bits 0 and 1 must be set to
11bin. The use of the LDT forces us to set bit 2 to 1bin.
The index “0” of the LDT yields a valid value for the
segment selector of 111bin or 7 in decimal.
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