
This paper is included in the Proceedings of the
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

Open access to the Proceedings of
the 24th USENIX Security Symposium

is sponsored by USENIX

Compiler-instrumented, Dynamic Secret-Redaction
of Legacy Processes for Attacker Deception

Frederico Araujo and Kevin W. Hamlen, The University of Texas at Dallas

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/araujo

USENIX Association 24th USENIX Security Symposium 145

Compiler-instrumented, Dynamic Secret-Redaction
of Legacy Processes for Attacker Deception

Frederico Araujo and Kevin W. Hamlen
The University of Texas at Dallas

{frederico.araujo, hamlen}@utdallas.edu

Abstract

An enhanced dynamic taint-tracking semantics is pre-
sented and implemented, facilitating fast and precise run-
time secret redaction from legacy processes, such as those
compiled from C/C++. The enhanced semantics reduce
the annotation burden imposed upon developers seeking
to add secret-redaction capabilities to legacy code, while
curtailing over-tainting and label creep.

An implementation for LLVM’s DataFlow Sani-
tizer automatically instruments taint-tracking and secret-
redaction support into annotated C/C++ programs at
compile-time, yielding programs that can self-censor their
address spaces in response to emerging cyber-attacks. The
technology is applied to produce the first information
flow-based honey-patching architecture for the Apache
web server. Rather than merely blocking intrusions, the
modified server deceptively diverts attacker connections
to secret-sanitized process clones that monitor attacker
activities and disinform adversaries with honey-data.

1 Introduction

Redaction of sensitive information from documents has
been used since ancient times as a means of conceal-
ing and removing secrets from texts intended for pub-
lic release. As early as the 13th century B.C., Pharaoh
Horemheb, in an effort to conceal the acts of his predeces-
sors from future generations, so thoroughly located and
erased their names from all monument inscriptions that
their identities weren’t rediscovered until the 19th century
A.D. [22]. In the modern era of digitally manipulated
data, dynamic taint analysis (cf., [40]) has become an im-
portant tool for automatically tracking the flow of secrets
(tainted data) through computer programs as they execute.
Taint analysis has myriad applications, including program
vulnerability detection [5, 6, 9, 25, 33, 34, 37, 45, 46], mal-
ware analysis [19, 20, 36, 48], test set generation [3, 42],
and information leak detection [4, 14, 21, 23, 24, 49].

Our research introduces and examines the associated
challenge of secret redaction from program process im-
ages. Safe, efficient redaction of secrets from program
address spaces has numerous potential applications, in-
cluding the safe release of program memory dumps to
software developers for debugging purposes, mitigation
of cyber-attacks via runtime self-censoring in response to
intrusions, and attacker deception through honey-potting.

A recent instantiation of the latter is honey-patching [2],
which proposes crafting software security patches in such
a way that future attempted exploits of the patched vul-
nerabilities appear successful to attackers. This frustrates
attacker vulnerability probing, and affords defenders op-
portunities to disinform attackers by divulging “fake” se-
crets in response to attempted intrusions. In order for such
deceptions to succeed, honey-patched programs must be
imbued with the ability to impersonate unpatched soft-
ware with all secrets replaced by honey-data. That is, they
require a technology for rapidly and thoroughly redacting
all secrets from the victim program’s address space at
runtime, yielding a vulnerable process that the attacker
may further penetrate without risk of secret disclosure.

Realizing such runtime process secret redaction in prac-
tice educes at least two significant research challenges.
First, the redaction step must yield a runnable program
process. Non-secrets must therefore not be conservatively
redacted, lest data critical for continuing the program’s
execution be deleted. Secret redaction for running pro-
cesses is hence especially sensitive to label creep and over-
tainting failures. Second, many real-world programs tar-
geted by cyber-attacks were not originally designed with
information flow tracking support, and are often expressed
in low-level, type-unsafe languages, such as C/C++. A
suitable solution must be amenable to retrofitting such
low-level, legacy software with annotations sufficient to
distinguish non-secrets from secrets, and with efficient
flow-tracking logic that does not impair performance.

Our approach builds upon the LLVM compiler’s [31]
DataFlow Sanatizer (DFSan) infrastructure [18], which

1

146 24th USENIX Security Symposium USENIX Association

adds byte-granularity taint-tracking support to C/C++ pro-
grams at compile-time. At the source level, DFSan’s
taint-tracking capabilities are purveyed as runtime data-
classification, data-declassification, and taint-checking
operations, which programmers add to their programs to
identify secrets and curtail their flow at runtime. Unfortu-
nately, straightforward use of this interface for redaction
of large, complex legacy codes can lead to severe over-
tainting, or requires an unreasonably detailed retooling of
the code with copious classification operations. This is un-
safe, since missing even one of these classification points
during retooling risks disclosing secrets to adversaries.

To overcome these deficiencies, we augment DFSan
with a declarative, type annotation-based secret-labeling
mechanism for easier secret identification; and we intro-
duce a new label propagation semantics, called Pointer
Conditional-Combine Semantics (PC2S), that efficiently
distinguishes secret data within C-style graph data struc-
tures from the non-secret structure that houses the data.
This partitioning of the bytes greatly reduces over-tainting
and the programmer’s annotation burden, and proves crit-
ical for precisely redacting secret process data whilst pre-
serving process operation after redaction.

Our innovations are showcased through the develop-
ment of a taint tracking-based honey-patching framework
for three production web servers, including the popu-
lar Apache HTTP server (∼2.2M SLOC). The modified
servers respond to detected intrusions by transparently
forking attacker sessions to unpatched process clones
in confined decoy environments. Runtime redaction
preserves attacker session data without preserving data
owned by other users, yielding a deceptive process that
continues servicing the attacker without divulging secrets.
The decoy can then monitor attacker strategies, harvest
attack data, and disinform the attacker with honey-data in
the form of false files or process data.

Our contributions can be summarized as follows:
• We introduce a pointer tainting methodology through

which secret sources are derived from statically anno-
tated data structures, lifting the burden of identifying
classification code-points in legacy C code.

• We propose and formalize taint propagation seman-
tics that accurately track secrets while controlling
taint spread. Our solution is implemented as a small
extension to LLVM, allowing it to be applied to a
large class of COTS applications.

• We implement a memory redactor for secure honey-
patching. Evaluation shows that our implementation
is both more efficient and more secure than previous
pattern-matching based redaction approaches.

• Implementations and evaluations for three produc-
tion web servers demonstrate that the approach is
feasible for large-scale, performance-critical soft-
ware with reasonable overheads.

Listing 1: Apache’s URI parser function (excerpt)
1 /* first colon delimits username:password */
2 s1 = memchr(hostinfo, ':', s − hostinfo);
3 if (s1) {
4 uptr->user = apr pstrmemdup(p, hostinfo, s1 − hostinfo);
5 ++s1;
6 uptr->password = apr pstrmemdup(p, s1, s − s1);
7 }

2 Approach Overview

We first outline practical limitations of traditional dy-
namic taint-tracking for analyzing dataflows in server ap-
plications, motivating our research. We then overview our
approach and its application to the problem of redacting
secrets from runtime process memory images.

2.1 Dynamic Taint Analysis
Dynamic taint analyses enforce taint policies, which spec-
ify how data confidentiality and integrity classifications
(taints) are introduced, propagated, and checked as a
program executes. Taint introduction rules specify taint
sources—typically a subset of program inputs. Taint prop-
agation rules define how taints flow. For example, the
result of summing tainted values might be a sum labeled
with the union (or more generally, the lattice join) of the
taints of the summands. Taint checking is the process of
reading taints associated with data, usually to enforce an
information security policy. Taints are usually checked at
data usage or disclosure points, called sinks.

Extending taint-tracking to low-level, legacy code not
designed with taint-tracking in mind is often difficult. For
example, the standard approach of specifying taint intro-
ductions as annotated program inputs often proves too
coarse for inputs comprising low-level, unstructured data
streams, such as network sockets. Listing 1 exemplifies
the problem using a code excerpt from the Apache web
server [1]. The excerpt partitions a byte stream (stored
in buffer s1) into a non-secret user name and a secret
password, delimited by a colon character. Naı̈vely label-
ing input s1 as secret to secure the password over-taints
the user name (and the colon delimiter, and the rest of
the stream), leading to excessive label creep—everything
associated with the stream becomes secret, with the result
that nothing can be safely divulged.

A correct solution must more precisely identify data
field uptr->password (but not uptr->user) as se-
cret after the unstructured data has been parsed. This
is achieved in DFSan by manually inserting a runtime
classification operation after line 6. However, on a larger
scale this brute-force labeling strategy imposes a danger-
ously heavy annotation burden on developers, who must
manually locate all such classification points. In C/C++
programs littered with pointer arithmetic, the correct clas-
sification points can often be obscure. Inadvertently omit-
ting even one classification risks information leaks.

2

USENIX Association 24th USENIX Security Symposium 147

2.2 Sourcing & Tracking Secrets

To ease this burden, we introduce a mechanism whereby
developers can identify secret-storing structures and fields
declaratively rather than operationally. For example, to
correctly label the password in Listing 1 as secret, users
of our system may add type qualifier SECRET STR to
the password field’s declaration in its abstract datatype
definition. Our modified LLVM compiler responds to
this static annotation by dynamically tainting all values
assigned to the password field. Since datatypes typically
have a single point of definition (in contrast to the many
code points that access them), this greatly reduces the
annotation burden imposed upon code maintainers.

In cases where the appropriate taint is not stati-
cally known (e.g., if each password requires a differ-
ent, user-specific taint label), parameterized type-qualifier
SECRET〈f〉 identifies a user-implemented function f that
computes the appropriate taint label at runtime.

Unlike traditional taint introduction semantics, which
label program input values and sources with taints, rec-
ognizing structure fields as taint sources requires a
new form of taint semantics that conceptually inter-
prets dynamically identified memory addresses as taint
sources. For example, a program that assigns address
&(uptr->password) to pointer variable p, and then as-
signs a freshly allocated memory address to ∗p, must
automatically identify the freshly allocated memory as a
new taint source, and thereafter taint any values stored at
∗p[i] (for all indexes i).

To achieve this, we leverage and extend DFSan’s
pointer-combine semantics (PCS) feature, which option-
ally combines (i.e., joins) the taints of pointers and
pointees during pointer dereferences. Specifically, when
PCS on-load is enabled, read-operation ∗p yields a value
tainted with the join of pointer p’s taint and the taint of
the value to which p points; and when PCS on-store is
enabled, write-operation ∗p := e taints the value stored
into ∗p with the join of p’s and e’s taints. Using PCS leads
to a natural encoding of SECRET annotations as pointer
taints. Continuing the previous example, PCS propagates
uptr->password’s taint to p, and subsequent derefer-
encing assignments propagate the two pointers’ taints to
secrets stored at their destinations.

PCS works well when secrets are always separated
from the structures that house them by a level of pointer
indirection, as in the example above (where uptr->

password is a pointer to the secret rather than the se-
cret itself). However, label creep difficulties arise when
structures mix secret values with non-secret pointers. To
illustrate, consider a simple linked list � of secret inte-
gers, where each integer has a different taint. In order
for PCS on-store to correctly classify values stored to
�->secret int, pointer � must have taint γ1, where γ1
is the desired taint of the first integer. But this causes

Listing 2: Abbreviated Apache’s session record struct
1 typedef struct {
2 NONSECRET apr pool t *pool;
3 NONSECRET apr uuid t *uuid;
4 SECRET STR const char *remote user;
5 apr table t *entries;
6 ...
7 } SECRET session rec;

stores to �->next to incorrectly propagate taint γ1 to the
node’s next-pointer, which propagates γ1 to subsequent
nodes when dereferenced. In the worst case, all nodes be-
come labeled with all taints. Such issues have spotlighted
effective pointer tainting as a significant challenge in the
taint-tracking literature [17, 27, 40, 43].

To address this shortcoming, we introduce a new, gen-
eralized PC2S semantics that augments PCS with pointer-
combine exemptions conditional upon the static type of
the pointee. In particular, a PC2S taint-propagation pol-
icy may dictate that taint labels are not combined when
the pointee has pointer type. Hence, �->secret int

receives �’s taint because the assigned expression has
integer type, whereas �’s taint is not propagated to �->

next because the latter’s assigned expression has pointer
type. We find that just a few strategically selected exemp-
tion rules expressed using this refined semantics suffices
to vastly reduce label creep while correctly tracking all
secrets in large legacy source codes.

In order to strike an acceptable balance between secu-
rity and usability, our solution only automates tainting
of C/C++ style structures whose non-pointer fields share
a common taint. Non-pointer fields of mixed tainted-
ness within a single struct are not supported automatically
because C programs routinely use pointer arithmetic to
reference multiple fields in a struct via a common pointer
(imparting the pointer’s taint to all the struct’s non-pointer
fields). Our work therefore targets the common case in
which the taint policy is expressible at the granularity of
structures, with exemptions for fields that point to other
(differently tainted) structure instances. This corresponds
to the usual scenario where a non-secret graph structure
(e.g., a tree) stores secret data in its nodes.

Users of our system label structure datatypes as
SECRET (implicitly introducing a taint to all fields within
the structure), and additionally annotate pointer fields as
NONSECRET to exempt their taints from pointer-combines
during dereferences. Pointers to dynamic-length, null-
terminated secrets get annotation SECRET STR. For exam-
ple, Listing 2 illustrates the annotation of session req,
used by Apache to store remote users’ session data. Finer-
granularity policies remain enforceable, but require man-
ual instrumentation via DFSan’s API, to precisely distin-
guish which of the code’s pointer dereference operations
propagate pointer taints. Our solution thus complements
existing approaches.

3

148 24th USENIX Security Symposium USENIX Association

container pool

target

decoy

web server
unpatched clone

attackertrigger
request

honey-patch
web server

response

clone

reverse proxy
controller

Figure 1: Architectural overview of honey-patching.

2.3 Application Study: Honey-Patching
Our discoveries are applied to realize practical, efficient
honey-patching of legacy web servers for attacker decep-
tion. Typical software security patches fix newly discov-
ered vulnerabilities at the price of advertising to attackers
which systems have been patched. Cyber-criminals there-
fore easily probe today’s Internet for vulnerable software,
allowing them to focus their attacks on susceptible targets.

Honey-patching, depicted in Figure 1, is a recent strat-
egy for frustrating such attacks. In response to malicious
inputs, honey-patched applications clone the attacker ses-
sion onto a confined, ephemeral, decoy environment,
which behaves henceforth as an unpatched, vulnerable
version of the software. This potentially augments the
server with an embedded honeypot that waylays, moni-
tors, and disinforms criminals.

Highly efficient cloning is critical for such architec-
tures, since response delays risk alerting attackers to the
deception. The cloning process must therefore rapidly lo-
cate and redact all secrets from the process address space,
yielding a runnable process with only the attacker’s ses-
sion data preserved. Moreover, redaction must not be
overly conservative. If redaction crashes the clone with
high probability, or redacts obvious non-secrets, this too
alerts the attacker. To our knowledge, no prior taint-
tracking approach satisfies all of these demanding per-
formance, precision, and legacy-maintainability require-
ments. We therefore select honey-patching of Apache as
our flagship case-study.

3 Formal Semantics
For explanatory precision, we formally define our new
taint-tracking semantics in terms of the simple, typed
intermediate language (IL) in Figure 2, inspired by prior
work [40]. The simplified IL abstracts irrelevant details
of LLVM’s IR language, capturing only those features
needed to formalize our analysis.

3.1 Language Syntax
Programs P are lists of commands, denoted c. Commands
consist of variable assignments, pointer-dereferencing as-

programs P ::= c

commands c ::= v :=e | store(τ, e1, e2) | ret(τ, e)

| call(τ, e, args) | br(e, e1, e0)

expressions e ::= v | 〈u, γ〉 | ♦b(τ, e1, e2) | load(τ, e)

binary ops ♦b ::= typical binary operators

variables v

values u ::= values of underlying IR language

types τ ::= ptr τ | τ τ | primitive types

taint labels γ ∈ (Γ,�) (label lattice)

locations � ::= memory addresses

environment ∆ : v ⇀ u

prog counter pc

stores σ : (� ⇀ u) ∪ (v ⇀ �)

functions f

function table φ : f ⇀ �

taint contexts λ : (� ∪ v) ⇀ γ

propagation ρ : γ → γ

prop contexts A : f → ρ

call stack Ξ ::= nil | 〈f, pc, ∆, γ〉 :: Ξ

Figure 2: Intermediate representation syntax.

signments (stores), conditional branches, function invo-
cations, and function returns. Expressions evaluate to
value-taint pairs 〈u, γ〉, where u ranges over typical value
representations, and γ is the taint label associated with
u. Labels denote sets of taints; they therefore comprise
a lattice ordered by subset (�), with the empty set ⊥ at
the bottom (denoting public data), and the universe � of
all taints at the top (denoting maximally secret data). Join
operation � denotes least upper bound.

Variable names range over identifiers and function
names, and the type system supports pointer types, func-
tion types, and typical primitive types. Since DFSan’s
taint-tracking is dynamic, we here omit a formal static
semantics and assume that programs are well-typed.

Execution contexts are comprised of a store σ relating
locations to values and variables to locations, an envi-
ronment ∆ mapping variables to values, and a tainting
context λ mapping locations and variables to taint labels.
Additionally, to express the semantics of label propaga-
tion for external function calls (e.g., runtime library API
calls), we include a function table φ that maps external
function names to their entry points, a propagation context
A that dictates whether and how each external function
propagates its argument labels to its return value label,
and the call stack Ξ. Taint propagation policies returned
by A are expressed as customizable mappings ρ from
argument labels γ to return labels γ.

4

USENIX Association 24th USENIX Security Symposium 149

VAL
σ,∆, λ � u ⇓ 〈u,⊥〉 VAR

σ,∆, λ � v ⇓ 〈∆(v), λ(v)〉
σ,∆, λ � e1 ⇓ 〈u1, γ1〉 σ,∆, λ � e2 ⇓ 〈u2, γ2〉

BINOP
σ,∆, λ � ♦b(τ, e1, e2) ⇓ 〈u1 ♦b u2, γ1 � γ2〉

σ,∆, λ � e ⇓ 〈u, γ〉
LOAD

σ,∆, λ � load(τ, e) ⇓ 〈σ(u), ρload(τ, γ, λ(u))〉
σ,∆, λ � e ⇓ 〈u, γ〉 ∆′ = ∆[v �→ u] λ′ = λ[v �→ γ]

ASSIGN〈σ,∆, λ,Ξ, pc, v := e〉 →1 〈σ,∆′, λ′,Ξ, pc + 1,P[pc + 1]〉
σ,∆, λ � e1 ⇓ 〈u1, γ1〉 σ,∆, λ � e2 ⇓ 〈u2, γ2〉 σ′ = σ[u1 �→ u2] λ′ = λ[u1 �→ ρstore(τ, γ1, γ2)]

STORE〈σ,∆, λ,Ξ, pc,store(τ, e1, e2)〉 →1 〈σ′,∆, λ′,Ξ, pc + 1,P[pc + 1]〉
σ,∆, λ � e ⇓ 〈u, γ〉 σ,∆, λ � e(u ? 1 : 0) ⇓ 〈u′, γ′〉

COND〈σ,∆, λ,Ξ, pc,br(e, e1, e0)〉 →1 〈σ,∆, λ,Ξ, u′,P[u′]〉
σ,∆, λ � e1 ⇓ 〈u1, γ1〉 · · · σ,∆, λ � en ⇓ 〈un, γn〉

∆′ = ∆[paramsf �→ u1 · · · un] λ′ = λ[paramsf �→ γ1 · · · γn] fr = 〈f, pc + 1,∆, γ1 · · · γn〉
CALL〈σ,∆, λ,Ξ, pc,call(τ, f, e1 · · · en)〉 →1 〈σ,∆′, λ′, fr :: Ξ, φ(f),P[φ(f)]〉

σ,∆, λ � e ⇓ 〈u, γ〉 fr = 〈f, pc′,∆′, γ〉 λ′ = λ[vret �→ A f γ]
RET〈σ,∆, λ, fr :: Ξ, pc,ret(τ, e)〉 →1 〈σ,∆′[vret �→ u], λ′,Ξ, pc′,P[pc′]〉

Figure 3: Operational semantics of a generalized label propagation semantics.

3.2 Operational Semantics
Figure 3 presents an operational semantics defining how
taint labels propagate in an instrumented program. Ex-
pression judgments are large-step (⇓), while command
judgments are small-step (→1). At the IL level, expres-
sions are pure and programs are non-reflective.

Abstract machine configurations consist of tuples
〈σ,∆, λ,Ξ, pc, ι〉, where pc is the program pointer and
ι is the current instruction. Notation ∆[v �→ u] denotes
function ∆ with v remapped to u, and notation P[pc]
refers to the program instruction at address pc. For brevity,
we omit P from machine configurations, since it is fixed.

Rule VAL expresses the typical convention that hard-
coded program constants are initially untainted (⊥). Bi-
nary operations are eager, and label their outputs with the
join (�) of their operand labels.

The semantics of load(τ, e) read the value stored in
location e, where the label associated with the loaded
value is obtained by propagation function ρload . Dually,
store(τ, e1, e2) stores e2 into location e1, updating λ
according to ρstore . In C programs, these model pointer
dereferences and dereferencing assignments, respectively.
Parameterizing these rules in terms of abstract propaga-
tion functions ρload and ρstore allows us to instantiate
them with customized propagation policies at compile-
time, as detailed in §3.3.

External function calls call(τ, f, e1 · · · en) evaluate
arguments e1 · · · en, create a new stack frame fr , and
jump to the callee’s entry point. Returns then consult
propagation context A to appropriately label the value
returned by the function based on the labels of its ar-
guments. Context A can be customized by the user to
specify how labels propagate through external libraries
compiled without taint-tracking support.

NCS ρ{load,store}(τ, γ1, γ2) := γ2

PCS ρ{load,store}(τ, γ1, γ2) := γ1 � γ2

PC2S ρ{load,store}(τ, γ1, γ2) := (τ is ptr) ? γ2 : (γ1 � γ2)

Figure 4: Polymorphic functions modeling no-combine,
pointer-combine, and PC2S label propagation policies.

3.3 Label Propagation Semantics

The operational semantics are parameterized by propa-
gation functions ρ that can be instantiated to a specific
propagation policy at compile-time. This provides a base
framework through which we can study different propa-
gation policies and their differing characteristics.

Figure 4 presents three polymorphic functions that can
be used to instantiate propagation policies. On-load prop-
agation policies instantiate ρload , while on-store policies
instantiate ρstore . The instantiations in Figure 4 define
no-combine semantics (DFSan’s on-store default), PCS
(DFSan’s on-load default), and our PC2S extensions:

No-combine. The no-combine semantics (NCS) model
a traditional, pointer-transparent propagation policy.
Pointer labels are ignored during loads and stores, causing
loaded and stored data retain their labels irrespective of
the labels of the pointers being dereferenced.

Pointer-Combine Semantics. In contrast, PCS joins
pointer labels with loaded and stored data labels during
loads and stores. Using this policy, a value is tainted on-
load (resp., on-store) if its source memory location (resp.,
source operand) is tainted or the pointer value derefer-
enced during the operation is tainted. If both are tainted
with different labels, the labels are joined to obtain a new
label that denotes the union of the originals.

5

150 24th USENIX Security Symposium USENIX Association

γpp

γvv
γp γv
*p

γp γv
*p

*p=v

value-to-pointer store

γpp

γp'p'
γp'

*p

γp'
*p

*p=p'

pointer-to-pointer store

Figure 5: PC2S propagation policy on store commands.

Pointer Conditional-Combine Semantics. PC2S general-
izes PCS by conditioning the label-join on the static type
of the data operand. If the loaded/stored data has pointer
type, it applies the NCS rule; otherwise, it applies the
PCS rule. The resulting label propagation for stores is
depicted in Figure 5.

This can be leveraged to obtain the best of both worlds.
PC2S pointer taints retain most of the advantages of PCS—
they can identify and track aliases to birthplaces of secrets,
such as data structures where secrets are stored immedi-
ately after parsing, and they automatically propagate their
labels to data stored there. But PC2S resists PCS’s over-
tainting and label creep problems by avoiding propaga-
tion of pointer labels through levels of pointer indirection,
which usually encode relationships with other data whose
labels must remain distinct and separately managed.

Condition (τ is ptr) in Figure 4 can be further gen-
eralized to any decidable proposition on static types τ .
We use this feature to distinguish pointers that cross data
ownership boundaries (e.g., pointers to other instances
of the parent structure) from pointers that target value
data (e.g., strings). The former receive NCS treatment
by default to resist over-tainting, while the latter receive
PCS treatment by default to capture secrets and keep the
annotation burden low.

In addition, PC2S is at least as efficient as PCS because
propagation policy ρ is partially evaluated at compile-
time. Thus, the choice of NCS or PCS semantics for each
pointer operation is decided purely statically, conditional
upon the static types of the operands. The appropriate
specialized propagation implementation is then in-lined
into the resulting object code during compilation.

Example. To illustrate how each semantics propagate
taint, consider the IL pseudo-code in Listing 3, which re-
visits the linked-list example informally presented in §2.2.
Input stream s includes a non-secret request identifier and
a secret key of primitive type (e.g., unsigned long).

If one labels stream s secret, then the public request id
becomes over-tainted in all three semantics, which is
undesirable because a redaction of request id may crash
the program (when request id is later used as an array
index). A better solution is to label pointer p secret and
employ PCS, which correctly labels the key at the moment
it is stored. However, PCS additionally taints the next-
pointer, leading to over-tainting of all the nodes in the

Listing 3: IL pseudo-code for storing public ids and secret
keys from an unstructured input stream into a linked list.

1 store(id, request id , get(s , id size));
2 store(key, p[request id]->key,get(s,key size));
3 store(ctx t*, p[request id]->next,queue head);

containing linked-list, some of which may contain keys
owned by other users. PC2S avoids this over-tainting by
exempting the next pointer from the combine-semantics.
This preserves the data structure while correctly labeling
the secret data it contains.

4 Implementation
Figure 6 presents an architectural overview of our im-
plementation, SignaC1 (Secret Information Graph iNstru-
mentation for Annotated C). At a high level, the imple-
mentation consists of three components: (1) a source-to-
source preprocessor, which (a) automatically propagates
user-supplied, source-level type annotations to containing
datatypes, and (b) in-lines taint introduction logic into
dynamic memory allocation operations; (2) a modified
LLVM compiler that instruments programs with PC2S
taint propagation logic during compilation; and (3) a run-
time library that the instrumented code invokes during
program execution to introduce taints and perform redac-
tion. Each component is described below.

4.1 Source-Code Rewriting
Type attributes. Users first annotate data structures con-
taining secrets with the type qualifier SECRET. This in-
structs the taint-tracker to treat all instantiations (e.g., dy-
namic allocations) of these structures as taint sources. Ad-
ditionally, qualifier NONSECRET may be applied to pointer
fields within these structures to exempt them from PCS.
The instrumentation pass generates NCS logic instead
for operations involving such members. Finally, qualifier
SECRET STR may be applied to pointer fields whose des-
tinations are dynamic-length byte sequences bounded by
a null terminator (strings).

To avoid augmenting the source language’s gram-
mar, these type qualifiers are defined using source-
level attributes (specified with attribute) followed
by a specifier. SECRET uses the annotate specifier,
which defines a purely syntactic qualifier visible only
at the compiler’s front-end. In contrast, NONSECRET
and SECRET STR are required during the back-end instru-
mentation. To this end, we leverage Quala [39], which
extends LLVM with an overlay type system. Quala’s
type annotate specifier propagates the type qualifiers
throughout the IL code.

1named after pointillism co-founder Paul Signac

6

USENIX Association 24th USENIX Security Symposium 151

struct request_rec {
 NONSECRET ... *pool;
 apr_uri_t parsed_uri;
 ...
} SECRET;

Annotated Types
clang transformation

Rewriting

new = (request_rec *) apr_pcalloc(r->pool,);

new = (request_rec *) signac_alloc(apr_pcalloc, r->pool,);

Instrumentation
clang/LLVM
-dfsan -pc2s

instrumented
binary

libsignaC

Figure 6: Architectural overview of SignaC illustrating its three-step, static instrumentation process: (1) annotation of
security-relevant types, (2) source-code rewriting, and (3) compilation with the sanitizer’s instrumentation pass.

Type attribute rewriting. In the preprocessing step, the
target application undergoes a source-to-source transfor-
mation pass that rewrites all dynamic allocations of anno-
tated data types with taint-introducing wrappers. Imple-
menting this transformation at the source level allows us
to utilize the full type information that is available at the
compiler’s front-end, including purely syntactic attributes
such as SECRET annotations.

Our implementation leverages Clang’s tooling API [12]
to traverse and apply the desired transformations directly
into the program’s AST. At a high-level, the rewriting
algorithm takes the following steps:

1. It first amasses a list of all security-relevant data-
types, which are defined as (a) all structs and unions
annotated SECRET, (b) all types defined as aliases
(e.g., via typedef) of security-relevant datatypes, and
(c) all structs and unions containing secret-relevant
datatypes not separated from the containing structure
by a level of pointer indirection (e.g., nested struct
definitions). This definition is recursive, so the list
is computed iteratively from the transitive closure of
the graph of datatype definition references.

2. It next finds all calls to memory allocation functions
(e.g., malloc, calloc) whose return values are explic-
itly or implicitly cast to a security-relevant datatype.
Such calls are wrapped in calls to SignaC’s runtime
library, which dynamically introduces an appropriate
taint label to the newly allocated structure.

The task of identifying memory allocation functions is
facilitated by a user-supplied list that specifies the mem-
ory allocation API. This allows the rewriter to handle
programs that employ custom memory management. For
example, Apache defines custom allocators in its Apache
Portable Runtime (APR) memory management interface.

4.2 PC2S Instrumentation
The instrumentation pass next introduces LLVM IR code
during compilation that propagates taint labels during
program execution. Our implementation extends DFSan
with the PC2S label propagation policy specified in §3.

Taint representation. To support a large number of taint
labels, DFSan adopts a low-overhead representation of

labels as 16-bit integers, with new labels allocated se-
quentially from a pool. Rather than reserving 2n labels to
represent the full power set of a set of n primitive taints,
DFSan lazily reserves labels denoting non-singleton sets
on-demand. When a label union operation is requested
at a join point (e.g., during binary operations on tainted
operands), the instrumentation first checks whether a new
label is required. If a label denoting the union has already
been reserved, or if one operand label subsumes the other,
DFSan returns the already-reserved label; otherwise, it
reserves a fresh union label from the label pool. The fresh
label is defined by pointers to the two labels that were
joined to form it. Union labels are thus organized as a
dynamically growing binary DAG—the union table.

This strategy benefits applications whose label-joins
are sparse, visiting only a small subset of the universe of
possible labels. Our PC2S semantics’ curtailment of label
creep thus synergizes with DFSan’s lazy label allocation
strategy, allowing us to realize taint-tracking for legacy
code that otherwise exceeds the maximum label limit.
This benefit is further evidenced in our evaluation (§5).

Table 1 shows the memory layout of an instrumented
program. DFSan maps (without reserving) the lower
32 TB of the process address space for shadow mem-
ory, which stores the taint labels of the values stored at
the corresponding application memory addresses. This
layout allows for efficient lookup of shadow addresses by
masking and shifting the application’s addresses. Labels
of values not stored in memory (e.g., those stored in ma-
chine registers or optimized away at compile-time) are
tracked at the IL level in SSA registers, and compiled to
suitable taint-tracking object code.

Function calls. Propagation context A defined in §3 mod-
els label propagation across external library function calls,
expressed in DFSan as an Application Binary Interface
(ABI). The ABI lists functions whose label-propagation

Table 1: Memory layout of an instrumented program.
Start End Memory Region

0x700000008000 0x800000000000 application memory
0x200000000000 0x200200000000 union table
0x000000010000 0x200000000000 shadow memory
0x000000000000 0x000000010000 reserved by kernel

7

152 24th USENIX Security Symposium USENIX Association

behavior (if any) should be replaced with a fixed, user-
defined propagation policy at call sites. For each such
function, the ABI specifies how the labels of its arguments
relate to the label of its return value.

DFSan natively supports three such semantics: (1)
discard, which corresponds to propagation function
ρdis(γ) := ⊥ (return value is unlabeled); (2) functional,
corresponding to propagation function ρfun(γ) :=

⊔
γ

(label of return value is the union of labels of the function
arguments); and (3) custom, denoting a custom-defined
label propagation wrapper function.

DFSan pre-defines an ABI list that covers glibc’s in-
terface. Users may extend this with the API functions
of external libraries for which source code is not avail-
able or cannot be instrumented. For example, to in-
strument Apache with mod ssl, we mapped OpenSSL’s
API functions to the ABI list. In addition, we extended
the custom ABI wrappers of memory transfer functions
(e.g., strcpy, strdup) and input functions (e.g., read,
pread) to implement PC2S. For instance, we modified
the wrapper for strcpy(dest,src) to taint dest with
γsrc � γdest when instrumenting code under PC2S.

Static instrumentation. The instrumentation pass is
placed at the end of LLVM’s optimization pipeline. This
ensures that only memory accesses surviving all compiler
optimizations are instrumented, and that instrumentation
takes place just before target code is generated. Like
other LLVM transform passes, the program transforma-
tion operates on LLVM IR, traversing the entire program
to insert label propagation code. At the front-end, compi-
lation flags parametrize the label propagation policies for
the store and load operations discussed in §3.3.

String handling. Strings in C are not first-class types; they
are implemented as character pointers. C’s type system
does not track their lengths or enforce proper termination.
This means that purely static typing information is insuf-
ficient for the instrumentation to reliably identify strings
or propagate their taints to all constituent bytes on store.
To overcome this problem, users must annotate secret-
containing, string fields with SECRET STR. This cues the
runtime library to taint up to and including the pointee’s
null terminator when a string is assigned to such a field.
For safety, our runtime library (see §4.3) zeros the first
byte of all fresh memory allocations, so that uninitialized
strings are always null-terminated.

Store instructions. Listing 4 summarizes the instrumenta-
tion procedure for stores in diff style. By default, DFSan
instruments NCS on store instructions: it reads the shadow
memory of the value operand (line 1) and copies it onto
the shadow of the pointer operand (line 10). If PC2S is
enabled (lines 2 and 11), the instrumentation consults the
static type of the value operand and checks whether it is a
non-pointer or non-exempt pointer field (which also sub-

Listing 4: Store instruction instrumentation
1 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
2 + if (Cl PC2S OnStore) {
3 + Type *t = SI.getValueOperand()->getType();
4 + if (!t->isPointerTy() || !isExemptPtr(&SI)) {
5 + Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
6 + Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
7 + }
8 + }
9 ...

10 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
11 + if (Cl PC2S OnStore) {
12 + if (isSecretStr(&SI)) {
13 + Value *Str = IRB.CreateBitCast(v, Type::getInt8PtrTy(Ctx));
14 + IRB.CreateCall2(DFSF.DFS.DFSanSetLabelStrFn, Shadow, Str);
15 + }
16 + }

Listing 5: Load instruction instrumentation
1 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, ...);
2 + if (Cl PC2S OnLoad) {
3 + if (!isExemptPtr(&LI)) {
4 + Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
5 + Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
6 + }
7 + }
8 ...
9 DFSF.setShadow(&LI, Shadow);

sumes SECRET STR) in lines 3–4. If so, the shadows of
the pointer and value operands are joined (lines 5–6), and
the resulting label is stored into the shadow of the pointer
operand. If the instruction stores a string annotated with
SECRET STR, the instrumentation calls a runtime library
function that copies the computed shadow to all bytes of
the null-terminated string (lines 12–15).

Load instructions. Listing 5 summarizes the analogous
instrumentation for load instructions. First, the instrumen-
tation loads the shadow of the value pointed by the pointer
operand (line 1). If PC2S is enabled (line 2), then the in-
strumentation checks whether the dereferenced pointer is
tainted (line 3). If so, the shadow of the pointer operand
is joined with the shadow of its value (lines 4–5), and the
resulting label is saved to the shadow (line 9).

Memory transfer intrinsics. LLVM defines intrinsics for
standard memory transfer operations, such as memcpy

and memmove. These functions accept a source pointer
src, a destination pointer dst , and the number of bytes
len to be transferred. DFSan’s default instrumentation
destructively copies the shadow associated with src to
the shadow of dst , which is not the intended propagation
policy of PC2S. We therefore instrument these functions
as shown in Listing 6. The instrumentation reads the
shadows of src and dst (lines 2–3), computes the union
of the two shadows (line 4), and stores the combined
shadows to the shadow of dst (line 5).

4.3 Runtime Library
Runtime support for the type annotation mechanism is
encapsulated in a tiny C library, allowing for low coupling

8

USENIX Association 24th USENIX Security Symposium 153

Listing 6: Memory transfer intrinsics instrumentation
1 + if (Cl PC2S OnStore && !isExemptPtr(&I)) {
2 + Value *DestShadow = DFSF.getShadow(I.getDest());
3 + Value *SrcShadow = DFSF.getShadow(I.getSource());
4 + DestShadow = DFSF.combineShadows(SrcShadow, DestShadow, &I);
5 + DFSF.storeShadow(I.getDest(), Size, Align, DestShadow, &I);
6 + }

Listing 7: Taint-introducing memory allocations
1 #define signac alloc(alloc, args...) ({ \
2 void * p = alloc (args); \
3 signac taint(& p, sizeof(void*)); \
4 p; })

between a target application and the sanitizer’s logic. The
source-to-source rewriter and instrumentation phases in-
line logic that calls this library at runtime to introduce
taints, handle special taint-propagation cases (e.g., string
support), and check taints at sinks (e.g., during redaction).
The library exposes three API functions:

• signac init(pl): initialize a tainting context with
a fresh label instantiation pl for the current principal.

• signac taint(addr,size): taint each address in
interval [addr , addr+size) with pl .

• signac alloc(alloc,. . .): wrap allocator alloc
and taint the address of its returned pointer with pl .

Function signac init instantiates a fresh taint label and
stores it in a thread-global context, which function f of
annotation SECRET〈f〉 may consult to identify the own-
ing principal at taint-introduction points. In typical web
server architectures, this function is strategically hooked
at the start of a new connection’s processing cycle. Func-
tion signac taint sets the labels of each address in in-
terval [addr , addr+size) with the label pl retrieved from
the session’s context.

Listing 7 details signac alloc, which wraps alloca-
tions of SECRET-annotated data structures. This variadic
macro takes a memory allocation function alloc and its
arguments, invokes it (line 2), and taints the address of
the pointer returned by the allocator (line 3).

4.4 Apache Instrumentation
To instrument a particular server application, such as
Apache, our approach requires two small, one-time devel-
oper interventions: First, add a call to signac init at
the start of a user session to initialize a new tainting con-
text for the newly identified principal. Second, annotate
the security-relevant data structures whose instances are
to be tracked. For instance, in Apache, signac init

is called upon the acceptance of a new server con-
nection, and annotated types include request rec,
connection rec, session rec, and modssl ctx t.
These structures are where Apache stores URI param-
eters and request content information, private connection
data such as remote IPs, key-value entries in user sessions,
and encrypted connection information.

decoytarget

attack
detected

fork and
detach

redact
memory clone resume

execution

attacker process

checkpoint restore

Figure 7: Honey-patch response to an intrusion attempt.

5 Evaluation

This section demonstrates the practical advantages and
feasibility of our approach for retrofitting large legacy C
codes with taint-tracking, through the development and
evaluation of a honey-patching memory redaction archi-
tecture for three production web servers. All experiments
were performed on a quad-core VM with 8 GB RAM
running 64-bit Ubuntu 14.04. The host machine is an
Intel Xeon E5645 workstation running 64-bit Windows 7.

5.1 Honey-patching
Figure 7 illustrates how honey-patches respond to intru-
sions by cloning attacker sessions to decoys. Upon in-
trusion detection, the honey-patch forks a shallow, local
clone of the victim process. The cloning step redacts
all secrets from the clone’s address space, optionally re-
placing them with honey-data. It then resumes execution
in the decoy by emulating an unpatched implementation.
This impersonates a successful intrusion, luring the at-
tacker away from vulnerable victims, and offering defend-
ers opportunities to monitor and disinform adversaries.

Prior honey-patches implement secret redaction as a
brute-force memory sweep that identifies and replaces
plaintext string secrets. This is both slow and unsafe; the
sweep constitutes a majority of the response delay over-
head during cloning [2], and it can miss binary data secrets
difficult to express reliably as regular expressions. Us-
ing SignaC, we implemented an information flow-based
redaction strategy for honey-patching that is faster and
more reliable than prior approaches.

Our redaction scheme instruments the server with dy-
namic taint-tracking. At redaction time, it scans the result-
ing shadow memory for labels denoting secrets owned by
user sessions other than the attacker’s, and redacts such se-
crets. The shadow memory and taint-tracking libraries are
then unloaded, leaving a decoy process that masquerades
as undefended and vulnerable.

Evaluated software. We implemented taint tracking-
based honey-patching for three production web servers:
Apache, Nginx, and Lighttpd. Apache and Nginx are the
top two servers of all active websites, with 50.1% and
14.8% market share, respectively [32]. Apache comprises
2.27M SLOC mostly in C [35]. Nginx and Lighttpd are
smaller, having about 146K and 138K SLOC, respectively.
All three are commercial-grade, feature-rich, open-source

9

154 24th USENIX Security Symposium USENIX Association

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f l
ab

el
s

requests

 PC2S
 PCS

(a) Apache

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f l
ab

el
s

requests

 PC2S
 PCS

(b) Nginx

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f l
ab

el
s

requests

 PC2S
 PCS

(c) Lighttpd

Figure 8: Experiment comparing label creeping behavior of PC2S and PCS on Apache, Nginx, and Lighttpd.

software products without any built-in support for infor-
mation flow tracking.

To augment these products with PC2S-style taint-
tracking support, we manually annotated secret-storing
structures and pointer fields. Altogether, we added ap-
proximately 45, 30, and 25 such annotations to Apache,
Nginx, and Lighttpd, respectively. For consistent eval-
uation comparisons, we only annotated Apache’s core
modules for serving static and dynamic content, encrypt-
ing connections, and storing session data; we omitted its
optional modules. We also manually added about 20–30
SLOC to each server to initialize the taint-tracker. Con-
sidering the sizes and complexity of these products, we
consider the PC2S annotation burden exceptionally light
relative to prior approaches.

5.2 Taint Spread
Over-tainting protection. To test our approach’s resis-
tance to taint explosions, we submitted a stream of (non
keep-alive) requests to each instrumented web server,
recording a cumulative tally of distinct labels instantiated
during taint-tracking. Figure 8 plots the results, compar-
ing traditional PCS to our PC2S extensions. On Apache,
traditional PCS is impractical, exceeding the maximum la-
bel limit in just 68 requests. In contrast, PC2S instantiates
vastly fewer labels (note that the y-axes are logarithmic
scale). After extrapolation, we conclude that an aver-
age 16,384 requests are required to exceed the label limit
under PC2S—well above the standard 10K-request TTL
limit for worker threads.

Taint spread control is equally critical for preserving
program functionality after redaction. To demonstrate, we
repeated the experiment with a simulated intrusion after
n ∈ [1, 100] legitimate requests. Figure 9 plots the cu-
mulative tally of how many bytes received a taint during
the history of the run on Apache. In all cases, redaction
crashed PCS-instrumented processes cloned after just 2–3
legitimate requests (due to erasure of over-tainted bytes).
In contrast, PC2S-instrumented processes never crashed;
their decoy clones continued running after redaction, im-
personating vulnerable servers. This demonstrates our

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100
ta

in
te

d
by

te
s

(k
B)

requests

 PC2S
 PCS

Figure 9: Cumulative tally of bytes tainted on Apache.

Table 2: Honey-patched security vulnerabilities
Software Version CVE-ID Description

Bash1 4.3 CVE-2014-6271 Improper parsing of environ-
ment variables

OpenSSL1 1.0.1f CVE-2014-0160 Buffer over-read in heartbeat
protocol extension

Apache 2.2.21 CVE-2011-3368 Improper URL validation
Apache 2.2.9 CVE-2010-2791 Improper timeouts of keep-

alive connections
Apache 2.2.15 CVE-2010-1452 Bad request handling
Apache 2.2.11 CVE-2009-1890 Request content length out of

bounds
Apache 2.0.55 CVE-2005-3357 Bad SSL protocol check

1tested with Apache 2.4.6

approach’s facility to realize effective taint-tracking in
legacy codes for which prior approaches fail.

Under-tainting protection. To double-check that PC2S
redaction was actually erasing all secrets, we created a
workload of legitimate post requests with pre-seeded se-
crets to a web-form application. We then automated ex-
ploits of the honey-patched vulnerabilities listed in Ta-
ble 2, including the famous Shellshock and Heartbleed
vulnerabilities. For each exploit, we ran the legacy, brute-
force memory sweep redactor after SignaC’s redactor to
confirm that the former finds no secrets missed by the
latter. We also manually inspected memory dumps of
each clone to confirm that none of the pre-seeded secrets

10

USENIX Association 24th USENIX Security Symposium 155

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 50 100 150 200 250 300 350 400 450 500

ro
un

d-
tri

p
tim

e
(m

s)

malicious HTTP requests

no redaction (median=154 ms)
PC2S (median=196 ms)

brute force (median=308 ms)

Figure 10: Request round-trip times for attacker session
forking on honey-patched Apache.

survived. In all cases, the honey-patch responds to the
exploits as a vulnerable decoy server devoid of secrets.

5.3 Performance

Redaction performance. To evaluate the performance
overhead of redacting secrets, we benchmarked three
honey-patched Apache deployments: (1) a baseline in-
stance without memory redaction, (2) brute-force mem-
ory sweep redaction, and (3) our PC2S redactor. We
used Apache’s server benchmarking tool (ab) to launch
500 malicious HTTP requests against each setup, each
configured with a pool of 25 decoys.

Figure 10 shows request round-trip times for each de-
ployment. PC2S redaction is about 1.6× faster than brute-
force memory sweep redaction; the former’s request times
average 0.196s, while the latter’s average 0.308s. This sig-
nificant reduction in cloning delay considerably improves
the technique’s deceptiveness, making it more transparent
to attackers. Nginx and Lighttpd also exhibit improved
response times of 16% (0.165s down to 0.138s) and 21%
(0.155s down to 0.122s), respectively.

Taint-tracking performance. To evaluate the perfor-
mance overhead of the static instrumentation, three
Apache setups were tested: a static-content HTML web-
site (∼20 KB page size), a CGI-based Bash application
that returns the server’s environment variables, and a dy-
namic PHP website displaying the server’s configuration.
For each web server setup, ab was executed with four
concurrency levels c (i.e., the number of parallel threads).
Each run comprises 500 concurrent requests, plotted in
ascendant order of their round-trip times (RTT).

Figure 11 shows the results for c = 1, 10, 50, and 100,
and the average overheads observed for each test profile
are summarized in Table 3. Our measurements show
overheads of 2.4×, 1.1×, and 0.3× for the static-content,
CGI, and PHP websites, respectively, which is consistent
with dynamic taint-tracking overheads reported in the
prior literature [41]. Since server computation accounts
for only about 10% of overall web site response delay in

Table 3: Average overhead of instrumentation

Benchmark c = 1 c = 10 c = 50 c = 100

Static 2.50 2.34 2.56 2.32
CGI Bash 1.29 0.98 1.00 0.97
PHP 0.41 0.37 0.30 0.31

practice [44], this corresponds to observable overheads of
about 24%, 11%, and 3% (respectively).

While such overhead characterizes feasibility, it is ir-
relevant to deception because unpatched, patched, and
honey-patched vulnerabilities are all slowed equally by
the taint-tracking instrumentation. The overhead therefore
does not reveal which apparent vulnerabilities in a given
server instance are genuine patching lapses and which
are deceptions, and it does not distinguish honey-patched
servers from servers that are slowed by any number of
other factors (e.g., fewer computational resources). In
addition, it is encouraging that high relative overheads
were observed primarily for static websites that perform
little or no significant computation. This suggests that
the more modest 3% overhead for computationally heav-
ier PHP sites is more representative of servers for which
computational performance is an issue.

6 Discussion

6.1 Approach Limitations
Our research significantly eases the task of tracking
secrets within standard, pointer-linked, graph data-
structures as they are typically implemented in low-level
languages, like C/C++. However, there are many non-
standard, low-level programming paradigms that our ap-
proach does not fully support automatically. Such limita-
tions are discussed below.

Pointer Pre-aliases. PC2S fully tracks all pointer aliases
via taint propagation starting from the point of taint-
introduction (e.g., the code point where a secret is first
assigned to an annotated structure field after parsing).
However, if the taint-introduction policy misidentifies
secret sources too late in the program flow, dynamic track-
ing cannot track pointer pre-aliases—aliases that predate
the taint-introduction. For example, if a program first
initializes string p1, then aliases p2 := p1, and finally
initializes secret-annotated field f via f := p1, PC2S
automatically labels p1 (and f) but not pre-alias p2.

In most cases this mislabeling of pre-aliases can be mit-
igated by enabling PC2S both on-load and on-store. This
causes secrets stored via p2 to receive the correct label
on-load when they are later read via p1 or f . Likewise,
secrets read via p2 retain the correct label if they were
earlier stored via p1 or f . Thus, only data stored and read
purely using independent pre-alias p2 remain untainted.

11

156 24th USENIX Security Symposium USENIX Association

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=1
non-instr c=1

(a) c = 1

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=10
non-instr c=10

(b) c = 10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=50
non-instr c=50

(c) c = 50

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=100
non-instr c=100

(d) c = 100

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=1
non-instr c=1

(e) c = 1

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=10
non-instr c=10

(f) c = 10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=50
non-instr c=50

(g) c = 50

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=100
non-instr c=100

(h) c = 100

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=1
non-instr c=1

(i) c = 1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=10
non-instr c=10

(j) c = 10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=50
non-instr c=50

(k) c = 50

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

instr c=100
non-instr c=100

(l) c = 100

Figure 11: Dynamic taint-tracking performance (measured in request round-trip times) with varying concurrency c for a
static web site (a–d), Bash CGI application (e–h), and PHP application (i–l).

This is a correct enforcement of the user’s policy, since
the policy identifies f := p1 as the taint source, not p2.
If this treatment is not desired, the user must therefore
specify a more precise policy that identifies the earlier
origin of p1 as the true taint source (e.g., by manually
inserting a dynamic classification operation where p1 is
born), rather than identifying f as the taint source.

Structure granularity. Our automation of taint-tracking
for graph data-structures implemented in low-level lan-
guages leads to taint annotations at the granularity of
whole struct declarations, not individual value fields.
Thus, all non-pointer fields within a secret-annotated C
struct receive a common taint under our semantics. This
coarse granularity is appropriate for C programs since
such programs can (and often do) refer to multiple data
fields within a given struct instance using a common
pointer. For example, marshalling is typically imple-
mented as a pointer-walk that reads a byte stream directly
into all data fields (but not the pointer fields) of a struct
instance byte-by-byte. All data fields therefore receive a
common label after marshalling.

Reliable support for structs containing secrets of mixed
taint therefore requires a finer-grained taint-introduction
policy than is expressible by declarative annotations of C
structure definitions. Such policies must be operationally
specified in C through runtime classifications at secret-
introducing code points. Our focus in this research is
on automating the much more common case where each

node of the graph structure holds secrets of uniform clas-
sification, toward lifting the user’s annotation burden for
this most common case.

Dynamic-length secrets. Our implementation provides
built-in support for a particularly common form of
dynamic-length secret—null-terminated strings. This can
be extended to support other forms of dynamic-length
secrets as needed. For example, strings with an explicit
length count rather than a terminator, fat and bounded
pointers [26], and other variable-length, dynamically al-
located, data structures can be supported through the ad-
dition of an appropriate annotation type and a dynamic
taint-propagating function that extends pointer taints to
the entire pointee during assignments.

Implicit Flows. Our dynamic taint-tracking tracks ex-
plicit information flows, but not implicit flows that
disclose information through control-flows rather than
dataflows. Tracking implicit flows generally requires
static information flow analysis to reason about dis-
closures through inaction (non-observed control-flows)
rather than merely actions. Such analysis is often in-
tractable (and generally undecidable) for low-level lan-
guages like C, whose control-flows include unstructured
and dynamically computed transitions.

Likewise, dynamic taint-tracking does not monitor side-
channels, such as resource consumption (e.g., memory or
power consumption), runtimes, or program termination,
which can also divulge information. For our problem

12

USENIX Association 24th USENIX Security Symposium 157

domain (program process redaction), such channels are
largely irrelevant, since attackers may only exfiltrate in-
formation after redaction, which leaves no secrets for the
attacker to glean, directly or indirectly.

6.2 Process Memory Redaction
Our research introduces live process memory image san-
itization as a new problem domain for information flow
analysis. Process memory redaction raises unique chal-
lenges relative to prior information flow applications. It
is exceptionally sensitive to over-tainting and label creep,
since it must preserve process execution (e.g., for process
debugging, continued service availability, or attacker de-
ception); it demands exceptionally high performance; and
its security applications prominently involve large, low-
level, legacy codes, which are the most frequent victims
of cyber-attacks. Future work should expand the search
for solutions to this difficult problem to consider the suit-
ability of other information flow technologies, such as
static type-based analyses.

6.3 Language Compatibility
While our implementation targets one particularly ubiq-
uitous source language (C/C++), our general approach
is applicable to other similarly low-level languages, as
well as scripting languages whose interpreters are im-
plemented in C (e.g., PHP, Bash). Such languages are
common choices for implementing web services, and tar-
geting them is therefore a natural next step for the web
security thrust of our research.

7 Related Work

Dynamic tracking of in-memory secrets. Dynamic
taint-tracking lends itself as a natural technique for track-
ing secrets in software. It has been applied to study sensi-
tive data lifetime (i.e., propagation and duration in mem-
ory) in commodity applications [10, 11], analyze spyware
behavior [19, 48], and impede the propagation of secrets
to unauthorized sinks [21, 23, 49].

TaintBochs [10] uses whole-system simulation to un-
derstand secret propagation patterns in several large,
widely deployed applications, including Apache, and im-
plements secure deallocation [11] to reduce the risk of
exposure of in-memory secrets. Panorama [48] builds a
system-level information-flow graph using process emula-
tion to identify malicious software tampering with infor-
mation that was not intended for their consumption. Egele
et al. [19] also utilize whole-system dynamic tainting to
analyze spyware behavior in web browser components.
While valuable, the performance impact of whole-system
analyses—often on the order of 2000% [10, 19, 48]—
remains a significant obstacle, rendering such approaches

impractical for most live, high-performance, production
server applications.

More recently, there has been growing interest in run-
time detection of information leaks [21, 49]. For instance,
TaintDroid [21] extends Android’s virtualized architec-
ture with taint-tracking support to detect misuses of users’
private information across mobile apps. TaintEraser [49]
uses dynamic instrumentation to apply taint analysis on
binaries for the purpose of identifying and blocking infor-
mation leaking to restricted output channels. To achieve
this, it monitors and rewrites sensitive bytes escaping to
the network and the local file system. Our work adopts a
different strategy to instrument secret-redaction support
into programs, resulting in applications that can proac-
tively respond to attacks by self-censoring their address
spaces with minimal overhead.

Pointer taintedness. In security contexts, many cate-
gories of widely exploited, memory-overwrite vulnera-
bilities (e.g., format string, memory corruption, buffer
overflow) have been recognized as detectable by dynamic
taint-checking on pointer dereferences [7, 8, 15, 16, 28].
Hookfinder [47] employs data and pointer tainting se-
mantics in a full-system emulation approach to identify
malware hooking behaviors in victim systems. Other
systems follow a similar technique to capture system-
wide information-flow and detect privacy-breaching mal-
ware [19, 48].

With this high practical utility come numerous theo-
retical and practical challenges for effective pointer taint-
ing [17, 27, 43]. On the theoretical side, there are varied
views of how to interpret a pointer’s label. (Does it ex-
press a property of the pointer value, the values it points
to, values read or stored by dereferencing the pointer, or
all three?) Different taint tracking application contexts
solicit differing interpretations, and the differing interpre-
tations lead to differing taint-tracking methodologies. Our
contributions include a pointer tainting methodology that
is conducive to tracking in-memory secrets.

On the practical side, imprudent pointer tainting of-
ten leads to taint explosion in the form of over-tainting
or label-creep [40, 43]. This can impair the feasibility
of the analysis and increase the likelihood of crashes
in programs that implement data-rewriting policies [49].
To help overcome this, sophisticated strategies involving
pointer injection (PI) analysis have been proposed [16,28].
PI uses a taint bit to track the flow of legitimate pointers
and another bit to track the flow of untrusted data, disal-
lowing dereferences of tainted values that do not have a
corresponding pointer tainted. Our approach uses static
typing information in lieu of PI bits to achieve lower run-
time overheads and broader compatibility with low-level
legacy code.

Application-level instrumentation. Much of the prior
work on dynamic taint analysis has employed dynamic

13

158 24th USENIX Security Symposium USENIX Association

binary instrumentation (DBI) frameworks [9,13,29,33,38,
49] to enforce taint-tracking policies on software. These
approaches do not require application recompilation, nor
do they depend on source code information.

However, despite many optimization advances over the
years, dynamic instrumentation still suffers from signif-
icant performance overheads, and therefore cannot sup-
port high-performance applications, such as the redaction
speeds required for attacker-deceiving honey-patching of
production server code. Our work benefits from research
advances on static-instrumented, dynamic data flow anal-
ysis [6, 18, 30, 46] to achieve both high performance and
high accuracy by leveraging LLVM’s compilation infras-
tructure to instrument taint-propagating code into server
code binaries.

8 Conclusion

PC2S significantly improves the feasibility of dynamic
taint-tracking for low-level legacy code that stores secrets
in graph data structures. To ease the programmer’s an-
notation burden and avoid taint explosions suffered by
prior approaches, it introduces a novel pointer-combine se-
mantics that resists taint over-propagation through graph
edges. Our LLVM implementation extends C/C++ with
declarative type qualifiers for secrets, and instruments
programs with taint-tracking capabilities at compile-time.

The new infrastructure is applied to realize efficient,
precise honey-patching of production web servers for at-
tacker deception. The deceptive servers self-redact their
address spaces in response to intrusions, affording defend-
ers a new tool for attacker monitoring and disinformation.

9 Acknowledgments

The research reported herein was supported in part
by AFOSR Award FA9550-14-1-0173, NSF CAREER
Award #1054629, and ONR Award N00014-14-1-0030.
Any opinions, recommendations, or conclusions ex-
pressed are those of the authors and not necessarily of the
AFOSR, NSF, or ONR.

References
[1] APACHE. Apache HTTP server project. http://httpd.apache.org,

2014.

[2] ARAUJO, F., HAMLEN, K. W., BIEDERMANN, S., AND KATZEN-
BEISSER, S. From patches to honey-patches: Lightweight attacker
misdirection, deception, and disinformation. In Proc. ACM Conf.
Computer and Communications Security (CCS) (2014), pp. 942–
953.

[3] ATTARIYAN, M., AND FLINN, J. Automating configuration
troubleshooting with dynamic information flow analysis. In Proc.
USENIX Sym. Operating Systems Design and Implementation
(OSDI) (2010), pp. 1–11.

[4] BAUER, L., CAI, S., JIA, L., PASSARO, T., STROUCKEN, M.,
AND TIAN, Y. Run-time monitoring and formal analysis of in-
formation flows in Chromium. In Proc. Annual Network & Dis-
tributed System Security Sym. (NDSS) (2015).

[5] BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: The
world’s fastest taint tracker. In Proc. Int. Sym. Recent Advances in
Intrusion Detection (RAID) (2011), pp. 1–20.

[6] CHANG, W., STREIFF, B., AND LIN, C. Efficient and extensible
security enforcement using dynamic data flow analysis. In Proc.
ACM Conf. Computer and Communications Security (CCS) (2008),
pp. 39–50.

[7] CHEN, S., PATTABIRAMAN, K., KALBARCZYK, Z., AND IYER,
R. K. Formal reasoning of various categories of widely exploited
security vulnerabilities by pointer taintedness semantics. In Proc.
IFIP TC11 Int. Conf. Information Security (SEC) (2004), pp. 83–
100.

[8] CHEN, S., XU, J., NAKKA, N., KALBARCZYK, Z., AND IYER,
R. K. Defeating memory corruption attacks via pointer taintedness
detection. In Proc. Int. Conf. Dependable Systems and Networks
(DSN) (2005), pp. 378–387.

[9] CHENG, W., ZHAO, Q., YU, B., AND HIROSHIGE, S. Taint-
Trace: Efficient flow tracing with dynamic binary rewriting. In
Proc. IEEE Sym. Computers and Communications (ISCC) (2006),
pp. 749–754.

[10] CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K., AND
ROSENBLUM, M. Understanding data lifetime via whole system
simulation. In Proc. USENIX Security Symposium (2004), pp. 321–
336.

[11] CHOW, J., PFAFF, B., GARFINKEL, T., AND ROSENBLUM,
M. Shredding your garbage: Reducing data lifetime through
secure deallocation. In Proc. USENIX Security Symposium (2005),
pp. 331–346.

[12] CLANG. clang.llvm.org. http://clang.llvm.org.
[13] CLAUSE, J., LI, W., AND ORSO, A. Dytan: A generic dynamic

taint analysis framework. In Proc. ACM/SIGSOFT Int. Sym. Soft-
ware Testing and Analysis (ISSTA) (2007), pp. 196–206.

[14] COX, L. P., GILBERT, P., LAWLER, G., PISTOL, V., RAZEEN,
A., WU, B., AND CHEEMALAPATI, S. Spandex: Secure password
tracking for Android. In Proc. USENIX Security Sym. (2014).

[15] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Raksha: A
flexible information flow architecture for software security. In
Proc. Int. Sym. Computer Architecture (ISCA) (2007), pp. 482–
493.

[16] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Real-world
buffer overflow protection for userspace & kernelspace. In Proc.
USENIX Security Symposium (2008), pp. 395–410.

[17] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Tainting is
not pointless. ACM/SIGOPS Operating Systems Review (OSR) 44,
2 (2010), 88–92.

[18] DFSAN. Clang DataFlowSanitizer. http://clang.llvm.org/docs/
DataFlowSanitizer.html.

[19] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG, D.
Dynamic spyware analysis. In Proc. USENIX Annual Technical
Conf. (ATC) (2007), pp. 233–246.

[20] EGELE, M., SCHOLTE, T., KIRDA, E., AND KRUEGEL, C. A
survey on automated dynamic malware-analysis techniques and
tools. ACM Computing Surveys (CSUR) 44, 2 (2012), 1–42.

[21] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: An informa-
tion flow tracking system for real-time privacy monitoring on
smartphones. Communications of the ACM (CACM) 57, 3 (2014),
99–106.

[22] EPIGRAPHIC SURVEY, THE ORIENTAL INSTITUTE OF THE UNI-
VERSITY OF CHICAGO, Ed. Reliefs and Inscriptions at Luxor
Temple, vol. 1–2 of The University of Chicago Oriental Institute

14

USENIX Association 24th USENIX Security Symposium 159

Publications. Oriental Institute of the University of Chicago,
Chicago, 1994, 1998.

[23] GIBLER, C., CRUSSELL, J., ERICKSON, J., AND CHEN, H.
AndroidLeaks: Automatically detecting potential privacy leaks in
Android applications on a large scale. In Proc. Int. Conf. Trust
and Trustworthy Computing (TRUST) (2012), pp. 291–307.

[24] GU, A. B., LI, X., LI, G., CHAMPION, CHEN, Z., QIN, F., AND
XUAN, D. D2Taint: Differentiated and dynamic information flow
tracking on smartphones for numerous data sources. In Proc. IEEE
Conf. Computer Communications (INFOCOM) (2013), pp. 791–
799.

[25] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND
HAND, S. Practical taint-based protection using demand emula-
tion. In Proc. ACM SIGOPS/EuroSys European Conf. Computer
Systems (EuroSys) (2006), pp. 29–41.

[26] JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W.,
CHENEY, J., AND WANG, Y. Cyclone: A safe dialect of C. In
Proc. USENIX Annual Technical Conf. (ATC) (2002), pp. 275–288.

[27] KANG, M. G., MCCAMANT, S., POOSANKAM, P., AND SONG,
D. DTA++: Dynamic taint analysis with targeted control-flow
propagation. In Proc. Annual Network & Distributed System
Security Sym. (NDSS) (2011).

[28] KATSUNUMA, S., KURITA, H., SHIOYA, R., SHIMIZU, K., IRIE,
H., GOSHIMA, M., AND SAKAI, S. Base address recognition
with data flow tracking for injection attack detection. In Proc.
Pacific Rim Int. Sym. Dependable Computing (PRDC) (2006),
pp. 165–172.

[29] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND
KEROMYTIS, A. D. Libdft: Practical dynamic data flow track-
ing for commodity systems. In Proc. Conf. Virtual Execution
Environments (VEE) (2012), pp. 121–132.

[30] LAM, L. C., AND CHIUEH, T. A general dynamic information
flow tracking framework for security applications. In Proc. Annual
Computer Security Applications Conf. (ACSAC) (2006), pp. 463–
472.

[31] LATTNER, C., AND ADVE, V. S. LLVM: A compilation
framework for lifelong program analysis & transformation. In
Proc. IEEE/ACM Int. Sym. Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO) (2004),
pp. 75–88.

[32] NETCRAFT. Web surver survey. http://news.netcraft.com/archives/
category/web-server-survey, January 2015.

[33] NEWSOME, J., AND SONG, D. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In Proc. Annual Network & Distributed
System Security Sym. (NDSS) (2005).

[34] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., AND
EVANS, D. Automatically hardening web applications using pre-
cise tainting. In Proc. IFIP TC11 Int. Conf. Information Security
(SEC) (2005), pp. 372–382.

[35] OHLOH. Apache HTTP server statistics. http://www.ohloh.net/p/
apache.

[36] PAPAGIANNIS, I., MIGLIAVACCA, M., AND PIETZUCH, P. PHP
Aspis: Using partial taint tracking to protect against injection
attacks. In Proc. USENIX Conf. Web Application Development
(WebApps) (2011).

[37] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos:
An emulator for fingerprinting zero-day attacks. In Proc. ACM
SIGOPS/EuroSys European Conf. Computer Systems (EuroSys)
(2006), pp. 15–27.

[38] QIN, F., WANG, C., LI, Z., KIM, H., ZHOU, Y., AND WU, Y.
LIFT: A low-overhead practical information flow tracking system
for detecting security attacks. In Proc. Int. Sym. Microarchitecture
(MICRO) (2006), pp. 135–148.

[39] SAMPSON, A. Quala: Type qualifiers for LLVM/Clang. https:
//github.com/sampsyo/quala, 2014.

[40] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In Proc.
IEEE Sym. Security & Privacy (S&P) (2010), pp. 317–331.

[41] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND
VYUKOV, D. AddressSanitizer: A fast address sanity checker. In
Proc. USENIX Annual Technical Conf. (ATC) (2012), pp. 309–318.

[42] SEZER, E. C., NING, P., KIL, C., AND XU, J. Memsherlock: An
automated debugger for unknown memory corruption vulnerabili-
ties. In Proc. ACM Conf. Computer and Communications Security
(CCS) (2007), pp. 562–572.

[43] SLOWINSKA, A., AND BOS, H. Pointless tainting?: Evaluating
the practicality of pointer tainting. In Proc. ACM SIGOPS/EuroSys
European Conf. Computer Systems (EuroSys) (2009), pp. 61–74.

[44] SOUDERS, S. High Performance Web Sites: Essential Knowledge
for Front-End Engineers. O’Reilly, 2007.

[45] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Secure
program execution via dynamic information flow tracking. In Proc.
Int. Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2004), pp. 85–96.

[46] XU, W., BHATKAR, S., AND SEKAR, R. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks. In Proc. USENIX Security Symposium (2006).

[47] YIN, H., LIANG, Z., AND SONG, D. HookFinder: Identifying
and understanding malware hooking behaviors. In Proc. Annual
Network & Distributed System Security Sym. (NDSS) (2008).

[48] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for mal-
ware detection and analysis. In Proc. ACM Conf. Computer and
Communications Security (CCS) (2007), pp. 116–127.

[49] ZHU, D. Y., JUNG, J., SONG, D., KOHNO, T., AND WETHER-
ALL, D. TaintEraser: Protecting sensitive data leaks using
application-level taint tracking. ACM SIGOPS Operating Sys-
tems Review (OSR) 45, 1 (2011), 142–154.

15

