
This paper is included in the Proceedings of the
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

Open access to the Proceedings of
the 24th USENIX Security Symposium

is sponsored by USENIX

Reassembleable Disassembling
Shuai Wang, Pei Wang, and Dinghao Wu, The Pennsylvania State University

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai

USENIX Association 	 24th USENIX Security Symposium  627

Reassembleable Disassembling

Shuai Wang, Pei Wang, and Dinghao Wu
College of Information Sciences and Technology

The Pennsylvania State University
{szw175, pxw172, dwu}@ist.psu.edu

Abstract

Reverse engineering has many important applications in
computer security, one of which is retrofitting software
for safety and security hardening when source code is not
available. By surveying available commercial and aca-
demic reverse engineering tools, we surprisingly found
that no existing tool is able to disassemble executable
binaries into assembly code that can be correctly assem-
bled back in a fully automated manner, even for simple
programs. Actually in many cases, the resulted disas-
sembled code is far from a state that an assembler ac-
cepts, which is hard to fix even by manual effort. This
has become a severe obstacle. People have tried to over-
come it by patching or duplicating new code sections for
retrofitting of executables, which is not only inefficient
but also cumbersome and restrictive on what retrofitting
techniques can be applied to.

In this paper, we present UROBOROS, a tool that can
disassemble executables to the extent that the gener-
ated code can be assembled back to working binaries
without manual effort. By empirically studying 244
binaries, we summarize a set of rules that can make
the disassembled code relocatable, which is the key to
reassembleable disassembling. With UROBOROS, the
disassembly-reassembly process can be repeated thou-
sands of times. We have implemented a prototype of
UROBOROS and tested over the whole set of GNU Core-
utils, SPEC2006, and a set of other real-world applica-
tion and server programs. The experiment results show
that our tool is effective with a very modest cost.

1 Introduction

In computer security, many techniques and applications
depend on binary reverse engineering, i.e., analyzing and
retrofitting software binaries with the source code un-
available. For example, software fault isolation (SFI)
[33, 46, 2, 19, 18] rewrites untrusted programs at the in-

struction level to enforce certain security policies. To
ensure program control-flow integrity (CFI, meaning that
program execution is dictated to a predetermined control-
flow graph) [1, 4, 43, 17, 29, 37] without source code, the
original control-flow graph must be recovered from a bi-
nary executable and the binary must be retrofitted with
the CFI enforcement facility embedded [50, 49]. Sym-
bolic taint analysis [34] on binaries must recover assem-
bly code and data faithfully. The defending techniques
against return-oriented programming (ROP) attacks also
rely on binary analysis and reconstruction to identify and
eliminate ROP gadgets [44, 9, 47, 22, 39].

Despite the fact that many security hardening tech-
niques are highly dependent on reverse engineering, flex-
ible and easy-to-use binary manipulation itself remains
an unsolved problem. Current binary decompilation,
analysis, and reconstruction techniques still cannot fully
fulfill many of the requirements from downstream. To
the best of our knowledge, there is no reverse engineer-
ing tool that can disassemble an executable into assem-
bly code which can be reassembled back in a fully au-
tomated manner, especially when the processed objects
are commercial-off-the-shelf (COTS) binaries with most
symbol and relocation information stripped.

We have investigated many existing tools from both
the industry and academia, including IDA Pro [24],
Phoenix [42], Dagger [12], MC-Semantics [32], Second-
Write [3], BitBlaze [45], and BAP [8]. Unfortunately,
these tools focus more on recovering as much informa-
tion, such as data and control structures, as possible for
analysis purpose mainly, but less on producing assembly
code that can be readily assembled back without manual
effort. Hence, none of them provide the desired disas-
sembly and reassembly functionality that we consider,
even if the processed binary is small and simple.

Due to lack of support from reverse engineering tools,
people build high-level security hardening applications
based on partial binary retrofitting techniques, including
binary rewriting tools such as Alto [35], Vulcan [16],

628  24th USENIX Security Symposium	 USENIX Association

Diablo [13], and binary reuse tools such as BCR [11]
and TOP [48]. We consider binary rewriting as a par-
tial retrofitting technique because it can only instrument
or patch binaries, thus not suitable for program-wide
transformations and reconstructions. As for binary reuse
tools, they work by dynamically recording execution
traces and combining the traces back to an executable,
meaning the new binary is only an incomplete part of
the original binary due to the incomplete coverage of dy-
namic program analysis.

Partial retrofitting has notable drawbacks and limita-
tions:

• Patch-based rewriting could introduce non-
negligible runtime overhead. Since the patch
usually lives in an area different from the original
code of the binary, interactions between the patch
and the original code usually require a large amount
of control-flow transfers.

• Patch-based rewriting usually relocates instructions
at the patch point to somewhere else to make space
for the inserted code. As a result, it requires the
affected instructions to be relocatable by default.

• Instrumentation-based rewriting expands binary
sizes significantly, sometimes generating nearly
double-sized products.

• Binary reuse often requires a binary component to
be small enough for dynamic analysis to cover; oth-
erwise the correctness cannot be guaranteed.

Having investigated previous research on binary ma-
nipulation and reconstruction, we believe that it could be
a remarkable improvement if we are able to automati-
cally recover the assembly from binaries and make the
assembly code ready for reassembly. When a binary
can be reconstructed from assembly code, many high-
level and program-wide transformations become feasi-
ble, leading to new opportunities for research based on
binary retrofitting such as CFI, diversification, and ROP
defense.

Our goal is quite different from previous reverse engi-
neering research. Instead of trying to recover high-level
data and control structures from program binaries which
helps binary code analysis, we aim at a more basic objec-
tive, i.e., producing assembly code that can be readily re-
assembled back without manual effort, which we call the
reassembility of disassembling. Although the research
community has made notable progress on binary reverse
engineering, reassembility is still somewhat a blank due
to lack of attention. In this sense, our contribution is
complementary to existing work.

With that said, we believe that the technical challenge
is also a cause for the deficiency in binary reassembly

support from existing tools. We have confirmed that the
key to reassembility is making the assembly code relo-
catable. Relocation is a linker concept, which is basi-
cally for ensuring program elements defined in different
source files can correctly refer to each other after linked
together. Being relocatable is also a premise for support-
ing program-wide assembly transformations. In COTS
binaries, however, the information necessary for mak-
ing disassembly results relocatable is mostly unavailable.
There has been research trying to address the relocation
issue [11, 48, 26], but existing work mostly relies on dy-
namic analysis which is unlikely to cover the whole pro-
gram.

In this paper, we present UROBOROS, a disassembler
that does reassembleable disassembling. In UROBOROS,
we develop a set of methods to precisely recover each
part of a binary executable. In particular, we are the
first to be capable of not only recovering code, but also
data and meta-information from COTS binaries with-
out manual effort. We have implemented a prototype
of UROBOROS and tested it on 244 binaries, including
the whole set of GNU Coreutils and the C programs in
SPEC2006 (including both 32-bit and 64-bit versions).
In our experiments, most programs reassembled from
UROBOROS’s output can pass functionality tests with
negligible execution overhead, even after repeated dis-
assembly and reassembly. Our preliminary study shows
that UROBOROS can provide support for program-wide
transformations on COTS binaries.

In summary, we make the following contributions:

• We initiate a new focus on reverse engineering.
Complementary to historical work which mostly fo-
cuses on recovering high-level semantic informa-
tion from binary executables or providing support
for binary analysis, our work seeks to deliver re-
assembility, meaning we disassembles binaries in a
way that the disassembly results could be directly
assembled back into working executables, without
manual edits.

• We identify the key challenge is to make the disas-
sembled program relocatable, and propose our key
technique to recover references among immediate
values in the disassembled code, namely “symbol-
ization”.

• With reassembility, our research enables direct
binary-based transformation without resort to the
previously used patching method, and can poten-
tially become the foundation of binary-based soft-
ware retrofitting.

• We implement a prototype of UROBOROS and eval-
uate its strength on binary reassembly. We applied
our technique to 244 binaries, including the whole

USENIX Association 	 24th USENIX Security Symposium  629

set of GNU Coreutils and SPEC2006 C binaries.
The experiment results show that our tool does cor-
rect disassembly and introduces only modest cost.

• Our disassembler produces “normal” assembly
code in the sense that binaries reassembled from
UROBOROS’s output assembly can again be dis-
assembled (and hence the name UROBOROS1), or
be used to accomplish other reverse engineering
tasks. We verify this by repeating the disassemble-
reassemble loop for thousands of times on different
binaries.

The remainder of the paper is organized as follows.
We first discuss the related work and challenges in §2
and §3, respectively. We then present the design and im-
plementation of UROBOROS in §5. The experimental re-
sults are presented in §6, followed by some discussions
in §7. We conclude the paper in §8.

2 Related Work

This section reviews literature on binary disassembly, bi-
nary rewriting, and binary reuse.

2.1 Disassembly

As aforementioned, there is no disassembler known to
us that can generate working assembly code from bina-
ries whose symbol and relocation information is stripped.
IDA Pro [24] is considered as the best commercial dis-
assembler available on the market. It can decode bina-
ries into assembly and further decompile assembly into C
code for program analysis. However, the assembly code
produced by IDA Pro cannot be directly used as the input
of any assembler. As stated in its manual [21], assembly
code produced by IDA Pro is meant for analysis and can-
not be directly reassembled or recompiled.

SecondWrite [3] leverages multiple static analysis
techniques to lift binaries into LLVM IR. It is reported
that the recovered LLVM IR can be converted back into
C code given the LLVM’s IR-to-C backend. However,
it is unclear to us how SecondWrite symbolizes the data
sections and recovers the meta-data information of the
binaries. The paper does not contain an evaluation on
this recompilation functionality. Moreover, the IR-to-C
backend has been removed from LLVM release since 3.1,
because it is not mature enough to handle non-trivial pro-
grams [30].

Dagger [12] is another tool that translates native code
into LLVM IR, but the implementation is far from com-
plete. There is a pre-release version available online.

1Uroboros is a symbol depicting a serpent eating its own tail.

We tried to use it to decompile a simple binary (com-
piled from a C program with only empty main function).
The decompiler reported several errors and generated an
LLVM IR file which cannot be compiled back into binary
due to lack of some symbol definitions.

MC-Semantics [32] is yet another tool for native code
to LLVM IR translation. We used MC-Semantics to de-
compile some quickly written mini programs. Although
the code produced by MC-Semantics can be made bina-
ries, the execution results of these binaries are not the
same as the originals, which we believe is due to incor-
rect symbol references. In addition, different from previ-
ously reviewed work, MC-Semantics works at the scale
of object files rather than executables. Lacking the abil-
ity to handle linked binary programs narrows its scope of
application.

BAP [8] is a binary analysis platform that comes with
a disassembler. It can lift assembly code to a BAP-
defined high-level intermediate representation that can
be further analyzed statically. Several reverse engineer-
ing tools have been built based on BAP, including the C
type recovery tool TIE [28] and the C control-flow re-
covery tool Phoenix [42]. Although BAP provides solid
support for binary analysis, the strength of its disassem-
bler is also limited to analysis only.

There could be multiple reasons that existing tools fail
on reassembling. One reason is the technical challenges
such as separating code and data, symbolizing the data
sections, etc. The other reason could be the difference
in the design goals. Most existing tools aim to produce
more readable code or code that can be analyzed, not for
the purpose of translation and reassembly. We emphasize
that the ability to reassemble the output from a disassem-
bler can provide an enabling infrastructure, facilitating
further research.

2.2 Binary Rewriting

Binary rewriting techniques can be either static or dy-
namic. Static binary rewriting is widely used in security
hardening such as control-flow hijacking mitigation [47],
software control-flow integrity enforcement [50, 49], and
binary instrumentation [3, 35, 13, 16]. Most static binary
rewriting tools make strong assumptions on the input bi-
naries. For example, Vulcan [16], Alto [35, 13], and Di-
ablo [13] require binaries to be compiled from specific
compilers or require symbol information not stripped.
SecondWrite [3] can patch binaries with new code and
data, but the original content in the binary shall remain
unmodified.

As aforementioned, typical static binary rewriting has
to relocate instructions at the patch point to make room
for newly inserted code. In order to make sure that the
rearranged instructions can be relocated while still pre-

630  24th USENIX Security Symposium	 USENIX Association

serving program semantics, a stub-based idea is adopted
to redirect control flow from the original location to the
relocated new place at run time [14, 50, 47]. Control
transfer instructions, i.e., stubs, are inserted at memory
addresses that are pointed to by some code pointers. This
strategy broadens the application scope of binary rewrit-
ing tools. However, there could be a large amount of
stubs inserted, thus incurring notable execution overhead
and size expansion on the rewritten binaries.

Dynamic binary rewriting tools, such as Pin [31] and
DynamoRIO [7], can trace the execution of a binary and
instrument or patch the program on the fly. Dynamic
rewriters are able to handle COTS binaries, whereas with
the cost of considerable performance penalty. Also, dy-
namic binary rewriting requires the rewriter itself to be
shipped with or embedded into the target binaries.

Dyninst [10, 20] is a tool that features both static and
dynamic binary rewriting. It supports performance mea-
surement and computational steering. It can disassem-
ble the stripped binaries and instrument them statically
or dynamically, but does not deliver reassembleable dis-
assembling either.

2.3 Binary Reuse
Binary reuse is mostly based on dynamic analysis. One
of the representative binary reuse tools is BCR [11].
BCR extracts and reuses functions from binaries with
a hybrid approach. BCR first executes binaries in a
monitored environment and records execution traces and
memory dumps. Binaries are then statically disassem-
bled starting from the entry point. In the disassembly
process, the dynamically collected information is used to
resolve the destinations of indirect branches. In the end
BCR manages to extract a “closure” of code reachable
from the entry point which can be reused by other pro-
grams. Clearly, the correctness of the reused code cannot
be guaranteed if BCR does not cover all feasible execu-
tion paths.

In addition to BCR, there are other binary reuse tools
that employs similar basic ideas, such as Inspector Gad-
get [26] and TOP [48]. While these tools have made im-
provements in different aspects, the fact that they all rely
on dynamic analysis leads to the incompleteness issue,
more or less. In general, these tools can only do partial
binary retrofitting.

3 Challenges

We have briefly discussed the technical challenges for
developing a disassembler which can deliver reassembil-
ity. In this section, we discuss these difficulties in more
details. In this research, we assume that the binaries to
disassemble are stripped COTS binaries, namely binaries

without any relocation information or symbols, except
those necessary for dynamic linking. We also assume
that the binaries are compiled from unobfuscated C pro-
grams, without self-modifying features. The target hard-
ware architectures of the binaries are x86 and x64. The
binary executable format is the Executable and Linkable
Format (ELF).

3.1 Raw Disassembly
In this paper, raw disassembly is referred to as the pro-
cess of parsing the binary form of a program to its raw
textual representation. The difficulty of raw disassem-
bly can vary a lot in different situations. In the most
general case, this problem is undecidable. One of the
reasons is that the problem of statically determining the
addresses of indirect jumps is undecidable [23]. Further-
more, the existence of advanced program features such
as self-modifying code makes the problem harder. An-
other issue is that current computer architectures do not
distinguish code and data, and there is no easy way for a
raw disassembler to distinguish them either. This prob-
lem is further worsened by the variable-length instruc-
tion encoding used by, for example, the x86 instruction
set architecture.

However, with years of intensive effort on improving
related techniques, the state of the art can already reach a
very high success rate when disassembling binaries com-
piled from practical legitimate C source code by main-
stream compilers. A recent paper by Zhang et al. [50]
proposed a novel raw disassembly method which com-
bines two existing disassembly algorithms together. We
reimplemented this algorithm and applied it to our eval-
uation set which includes 244 binaries. No errors were
reported by the raw disassembler and subsequent eval-
uation also verified the correctness of this algorithm on
our evaluation set. As a result, we do not consider raw
disassembly, or binary decoding, as a major challenge to
address in this research.

3.2 Reassembly
Successfully decoding the binaries is only the first step to
the goal of this research. Ideally, binary reverse engineer-
ing tools should be able to support at least the following
process:

• The reverse engineering tool disassembles the orig-
inal binary into assembly code.

• Users can perform static analysis on the disassem-
bled program.

• Users can perform transformations on the disassem-
bled program.

USENIX Association 	 24th USENIX Security Symposium  631

• The transformed program can be assembled back
into an usable binary executable, with all transfor-
mation effects retained.

Although it may not be obvious, the feasibility of the
first three steps does not naturally imply the feasibil-
ity of the last step. There have been reverse engineer-
ing tools or platforms that can (partially) enable the first
three steps [8, 45], but support for reassembly is still a
blank.

As mentioned in the introduction, making the assem-
bly code relocatable is the crux of reassembility. Fig-
ure 1 is an artificial example comparing relocatable and
unrelocatable assembly code. In COTS binaries, infor-
mation required for making disassembly results relocat-
able is unavailable. Most program transformations in-
evitably change binary layouts, but a reverse engineering
tool has only very limited control over how the linkers
assign memory addresses of the program elements, lead-
ing to situations illustrated by Figure 1. Note the mem-
ory cell located at address 0xc0 in the original memory,
which is possibly a global variable. The raw disassem-
bly process does not recognize the concrete value 0xc0
in the code as a reference. Thus when this unrelocatable
assembly code is reassembled, the resulting binary will
very likely be defected because the content of the mem-
ory cell at 0xc0 in the original binary may not be placed
the same address in the new binary. In the relocatable
assembly, however, the data originally living at 0xc0 is
given a symbolic name, and the concrete address 0xc0
is replaced by a reference to this name. This is why re-
locatable assembly can be reassembled into a working
executable.

As suggested by the example, if a reverse engineering
tool seeks to reassemble the transformed assembly code
into a working executable, it has to identify program ele-
ments whose addresses could possibly change in the new
binary, and lift concrete memory addresses referring to
them to abstract symbolic references. Obtaining relocat-
able assembly from a COTS binary is non-trivial because
very little auxiliary information in the binary can be uti-
lized to help identify references among concrete values.
Essentially, the problem can be generalized as the fol-
lowing: given an immediate value in the assembly code
(either in a code section or data section), is it an memory
address or a constant? Although this looks like a typical
type analysis problem, in the context of binary reassem-
bly it becomes much more challenging. From a static
point of view, since most machine assembly languages
are untyped, type inference is difficult in the first place.
Compared to high-level programming languages, assem-
bly languages lack explicit syntax for denoting procedure
boundaries and basic control-flow logic, making static
analysis even more difficult. What is worse, many ref-
erences live in the data sections, some of which are in-

mov 0xc0, %eax

0xa080xc0:

binary

.text
mov 0xc0, %eax

.data

.long 0xa08

unrelocatable

.text
mov Glob, %eax

.data
Glob:
.long 0xa08

relocatable

mov 0xc0, %eax

0xa08

?0xc0:

mov Glob, %eax

0xa08Glob:

assemble

assemble

Figure 1: Relocatable and unrelocatable assembly code

directly referred to by the code via numerous reference
hops. At present, most proposed program analysis tech-
niques, either static or dynamic, are code oriented, lack-
ing the capability of analyzing the property of a given
data chunk. Finally, reassembly has almost zero toler-
ance for type inference errors, because a single false pos-
itive or false negative can place the reassembled binary
in a non-functional state.

Solving the relocatable problem in binary disassem-
bly is the main purpose and contribution of this paper. In
the rest of the paper, we call the process of identifying
references among immediate values in the raw assembly
the process of “symbolization”. To distinguish the con-
cept from the traditional meaning of disassembling, we
call our work reassembleable disassembling that gener-
ates relocatable assembly code.

In addition to relocation information, a full-fledged
disassembler also needs to recover some meta informa-
tion to make the reassembly feasible. Meta-data sections
in a binary executable provide information to direct some
link-time and runtime behavior of the program. They
should also be recovered properly in order to ensure the
reassembled binaries are semantic-equivalent to the orig-
inals.

4 Symbolization

This section describes the symbolization problem in de-
tail and presents our solution.

4.1 Classification
There are four types of symbol references that we need
to identify for reassembility. The classification is based
on two criteria—where a reference lives and where a ref-
erence points. Basically, we divide the binary into two
parts, i.e., the code sections and the data sections, whose
contents are as suggested by their names. For ELF bina-
ries on Unix-like platforms, typical code sections include

632  24th USENIX Security Symposium	 USENIX Association

fun1:
call fun2

fun2:
mov ptr, %eax
lea (%eax, %ebx, 4), %ecx
call *%ecx

handler1:
...

handler2:
...

ptr:
.long table

table:
.long handler1
.long handler2

Code Section Data Section

c2c
c2d

d2c

d2d

Figure 2: Different types of symbol references in assem-
bly code

.text and .init etc. Typical data sections include

.data, .rodata, .bss, etc. A symbol reference can
live in either code sections or data sections, and can point
to either code sections or data sections as well, leading to
a total of four types. Figure 2 is an example showing all
four types of symbol references. We give each of them a
short name, i.e., c2c, c2d, d2c, and d2d references.

4.2 Method
When it comes to solving the symbolization problem, we
have considered various potential solutions. Due to the
reasons listed in §3.2, we conclude that no existing pro-
gram analysis technique can handle the symbolization
problem in our special context. Hence, we decide to turn
to another direction. In this work, we identify the im-
mediate values which are actually symbol references by
applying several matching rules inferred from our study
on a large amount of binaries. Although some of these
strategies may not seem exciting at the first sight, they
work surprisingly well in our evaluation on 244 binaries
compiled from C code.

Since we are solving the symbolization problem in an
empirical way, the matching strategies are all based on
certain assumptions. Depending on whether an assump-
tion is accepted or not, different rules are applied for
symbolization. We now introduce the assumptions and
the corresponding symbolization strategies.

At the point of symbolization, we assume that we have
already obtained the raw assembly decoded from bina-
ries using the algorithm by Zhang et al. [50], so we can
get all immediate values that appear in a binary. There
are two kinds of immediate values—constants used as
instruction operands and the byte stream living in data
sections. Among all these immediate values, some can
be excluded from being considered for symbolization at
the first place. Unless a program intentionally causes
memory access errors, which is rarely the case, an im-

mediate value can be a reference to symbols only if this
value falls in the address space allocated for the binary.
For a binary of reasonable size, the utilization of address
space is usually sparse, so there is a wide range of ad-
dress space which is actually invalid.

Assuming all immediate values are potential symbol
references, we can filter out obviously invalid references
based on their target addresses. According to our sym-
bol reference classification in §4.1, a reference can only
point to code sections or data sections; especially, if a
reference points to code sections, the destination must be
the starting address of some instruction. Our study on
244 binaries shows that this simple filter is sufficient to
identify c2c and c2d symbol references with full correct-
ness.

The really challenging part is data section symboliza-
tion, i.e., identifying d2c and d2d references. The first
step of data section symbolization is to slice the data sec-
tions, which are continuous areas of binary bytes, into
individual values of different lengths. Since the raw dis-
assembly process does not assign the data sections any
semantics, there is no ready-made guidance on how they
should be sliced. Regarding this problem, we introduce
the first assumption which is about binary layout:

(A1) All symbol references stored in data sec-
tions are n-byte aligned, where n is 4 for 32-bit
binaries and 8 for 64-bit binaries.

Since unaligned memory accesses cause considerable
performance penalty, compilers tend to keep data aligned
by its size. For data alignment, compilers can even sac-
rifice memory efficiency by inserting padding into data
sections. With that said, A1 stays as an assumption be-
cause occasionally programmers do want non-aligned
data layout. For example, the “packed” attribute sup-
ported by GCC allows programmers to override the de-
fault alignment settings.

If we accept assumption A1, only n-byte long values
which are also n-byte aligned in data sections are consid-
ered for symbolization. Alternatively with A1 rejected,
all n-byte long memory content in data sections are con-
sidered for symbolization. This is implemented as an
n-byte sliding window which starts from the beginning
of a data section and scans through the entire section in
a first-fit manner. Each time the sliding window moves
forward 1 byte and check the value of the covered bytes.
If the value fulfills the basic requirements for being a d2d
or d2c reference, it will be considered for symbolization
and the sliding window advances n bytes forward. In
case that the value does not meet the requirements, the
sliding window moves forward 1 byte only.

In addition to assuming the characteristics of binaries,
making assumptions on user requirements for our tool
also helps improve its performance. As stated earlier,

USENIX Association 	 24th USENIX Security Symposium  633

the goal of symbolization is to make assembly code relo-
catable so that users can perform program-wide transfor-
mations on the assembly and then assemble it back to a
working executable. From our experience, most transfor-
mations on assembly only touch the instructions without
modifying the original data. If we make the following
assumption

(A2) Users do not need to perform transforma-
tion on the original binary data.

then we can keep the starting addresses of data sections
the same as their old addresses when performing re-
assembly, by providing a directive script to the linker.
In this way, we can ignore d2d references during sym-
bolization simply because we do not need them to be
relocatable anymore. Thus, with A2 accepted, only the
immediate values that fall within code sections (d2c ref-
erences) are considered for symbolization. Contrarily,
without deterministically fixing the starting addresses of
data sections in the new binary, the immediate values that
fall within either code sections or data sections are con-
sidered for symbolization.

We want to avoid symbolizing d2d references because
they are used in a very flexible manner. On the other
hand, there are more common patterns in d2c references
which can be exploited by our symbolization method.
We summarize the patterns with the following assump-
tion:

(A3) d2c symbol references are only used as
function pointers or jump table entries.

By accepting A3, an n-byte value in data sections is lifted
to a d2c reference if it is the starting address of some
function, or it forms a jump table together with other n-
byte values adjacent to it. Otherwise with A3 rejected,
an n-byte data section value is symbolized whenever it is
within the address space of code sections.

When A3 is taken, we will need to know whether a
code section address is the start of a function. We also
need to clarify what a jump table would be in the bi-
nary form. Identifying function beginnings in a binary
is not a new research topic. Based on machine learn-
ing techniques, recent research [6] can reportedly iden-
tify function starting addresses with over 98% precision
and recall. To avoid reinventing the wheel, we assume
we have already known all the function start addresses.
Since the binaries used in our research are all compiled
from source code, we are able to get the ground truth by
controlling the compilation and linking process.

Regarding the identification of jump tables, our algo-
rithm is as follows:

• Jump table start. We traverse the data sections from
the beginning to the end. If the address of an n-byte

value is referred to by an instruction as the operand,
it is considered as the first entry of a new jump table.

• Jump table entry. If an n-byte value follows an al-
ready identified jump table entry, this value is also
considered as an entry as long as it refers to instruc-
tions within the same function that previous entries
point to.

The three assumptions A1, A2, and A3 are the basics
of our symbolization method. With different choices of
an assumption being applied or not, we can derive differ-
ent strategies when processing a binary. §6 has a detailed
evaluation on the correctness of reasonable combinations
of these assumptions.

5 Design and Implementation

5.1 Overview

The architecture of UROBOROS is shown in Figure 3.
UROBOROS consists of two main modules—the disas-
sembly module and the analysis module. The disassem-
bly module decodes instructions with raw disassembling
(§5.2) and dumps the data sections. The analysis mod-
ule symbolizes memory references in both code and data
sections (§4) and recovers the meta-information from the
dumped content (§5.4). UROBOROS also recovers part of
the control-flow structures from direct transfers so that it
provides basic support for program-wide transformation
(§5.3).

The disassembly module employs an interactive pro-
cess to validate disassembled code from a linear disas-
sembler. The linear disassembler decodes the code sec-
tions and dumps out all data and meta information sec-
tions. A validator is then invoked to correct disassembly
errors due to “data gaps” embedded inside code sections.
The details are presented in §5.2.

After the raw disassembly is over, the dumped code,
data, and meta-data are sent to the analysis module.
This module identifies symbol references among imme-
diate values in the code and data. As elaborated in §4,
we propose three assumptions for reassembleable dis-
assembling. The corresponding strategies are imple-
mented in UROBOROS to guide the symbolization pro-
cess. UROBOROS can be configured to utilize differ-
ent combinations of assumptions for symbolization. We
give a detailed evaluation on the correctness of different
strategies in §6.1.

Given the symbolized instructions, the analysis mod-
ule also partially recovers the control flows based on
direct control-flow transfers. With the relocatable as-
sembly and the basic control-flow structures, users of
UROBOROS can easily perform advanced program anal-

634  24th USENIX Security Symposium	 USENIX Association

Binary

Disassembly Module

Linear
Disassembler

Disassembly
Validator

Meta-Data

Data

Code

Analysis Module

Symbol Lifting

Control-Flow
Structure Recovery

Relocatable
Assembly

External
Analyses &

Transformations

Figure 3: The architecture of UROBOROS

ysis and program-wide transformations before they as-
semble the code back to binaries.

Finally, we emphasize that the assembly code gener-
ated and transformed by UROBOROS can be directly as-
sembled back as a working binary by normal assemblers.
In particular, the binary output is indeed a normal exe-
cutable file without any abnormal characteristics such as
patched or duplicated sections. Therefore, the reassem-
bled binary can be disassembled again by UROBOROS or
be processed by other reverse engineering tools.

We have implemented a prototype of UROBOROS in
OCaml and Python, with a total of 13,209 lines of code.
Our prototype works for both x86 and x64 ELF binaries.

5.2 Disassembly
In our prototypical implementation, the linear disas-
sembler employed by UROBOROS’s disassembly mod-
ule is objdump from GNU Binutils. We implement
an interactive disassembly process originally proposed
in BinCFI [50].2 In this process, the disassembler com-
municates with a validator which corrects disassembly
errors due to “data gaps” between adjacent code blocks.
The interactive procedure is as follows:

• objdump tries to decode the input binary for the
first time.

• The validator examines the output and check if there
are explicit errors reported by objdump. In case
there are no errors, the raw disassembly process ter-
minates. Otherwise, the validator assumes the er-
rors are caused by data embedded in code and com-
putes the upper and lower bounds of identified “data
gaps”.

• With the computed range of identified “gaps”, the
validator guides objdump to decode the binary
again, with those “gaps” skipped.

2The BinCFI tool is available open source. We choose to reimple-
ment the algorithm to make the codebase of UROBOROS more consis-
tent such that it is fully automated and easy to extend. We refer readers
to BinCFI [50] for the details of the disassembly process.

• Repeat this decode-validate process until no error
occurs or the running time of the whole process
reaches a time limit specified by users.

We leverage three rules proposed in BinCFI to validate
the disassembly results and locate the data “gaps”, i.e.,
“invalid opcode”, “direct control transfers outside the
current module”, and “direct control transfer to the mid-
dle of an instruction”. Since identifying bounds of each
data gap can rely on the control-flow information of de-
coded instructions, the validator occasionally leverages
UROBOROS’s analysis module to retrieve the control-
flow information.

5.3 Support for Program Transformation

UROBOROS provides basic support for program-wide
transformations by partially recovering control-flow
structures of the decoded instructions. We collect all the
control transfer instructions to divide each function into
multiple basic blocks. Control-flow graphs are rebuilt on
top of these basic blocks. As a prototype, UROBOROS
currently only processes direct control transfers. Regard-
ing the intractable indirect transfers, a potential solution
is to use value set analysis (VSA) [5] for destination
computation. We leave including indirect control trans-
fers in the CFG as future work.

5.4 Meta-Information Recovery

UROBOROS recovers the program-linkage table (PLT)
and the export table in ELF binaries. The PLT table sup-
ports dynamic linkage by redirecting intra-module trans-
fers on its stubs to external functions. As the base ad-
dress of the PLT table can change after reassembling, we
translate the memory references to PLT stubs to their cor-
responding external function names, and let the linker
to rebuild the PLT table with correct memory references
during link time. In particular, this table is dumped out
from the input binary and parsed into multiple entries,
each containing the memory address of a PLT stub with

USENIX Association 	 24th USENIX Security Symposium  635

its corresponding function name. Next, we scan the pro-
gram and identify the addresses that match to a table en-
try. These addresses are then replaced by the correspond-
ing function name.

Symbols need to be “exported” so that other compila-
tion units can refer to them. The exported symbols to-
gether with their memory addresses are recorded in the
export table. As ELF binaries do not keep a standalone
export table, we construct this table by searching for all
global objects in the symbol table. The symbol name of
each entry and its memory address are then kept in a map.
The export table can help identify functions and variables
that are only referred to by other compilation units. We
iterate each entry of the export table to insert symbols
and .globl macros to the corresponding addresses.

For typical ELF binaries compiled from C code,
.eh frame and .eh frame hdr sections are used
by compilers to store information for some rarely-used
compiler-specific features, such as the “cleanup” at-
tribute supported by GCC. For these sections, we dump
the content out and directly write them back to the out-
put. These sections are also used to store exception in-
formation for C++ programs. Regarding this, we have a
related discussion in §7.

5.5 Position Independent Code

Position independent code (PIC) typically employs a par-
ticular routine to obtain its memory address at run time.
This address is then added by a fixed memory offset to
access static data and code. According to our observa-
tion, the routine below is utilized by PIC code in 32-bit
binaries to achieve relative addressing.

804C452: mov (%esp),%ebx
804C456: ret

PIC code invokes this routine by a call instruction, and
register ebx is then assigned the value on top of the
stack, which equals the return address. UROBOROS iden-
tifies this instruction pattern, traces the usage of ebx,
and rewrites the instructions that add ebx with memory
offsets to a relocatable format.

An example is shown in Figure 4. Once we iden-
tify a call instruction targeting the above sequence, we
calculate the absolute address by adding 0x804c466
with offset 0x2b8e, which equals 0x804eff4. By
querying the section information from ELF headers,
0x804eff4 equals the starting address of .got.plt
table, and we rewrite offset 0x2b8e to the correspond-
ing symbol, which is GLOBAL OFFSET TABLE in
this case.

Theoretically PIC could use other patterns besides the
above sequence to obtain its own memory address; the
above instruction sequence is, however, the only PIC pat-

804c460: push %ebx
804c461: call 804c452
804c466: add $0x2b8e,%ebx
804c46c: sub $0x18,%esp

804c460: push %ebx
804c461: call S_0x804C452
804c466: add $_GLOBAL_OFFSET_TABLE_,%ebx
804c46c: sub $0x18,%esp

Figure 4: PIC code reuse

tern we encountered after testing a broad range of real
world applications (compiler and platform information
is disclosed in § 6).

As for x64 architectures, RIP-relative [25] memory
references allow assembly code to access data and code
relative to the current instruction by leveraging the rip
register and memory offsets, which makes the implemen-
tation of PIC more flexible. In the raw disassembly out-
put, instructions utilizing this mode are commented by
objdump with the absolute addresses they refer to. We
identify the comments, symbolize the memory offsets,
and insert labels to the corresponding absolute addresses.

5.6 Redundancy Trim

When a binary is dynamically linked to libc, the pro-
logue and epilogue functions of the library are auto-
matically added to the final product. UROBOROS at-
tempts to support multiple iterations of the disassemble-
reassemble process. Each time the binary is assembled, a
new copy of the prologue and epilogue functions are in-
serted, which unnecessarily expands binary size. Some
tentative experiments show that binary size can grow 5 to
6 times larger with respect to the original, if we perform
the disassemble-reassemble iteration for 1,000 times.

We cannot identify the prologue and epilogue func-
tions in COTS binaries as the symbol information has
been stripped. However, after the first disassemble-
reassemble attempt, we get an unstripped binary with
sufficient information indicating which functions are
added by the linker. If we are to do another disassemble-
reassemble round, UROBOROS can skip these functions
in the disassembly phase.

Another source of redundancy is the padding bytes in
data sections. In ELF binaries,there are three data sec-
tions (.data, .rodata, and .bss) that have padding
bytes at the beginning. As these padding bytes are not
used, we remove them from the recovered program be-
fore reassembling.

636  24th USENIX Security Symposium	 USENIX Association

With the code and data redundancy trimmed, binary
size expansion is reduced to almost zero, no matter how
many times a binary is disassembled and reassembled.

5.7 Main Function Identification

In a compiler-produced object file, the symbol informa-
tion of the main function is exported so that it can be ac-
cessed by the libc prologue functions in the linking pro-
cess. However, as this symbol information in executable
file is stripped in COTS binaries after linking, we need to
recover and export it before reassembling.

Through our investigation, we found that the code
sequence shown below is typically used to pass the
starting address of main to libc prologue function
libc start main.

push $0x80483b4
call 80482f0 <__libc_start_main@plt>
hlt

The first argument of libc start main, which is
0x80483b4 in this example, is recognized as the start-
ing address of the main function. We insert a label
named main and the type macro .globl main in the
output at this address.

5.8 Interface to External Transformation

As briefly discussed in §1, existing binary software
security applications mainly rely on patch-based or
instrumentation-based binary manipulations. We ar-
gue that given the assembly program and support for
program-wide transformation from UROBOROS, we can
bridge external instrumentation and analysis techniques
with binary retrofitting application development. The
program-wide security instrumentation such as CFI,
ROP attack mitigation, randomization and software di-
versification could be ported on the basis of UROBOROS
to legacy binaries, without the inefficiency, cumbersome-
ness and restriction brought by previous binary manipu-
lation methods.

In order to demonstrate that UROBOROS is an enabling
tool that makes analysis and transformations applicable
to legacy binaries in general, we implement a diversifi-
cation transformation based on basic block reordering.
After disassembly, we walk through each function and
randomly select two basic blocks from its CFG as the re-
ordering targets. Control-flow transfer instructions and
labels are inserted in the selected blocks, their prede-
cessors, and successors to guarantee semantic equiva-
lence. We perform this reordering iteratively, namely the
output of each iteration becomes the input of the next
round. We conducted a quick experiment on gzip. The

Table 1: Programs used in UROBOROS evaluation
Collection Size Content
COREUTILS 103 GNU Core Utilities
REAL 7 bc, ctags, gzip, mongoose,

nweb, oftpd, thttpd
SPEC 12 C programs in SPEC2006

disassembly-transformation-reassembly process was it-
erated 1,000 times. The effectiveness of the diversifica-
tion transformation is evaluated by the elimination rate
of ROP gadgets measured by the ROP gadget detector
ROPGadget [40]. From this preliminary study, we find
that it is much easier than binary rewriting to perform
binary-based software retrofitting based on UROBOROS.
As the ROP defense is not the focus of this research, we
omit the detailed results in this paper.

6 Evaluation

We evaluate UROBOROS with respect to correctness,
cost, and its ability to support program-wide transfor-
mation. The correctness verification examines whether
UROBOROS’s reassembly is semantic preserving. Eval-
uation on the cost of UROBOROS reveals its reassem-
bly’s impact on binary size and execution speed, and also
the running time of UROBOROS itself. As presented in
§5.8, we study UROBOROS’s support for binary-based
software retrofitting, by implementing a basic block re-
ordering algorithm to diversify disassembled binaries
and eliminate ROP gadgets. As we have emphasized,
UROBOROS is an enabling tool for other security hard-
ening techniques. However, as goal-driven software se-
curity hardening is out of the scope of this paper, we do
not present the detailed experiment results here.

We use three collections of binaries compiled from C
code to evaluate UROBOROS. The first set, referred to as
COREUTILS, is the entire GNU core utilities including
103 utility programs for file, shell, and text manipula-
tion. The second set, called REAL, consists of 7 real-
world programs picked by us, covering multiple cate-
gories such as floating-point and network programs. The
last set subsumes all the C programs in the SPEC2006
benchmark suit, thus will be denoted by SPEC. Details of
each collection are listed in Table 1. In the evaluation we
compile all programs for both 32-bit and 64-bit targets.
Since there are 122 programs, the number of tested bina-
ries is 244 in total. The compiler is GCC 4.6.3, using the
default configuration and optimization level of each pro-
gram. All experiments are undertaken on Ubuntu 12.04.
For each test case, we use the strip tool from GNU
Binutils to strip off the symbol information and debug
information before testing.

USENIX Association 	 24th USENIX Security Symposium  637

Table 2: Functionality test input for REAL

Program Test Input
bc Test cases shipped with the program
gzip Test cases shipped with the program
ctags Parse a C source file of 152,270 lines
oftpd Login and fetch a large file
thttpd Request some web pages & a large file
mongoose Request some web pages & a large file
nweb Request some web pages & a large file

6.1 Correctness

We verify the correctness of UROBOROS’s reassembil-
ity in two steps. First, we execute binaries assembled
from UROBOROS’s output with test input shipped with
the software. Both COREUTILS and SPEC have test cases
shipped with the software by default. As for the REAL
programs, most of them do not have test cases, so we
develop input by ourselves to verify the major function-
ality. The input we use for testing the REAL collection is
listed in Table 2.

Second, we examine the false positives and false neg-
atives of our symbolization process for all the binaries of
the three collections. In our context, a false positive is an
immediate value that we mistakenly symbolize, while a
false negative is a symbol reference that we fail to iden-
tify.

As described in §4, we have different assumptions to
guide the symbolization process, so the correctness of
different assumption combinations are verified. Since the
three assumptions are orthogonal, there are eight differ-
ent combinations with the choices of the three assump-
tions. With limited resources, it is difficult to test all
244 programs on all assumption sets. With some ten-
tative experiments, we found that A1 is an assumption
which greatly improves the overall performance of our
disassembly and reassembly method. Therefore, we re-
duce the eight candidates to five by always including A1
except in the empty assumption set. In detail, the five
assumption sets applied are {} (empty set), {A1}, {A1,
A2}, {A1, A3}, and {A1, A2, A3}.

For all tested assumption sets, all reassembled binaries
from COREUTILS and REAL pass the functionality tests.
Some binaries from SPEC, however, fail to pass the tests,
which are listed in Table 3. With the assumption set {A1,
A2, A3}, only the 32-bit version of gobmk from SPEC
(out of 244 cases in total) fails the functionality test. By
inspecting this defected binary, we successfully locate
the cause of failure. Some 4-byte sequences in the data
sections happen to contain the same value as the start-
ing address of a function, but they are not code point-
ers. UROBOROS incorrectly symbolizes them, leading

to false positives. After we correct these errors, gobmk
successfully passes the test.

For symbol-level correctness verification, we provide
the statistics on false positives and false negatives of
symbolization. A false positive is an immediate value
that should not have been symbolized. A false negative
is an immediate value which should be symbolized but
failed to be after our symbolization process. We obtain
the ground truth by parsing the relocation information
provided by the linker.

We have verified all binaries in this step. Due to lim-
ited space, we only list the results for non-trivial cases,
namely programs with at least one symbolization false
positive or false negative with any assumption combina-
tion. Table 4 and 5 show the false positive and false nega-
tive analysis for 32-bit binaries, and Table 6 reports false
positive analysis for 64-bit binaries. There are no false
negatives on any of the 64-bit binaries. We emphasize in
particular that, with {A1, A2, A3} applied, among all the
244 binaries, only gobmk has a few false positives, and
none has false negatives.

The results of symbol-level verification are highly syn-
chronized with the results from the first stage—binaries
reassembled with no false positives or false negatives can
pass all test cases. The results show that symbolization
errors are found in gobmk no matter which assumption
set we apply. In particular, we have verified that sym-
bolization errors found in gobmk when applying {A1,
A2, A3} are all caused by program data colliding with
some function starting addresses. These collisions cause
a functionality test failure for 32-bit gobmk, but the 64-
bit version can pass the test due to the incompleteness
of test input. In summary, the two stages of verifica-
tion together imply that all three assumptions proposed
for symbolization are reasonable.

Although the symbolization errors occurring in the
case of gobmk seem conceptually “general”, our study
shows that the collisions are actually rare in practice, un-
less the disassembled binary has very large data sections
like gobmk does. See Appendix A for the symboliza-
tion errors in gobmk. On the other hand, UROBOROS
can successfully disassemble large and complicated bi-
naries like gcc and perlbench. Overall, the results
from two stages of correctness verification suggest that
UROBOROS is a promising tool with remarkable practi-
cal value.

6.2 Cost

The cost of UROBOROS manifests from three aspects:
size expansion of reassembled binaries, execution over-
head of reassembled binaries, and the processing time of
UROBOROS itself.Due to space restrictions, we only re-
port the evaluation results on 32-bit binaries in this paper.

638  24th USENIX Security Symposium	 USENIX Association

Table 3: Dynamic test results on reassembled binaries

Assumption Set Binaries Failing Functionality Tests
32-bit 64-bit

{} h264ref, gcc, gobmk, hmmer perlbench, gcc, gobmk, hmmer, sjeng, h264ref, lbm, sphinx3
{A1} h264ref, gcc, gobmk perlbench, gcc, gobmk
{A1, A2} h264ref, gcc, gobmk perlbench, gcc, gobmk
{A1, A3} gobmk gcc, gobmk
{A1, A2, A3} gobmk

Table 4: Symbolization false positives of 32-bit SPEC, REAL and COREUTILS (Others have zero false positive)

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FP FP Rate FP FP Rate FP FP Rate FP FP Rate FP FP Rate

perlbench 76538 2 0.026‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
hmmer 13127 12 0.914‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
h264ref 20600 27 1.311‰ 1 0.049‰ 1 0.049‰ 0 0.000‰ 0 0.000‰
gcc 262698 49 0.187‰ 32 0.122‰ 32 0.122‰ 0 0.000‰ 0 0.000‰
gobmk 65244 1348 20.661‰ 985 15.097‰ 912 13.978‰ 78 1.196‰ 5 0.077‰

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

perlbench

bzip2

gcc

mcf

gobmk

hmmer

sjeng

libquantum

h264ref

milc

lbm

sphinx3

ctags

gzip

bc

nweb

thttpd

mongoose

oftpd

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Figure 5: Execution overhead for REAL and SPEC pro-
grams relative to the original versions

6.2.1 Execution Overhead

Some programs in COREUTILS are not suitable for per-
formance benchmarking, including su, nohup, and
timeout, etc. After excluding these programs, we
have 90 left to inspect in COREUTILS. The experiments
are conducted on a machine with Intel Core i7-3770
3.40GHz and 8GB memory running Ubuntu 12.04.

We present the execution slowdown of reassembled
binaries in Figure 5 and Figure 6. Since it is hard to
present the data of all 90 binaries from COREUTILS, we
sort COREUTILS programs by their names in alphabet
order and plot the data for the first and last 10 programs
in Figure 6. We report that the average slowdown for
is 0.44% for COREUTILS, 0.29% for SPEC and 0.52%
for REAL. The data suggests that UROBOROS does not
have any significant impact on the execution speed of re-
assembled binaries.

-2

 0

 2

 4

 6

 8

[base64

basename

cat
cksum

comm

cp
csplit

cut
date

tty
uname

unexpand

uniq
unlink

uptime

users

vdir
wc

who

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Figure 6: Execution overhead for COREUTILS programs
relative to the original versions

6.2.2 Size Expansion

We use the stat program from GNU Coreutils to calcu-
late file size expansion of the reassembled binaries com-
pared to the originals. As the increase is generally negli-
gible, we only report the average data here. The average
expansion for COREUTILS is 0.83%, 0.00% for SPEC
and -0.02% for REAL. Data shows that UROBOROS
has almost zero impact on binary size when delivering
reassembility. As aforementioned in §5.6, subsequent
disassembly-reassembly iterations have zero expansion.

6.2.3 Processing Time

We measure how long it takes UROBOROS to disassem-
ble binaries. Figure 7 presents the processing time for
SPEC and REAL binaries. Figure 8 presents processing
time for COREUTILS binaries selected using a same al-

USENIX Association 	 24th USENIX Security Symposium  639

Table 5: Symbolization false negatives of 32-bit SPEC, REAL and COREUTILS (Others have zero false negative)

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FN FN Rate FN FN Rate FN FN Rate FN FN Rate FN FN Rate

perlbench 76538 2 0.026‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
hmmer 13127 12 0.914‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
h264ref 20600 27 1.311‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gcc 262698 11 0.042‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gobmk 65244 86 1.318‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰

Table 6: Symbolization false positives of 64-bit SPEC, REAL and COREUTILS (Others have zero false positive). Also,
no false negatives are found for any binary.

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FP FP Rate FP FP Rate FP FP Rate FP FP Rate FP FP Rate

perlbench 76952 32 0.416‰ 10 0.130‰ 10 0.130‰ 0 0.000‰ 0 0.000‰
gcc 259213 506 1.952‰ 126 0.486‰ 14 0.054‰ 112 0.432‰ 0 0.000‰
gobmk 65255 2437 37.346‰ 1079 16.535‰ 7 0.107‰ 1073 16.443‰ 1 0.015‰
hmmer 13165 11 0.836‰ 2 0.152‰ 0 0.000‰ 2 0.152‰ 0 0.000‰
sjeng 8837 22 2.490‰ 2 0.226‰ 0 0.000‰ 2 0.226‰ 0 0.000‰
h264ref 20264 15 0.740‰ 1 0.049‰ 0 0.000‰ 1 0.049‰ 0 0.000‰
lbm 248 1 4.032‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
sphinx3 8656 3 0.347‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
ctags 12997 2 0.154‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gzip 3323 11 3.310‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
mongoose 3643 1 0.275‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
df 4202 1 0.238‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
du 4593 1 0.218‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
split 2851 1 0.351‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
timeout 1935 1 0.517‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰

 0

 10

 20

 30

 40

mongoose

bc

oftpd

nweb

gzip

ctags

thttpd

bzip2

sphinx3

libquantum

mcf

sjeng

milc

perlbench

lbm

hmmer

gcc

h264ref

gobmk

P
ro

ce
ss

in
g

T
im

e
(S

ec
on

ds
)

Figure 7: Processing time for SPEC and REAL binaries

phabet order strategy. As expected, larger binaries take
more time to process. On average, UROBOROS spends
8.27 seconds on binaries from SPEC, 0.98 seconds on
binaries from REAL, and 0.57 seconds on binaries from
COREUTILS. We interpret this as a promising result, and
the efficiency of UROBOROS makes it a tool totally prac-
tical for production deployment.

 0

 0.5

 1

 1.5

 2

[base64

basename

cat
chcon

chgrp

chmod

chown

chroot

cksum

unexpand

uniq
unlink

uptime

users

vdir
wc

who
whoami

yes

P
ro

ce
ss

in
g

T
im

e
(S

ec
on

ds
)

Figure 8: Processing time for COREUTILS binaries

7 Discussions and Limitations

Compiler Compatibility. Sometimes binary reverse
engineering is compiler dependent, but UROBOROS does
not explicitly depend on any compiler-specific features
as far as we know. To roughly investigate UROBOROS’s
compatibility with other compilers, we try to disassem-
ble and reassemble some binaries compiled by Clang,

640  24th USENIX Security Symposium	 USENIX Association

another widely used compiler different from GCC. We
only briefly present the results here due to limited space.
We repeat the same functionality verification described
in §6.1 on the 32-bit binaries in REAL, which are com-
piled by Clang this time. The applied assumption set in
this experiment is the empty assumption set, and all re-
assembled binaries can pass the functionality tests. We
plan to test UROBOROS’s compatibility in more depth in
the future.

C++ Binary Disassembly. The C++ programming lan-
guage has more specific features compared with C.
Binaries compiled from C++ programs often contain
more sections to store meta-information. At this point
UROBOROS still cannot fully support C++ disassembly,
but we have already worked out a blueprint on how to
recover these sections. There are two kinds of meta-
information sections specific to C++. We now briefly
discuss how to recover them.

• The .ctors and .init array sections contain
the addresses of constructor functions—functions
that need to be executed at start up before the main
function takes control. These sections can be di-
rectly dumped out and symbolized by treating them
as data sections.

• The .eh frame and .gcc except table
sections store the information used for stack un-
winding and exception handling for C++ programs
in the DWARF format [15]. There have been some
reverse engineering tools, e.g., Katana [38] and
IDA Pro, that can parse the DWARF data. By under-
standing the semantics of a DWARF entry, we can
adjust its content and make the reassembly flawless.

We leave fully supporting C++ binary disassembly as
part of our future work.

Availability of function starting addresses. We as-
sume the availability of the function starting addresses
in the input binary, as in this research we would like to
assess the assumptions and techniques we develop for the
symbolization problem. Identifying function starting ad-
dresses is an orthogonal research issue which has been
the focus of recent work [6, 41]. UROBOROS can lever-
age existing techniques to make the tool more practical.
Nevertheless, this is currently a limitation of UROBOROS
and we plan to investigate further in the future.

Data Section Relocation. By accepting the assump-
tion A2 (see §4), we fix the starting address of data sec-
tions, which leads to certain limitations related to the re-
location of data sections. However, data can still be ma-
nipulated as long as the starting addresses stay the same.

Besides, .bss section can be extended with new ele-
ments, as it is at the end of typical ELF binaries and the
increase of its size does not need to relocate other sec-
tions. In the future, it would be interesting to see whether
some more sophisticated heuristics or analysis can be de-
veloped to symbolize d2d references.

Extensions. We believe that we have built an enabling
technology that could be employed as the basis of many
important research and applications, such as software
fault isolation (SFI), control-flow integrity (CFI), ROP
defense, and in general software retrofitting for binary
code, which is extremely important for legacy code sys-
tems. Nevertheless, this is a first step in the toolchain
development. We plan to build and maintain a sustain-
able ecosystem, and also link to the existing ecosystems
such as LLVM [27] and CIL [36] by lifting assembly to
LLVM and CIL IR.

8 Conclusion

We have presented UROBOROS, a tool that can disassem-
ble stripped binaries and produce reassembleable assem-
bly code in a fully automated manner. We call this tech-
nique reassembleable disassembling and have developed
a prototype called UROBOROS. Our experiments show
that reassembled programs incur negligible execution
overhead, and thus UROBOROS can be potentially used
as a foundation for binary-based software retrofitting.

9 Acknowledgments

We thank the USENIX Security anonymous reviewers
and Stephen McCamant for their valuable feedback. This
research was supported in part by the National Sci-
ence Foundation (NSF) grants CNS-1223710 and CCF-
1320605, and the Office of Naval Research (ONR) grant
N00014-13-1-0175.

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In Proceedings of the 12th ACM confer-
ence on Computer and Communications Security (2005), ACM,
pp. 340–353.

[2] ADL-TABATABAI, A.-R., LANGDALE, G., LUCCO, S., AND
WAHBE, R. Efficient and language-independent mobile pro-
grams. In Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and Implementation (1996),
ACM, pp. 127–136.

[3] ANAND, K., SMITHSON, M., ELWAZEER, K., KOTHA, A.,
GRUEN, J., GILES, N., AND BARUA, R. A compiler-level inter-
mediate representation based binary analysis and rewriting sys-
tem. In Proceedings of the 8th ACM European Conference on
Computer Systems (2013), ACM, pp. 295–308.

USENIX Association 	 24th USENIX Security Symposium  641

[4] ANSEL, J., MARCHENKO, P., ERLINGSSON, U., TAYLOR, E.,
CHEN, B., SCHUFF, D. L., SEHR, D., BIFFLE, C. L., AND
YEE, B. Language-independent sandboxing of just-in-time com-
pilation and self-modifying code. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation (2011), pp. 355–366.

[5] BALAKRISHNAN, G. WYSINWYX: What You See is Not What
You eXecute. PhD thesis, University of Wisconsin-Madison,
2007.

[6] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUM-
LEY, D. ByteWeight: Learning to recognize functions in binary
code. In In Proceedings of the 23rd USENIX Security Symposium
(2014), USENIX Association, pp. 845–860.

[7] BRUENING, D. L. Efficient, transparent, and comprehensive
runtime code manipulation. PhD thesis, Massachusetts Institute
of Technology, 2004.

[8] BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ,
E. J. BAP: A binary analysis platform. In Computer Aided Veri-
fication (2011), Springer, pp. 463–469.

[9] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND SAVAGE,
S. When good instructions go bad: Generalizing return-oriented
programming to RISC. In Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (2008), ACM,
pp. 27–38.

[10] BUCK, B., AND HOLLINGSWORTH, J. K. An API for runtime
code patching. Int. J. High Perform. Comput. Appl. 14, 4 (2000),
317–329.

[11] CABALLERO, J., JOHNSON, N. M., MCCAMANT, S., AND
SONG, D. Binary code extraction and interface identification
for security applications. In Proceedings of the Network and Dis-
tributed System Security Symposium (2010), The Internet Society.

[12] Dagger. http://dagger.repzret.org/.

[13] DE SUTTER, B., DE BUS, B., AND DE BOSSCHERE, K. Link-
time binary rewriting techniques for program compaction. ACM
Trans. Program. Lang. Syst. 27, 5 (2005), 882–945.

[14] DENG, Z., ZHANG, X., AND XU, D. BISTRO: Binary com-
ponent extraction and embedding for software security applica-
tions. In Proceedings of 18th European Symposium on Research
in Computer Security (2013), Springer, pp. 200–218.

[15] DWARF debugging information format, 1993. Proposed Stan-
dard, UNIX International Programming Languages Special Inter-
est Group.

[16] EDWARDS, A., VO, H., SRIVASTAVA, A., AND SRIVASTAVA,
A. Vulcan binary transformation in a distributed environment.
Tech. Rep. MSR-TR-2001-50, Microsoft Research, 2001.

[17] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND
NECULA, G. C. XFI: Software guards for system address spaces.
In Proceedings of the 7th Symposium on Operating Systems De-
sign and Implementation (2006), USENIX Association, pp. 75–
88.

[18] FORD, B., AND COX, R. Vx32: Lightweight user-level sandbox-
ing on the x86. In Proceedings of USENIX 2008 Annual Technical
Conference (2008), USENIX Association, pp. 293–306.

[19] GRAHAM, S. L., LUCCO, S., AND WAHBE, R. Adaptable bi-
nary programs. In Proceedings of the USENIX 1995 Technical
Conference Proceedings (1995), USENIX Association, pp. 26–
26.

[20] HARRIS, L. C., AND MILLER, B. P. Practical analysis of
stripped binary code. SIGARCH Comput. Archit. News 33, 5
(2005), 63–68.

[21] Hex-Rays Decompiler: Manual. https://www.hex-rays.
com/products/decompiler/manual/failures.
shtml.

[22] HISER, J., NGUYEN-TUONG, A., CO, M., HALL, M., AND
DAVIDSON, J. W. ILR: Where’d my gadgets go? In Proceedings
of the 2012 IEEE Symposium on Security and Privacy (2012),
IEEE, pp. 571–585.

[23] HORSPOOL, R. N., AND MAROVAC, N. An approach to the
problem of detranslation of computer programs. Comput. J. 23,
3 (1980), 223–229.

[24] The IDA Pro disassembler and debugger. https://www.
hex-rays.com/idapro.

[25] Introduction to x64 Assembly. https://
software.intel.com/en-us/articles/
introduction-to-x64-assembly/.

[26] KOLBITSCH, C., HOLZ, T., KRUEGEL, C., AND KIRDA, E.
Inspector gadget: Automated extraction of proprietary gadgets
from malware binaries. In Proceedings of the 2010 IEEE Sympo-
sium on Security and Privacy (2010), IEEE, pp. 29–44.

[27] LATTNER, C. Macroscopic Data Structure Analysis and Opti-
mization. PhD thesis, Computer Science Dept., University of Illi-
nois at Urbana-Champaign, 2005.

[28] LEE, J., AVGERINOS, T., AND BRUMLEY, D. TIE: Principled
reverse engineering of types in binary programs. In Proceed-
ings of the Network and Distributed System Security Symposium
(2011), The Internet Society.

[29] LI, J., WANG, Z., JIANG, X., GRACE, M., AND BAHRAM, S.
Defeating return-oriented rootkits with “return-less” kernels. In
Proceedings of the 5th European Conference on Computer Sys-
tems (2010), ACM, pp. 195–208.

[30] LLVM 3.1 release notes. http://llvm.org/releases/
3.1/docs/ReleaseNotes.html, 2012.

[31] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation (2005), ACM, pp. 190–200.

[32] MC-Semantics. https://github.com/trailofbits/
mcsema.

[33] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a
CISC architecture. In Proceedings of the 15th Conference on
USENIX Security Symposium (2006), USENIX Association.

[34] MING, J., WU, D., XIAO, G., WANG, J., AND LIU, P. Taint-
Pipe: Pipelined symbolic taint analysis. In Proceedings of the
24th USENIX Security Symposium (2015), USENIX Association.

[35] MUTH, R., DEBRAY, S. K., WATTERSON, S., AND DE BOSS-
CHERE, K. Alto: A link-time optimizer for the Compaq Alpha.
Softw. Pract. Exper. 31, 1 (2001), 67–101.

[36] NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER,
W. CIL: Intermediate language and tools for analysis and trans-
formation of c programs. In Proceedings of the 11th International
Conference on Compiler Construction (2002), Springer, pp. 213–
228.

[37] NIU, B., AND TAN, G. Modular control-flow integrity. In
Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2014), ACM,
pp. 577–587.

[38] OAKLEY, J., AND BRATUS, S. Exploiting the hard-working
DWARF: Trojan and exploit techniques with no native executable
code. In Proceedings of the 5th USENIX Conference on Offensive
Technologies (2011), USENIX Association, pp. 11–11.

[39] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In Proceedings of the 2012
IEEE Symposium on Security and Privacy (2012), IEEE.

642  24th USENIX Security Symposium	 USENIX Association

[40] ROPgadget tool. http://shell-storm.org/project/
ROPgadget.

[41] ROSENBLUM, N., ZHU, X., MILLER, B., AND HUNT, K.
Learning to analyze binary computer code. In Proceedings of
the 23rd National Conference on Artificial Intelligence - Volume
2 (2008), AAAI, pp. 798–804.

[42] SCHWARTZ, E. J., LEE, J., WOO, M., AND BRUMLEY, D.
Native x86 decompilation using semantics-preserving structural
analysis and iterative control-flow structuring. In Proceedings of
the 22nd USENIX Security Symposium (2013), USENIX Associ-
ation, pp. 353–368.

[43] SEHR, D., MUTH, R., BIFFLE, C., KHIMENKO, V., PASKO, E.,
SCHIMPF, K., YEE, B., AND CHEN, B. Adapting software fault
isolation to contemporary CPU architectures. In Proceedings of
the 19th USENIX Conference on Security (2010), USENIX As-
sociation, pp. 1–11.

[44] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceed-
ings of the 14th ACM conference on Computer and Communica-
tions Security (2007), ACM, pp. 552–561.

[45] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,
I., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. BitBlaze: A new approach to computer secu-
rity via binary analysis. In Proceedings of the 4th International
Conference on Information Systems Security (Berlin, Heidelberg,
2008), ICISS ’08, Springer-Verlag, pp. 1–25.

[46] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. SIGOPS Oper.
Syst. Rev. 27, 5 (1993), 203–216.

[47] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z.
Binary stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proceedings of the 2012 ACM conference on
Computer and Communications Security (2012), ACM, pp. 157–
168.

[48] ZENG, J., FU, Y., MILLER, K. A., LIN, Z., ZHANG, X., AND
XU, D. Obfuscation resilient binary code reuse through trace-
oriented programming. In Proceedings of the 2013 ACM Confer-
ence on Computer and Communications Security (2013), ACM,
pp. 487–498.

[49] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical control
flow integrity and randomization for binary executables. In Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy
(2013), IEEE, pp. 559–573.

[50] ZHANG, M., AND SEKAR, R. Control flow integrity for COTS
binaries. In Proceedings of the 22Nd USENIX Conference on
Security (2013), USENIX Association, pp. 337–352.

A Symbolization Errors in gobmk

Among the 244 binaries from the COREUTILS, REAL,
and SPEC collections, we found 5 d2c reference sym-
bolization errors in gobmk, one of the largest SPEC pro-
grams, 4 of which are in the 32-bit version and 1 of which
is in the 64-bit version, all false positives.

The software gobmk is GNU Go (http://www.
gnu.org/software/gnugo/), a program for play-
ing the board game of Go. The program contains a fairly
large database of board configuration patterns. In order
to speed up pattern matching, it builds Deterministic Fi-
nite Automata (DFA) from the pattern database.

The five reference symbolization errors are
shown in Table 7 and Figure 9. In Figure 9,
the two arrays state owl attackpat and
state owl defendpat encode two DFAs with
24,701 and 34,044 entries, respectively. Each entry
represents a state in the corresponding DFA. Each
state has 5 numbers of the C short datatype, the current
state and its four neighbors, as Go games are played on
2-dimensional grid boards.

We found two consecutive states in DFA
state owl attackpat of the 64-bit gobmk
are {66,{0,0,0,0}},{70,{0,0,0,0}}. The two
C short int numbers 0 and 70 in the middle forms
0x460000 (little-endian), which happens to be the
starting address of function gtp trymove. Similar
patterns exist in the 32-bit gobmk. States in array
state owl defendpat forms value 0x080c0000
from two C short int numbers 0 and 2060 next to each
other (little-endian), which collides with the starting
address of function autohelperpat1029.

Table 7: Source code locations of symbolization errors
Program Location (file and line no.)
32-bit gobmk owl defendpat.c: 9688

owl defendpat.c: 9702
owl defendpat.c: 9703
owl defendpat.c: 9704
owl defendpat.c: 9761

64-bit gobmk owl attackpat.c: 5828

static const state_rt_t
state_owl_defendpat[34044] = {

...
{0,{2060,2061,2062,2063}}, ...
{0,{2060,2060,2060,2060}}, ...
{0,{2060,2060,2060,2060}}, ...
{0,{2060,2060,2060,2060}}, ...
{0,{2060,2060,2061,2060}}, ...

};

(a) 32-bit gobmk

static const state_rt_t
state_owl_attackpat[24701] = {

...
{66,{0,0,0,0}}, {70,{0,0,0,0}}, ...

};

(b) 64-bit gobmk

Figure 9: Source code of symbolization errors

